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Abstract: Remote sensing was used as an early alert tool for water clarity changes in five Araucanian
Lakes in South-Central Chile. Turbidity records are scarce or unavailable over large and remote
areas needed to fully understand the factors associated with turbidity, and their spatial-temporal
representation remains a limitation. This work aimed to develop and validate empirical models to
estimate values of turbidity from Landsat images and determine the spatial distribution of estimated
turbidity in the selected Araucanian Lakes. Secchi disk depth measurements were linked with
turbidity measurements to obtain a turbidity dataset. This in turn was used to develop and validate
a set of empirical models to predict turbidity based on four single bands and 16 combination bands
from 15 multispectral Landsat images. The best empirical models predicted turbidity over the range
of 0.3–12.3 NTUs with RMSE values around 0.31–1.03 NTU, R2 (Index of Agreement IA) around
0.93–0.99 (0.85–0.97) and mean bias error (MBE) around (−0.36–0.44 NTU). Estimation maps to
analyze the temporal-spatial turbidity variation in the lakes were constructed. Finally, it was found
that the meteorological conditions may affect the variation of turbidity, mainly precipitation and
wind speed. The data indicate that the turbidity has slightly increased in winter–spring. These
models will be used in the future to reconstruct large datasets that allow analyzing transparency
trends in those lakes.

Keywords: water clarity; lakes; Landsat images; turbidity; Chile

1. Introduction

The characteristics of water regulate the metabolism of lakes; the modifications of the
aquatic environment are produced as a response to climatic and geographical variations [1].
Water quality monitoring in continental aquatic ecosystems using satellite image processing
is a tool that can be employed as an early alert system for changes in lakes [2]. One
important characteristic in an aquatic environment is the water clarity. Generally, the clarity
is quantified by the Secchi disk depth (SDD) or turbidity parameter and is mainly caused
by increases/decreases in the concentration of suspended sediments, algae, and organic
matter [3,4]. Reductions in water clarity can inhibit sunlight absorption in lakes, thereby
slowing radiant heating of lakes, reducing light penetration, and primary productivity [5].
Halted or reduced primary productivity means a decrease in plant survival and dissolved
oxygen output. Other impacts are the regrowth of pathogens [6], habitat quality [7], and
water bodies’ recreational use [8]. In Landsat images, high concentrations of algae are
associated with decreased radiance because of the chlorophyll absorption in this region [9].

Turbidity is an optical characteristic of water clarity [1] and is a measurement of the
amount of light that is scattered by particles in the water column. When higher the intensity
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of scattered light, the higher the turbidity, it is reported in nephelometric turbidity units
(NTU). Changes (increases or decreases) can negatively impact biological components of
the system that may be adapted to specific light-penetrating conditions [9]. In general, in
high transparency lakes, greater photoinhibition is expected than in less transparent lakes
since, in the latter, suspended particles could interfere with the light transmission [10].
Therefore, turbidity is an indicator of water pollution and an important water quality
parameter in oligotrophic lakes [11].

In situ measurements of the water irradiance profile for underwater light is typically
costly and time-consuming, limiting its spatial and temporal representation over large and
remote areas. Satellite image processing has made it possible to obtain an early warning
system for water quality changes in aquatic ecosystems [5]. Several studies have been
carried out to estimate water quality parameters such as chlorophyll a (Chl-a) and turbid-
ity in various aquatic ecosystems using remote sensing reflectance [12–14]. The spatial
distribution and dynamics of several water quality parameters in Chile were investigated
by [15] in Lake Vichuquén lake, and Panguipulli lake by [16]. Recently, ref. [17] showed a
simple accurate method for evaluation of the Chl-a level from the Normalized Difference
Vegetation Index (NDVI) and Green Normalized Difference Vegetation Index (GNDVI) in
Laja Lake. These studies demonstrated the use of remote sensing for the monitoring of
water quality parameters in northern Patagonia lakes. This allows information of remote
places to be obtained, then to perform repetitive monitoring to study dynamic processes
and reduce the efforts and costs of field data collection, an area in which Chile most needs
research effort.

Chile has several lake districts that play an important role as freshwater reservoirs
and in the provision of multiple ecosystem services. Throughout the extensive Chilean
territory, several lake systems can be distinguished from north to south, Nahuelbutan
lake district [18]; Araucanian Lake district [19]; Chiloé lake district [20]; Torres del Paine
or Patagonian lakes district [21]. Among these the most relevant in terms of magnitude,
extension, beauty, economic and environmental importance are the “Araucanian lakes” so
named by the Swedish psychologist and limnologist Kuno [19]. There is an insufficient
effort to monitor the lakes in Chile due to the limitation in resources and research. Accord-
ing to Ref. [22], only 20 of the 375 lakes are monitored by the General Water Directorate
of Chile (DGA). Working on this shortcoming, remote sensing has become an alternative
for continuous monitoring in these invaluable water quality systems [16,17]. It is a field in
which much remains to be explored.

To address this need, the aims of this paper are as follows: (1) analyze in situ limnol-
ogy parameters in five lakes study within South-Central Chile, (2) develop and validate
empirical models to estimate values of turbidity from Landsat satellite images and (3) eval-
uate the spatial distribution of estimated turbidity in these continental aquatic ecosystems.
The establishment of simple models with high accuracy and known error will help the
rapid, accurate and real-time assessment of water quality using in situ and remote-sensing
techniques. The spatial distribution and seasonal dynamics of limnological parameters
allow for generation of a knowledge base to decide on environmental protection actions in
order to control the trophic state of the lakes and their sustainable use.

2. Materials and Methods
2.1. Study Area

Chilean Araucanian Lakes is a group of lakes of glacial origin dating to some 11,000 years
ago [23]. They are located between 39–42◦S and 71–72◦W in the Los Rios Region with
elevations between 117 and 203 m above sea level (m.a.s.l) (see Table 1). The lakes are
characterized by oligotrophic conditions [24] and are notable for great depth (86–323 m). For
this study, 5 lakes of the Araucanian district, order from the north to the south: Calafquén,
Neltume, Riñihue, Panguipulli and Puyehue were selected, as shown in Figure 1. These
lakes were selected due to the availability of data during the study period. The lakes are
subject to a temperate monomictic thermal regime with winter circulation and a stratification
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period in late spring and summer. A strong thermocline separates an oxygen-supersaturated
epilimnion from a large cold hypolimnion [25]. The thermal regime, the low concentration
and the orthograde distribution of the chemical factors classify these lakes as monomictic
and oligotrophic temperate. The transparency is high and the average SDD varies between
6.6 and 21 m. In general, the water is colorless (0 Pt units) and on the Forel scale occupies
the range between 6 and 7 (blue-green). The regional climate is characterized by humid
temperate conditions with Mediterranean influence. The average rainfall of 2000 mm/year
and an average annual temperature that fluctuates between 6 and 9 ◦C, with maximums in
January (20 ◦C) and minimums in July (2 ◦C) according to Dirección Meteorológica de Chile
(DMC, http://www.meteochile.cl/, accessed on 1 March 2021).

Table 1. Morphometric parameters in each study lake.

Parameters Unit Calafquén Neltume Riñihue Panguipulli Puyehue

Latitude ◦ ′S 39.32 39.47 39.50 39.43 40.40
Longitude ◦ ′W 72.09 71.58 72.20 72.13 72.28
Altitude m.a.s.l. 203 186 117 140 184

Long maximum km 25.10 6.30 27 28.30 23.50
Maximum width km 7.80 2.40 5 9.70 11.30
Medium width km 4.70 1.50 2.90 4.10 7.10

Superficial area (A) km2 120.60 9.80 77.50 116.90 165.40
Maximum depth m 212 86 323 268 123.
Medium depth m 115 58 162 126 76.30

Volume km3 19.10 0.60 12.60 14.70 12.60
Hydrographic basin

area (Ad) km2 733 763 4.290 1.51 1.53

Ad/A 6.10 77.90 55.35 32.60 9.10
Renovation time years 2.90 0.20 1.40 1.40 4.50

2.2. Sampling Measurements

Seven monitoring campaigns during the 2015 year were conducted by the EULA
Center of the University of Concepcion. Therefore, all seasons were covered. The moni-
tored parameters were surface temperature (2250 B standard methods 22 Ed. thermometry,
method used as a reference for temperature analysis according to NCh 2313 compendium),
surface Chl-a (fluorometric method), transparency (measured by SDD), profiles Chl-a and
temperature, (Multiparametric Probe Seabird 19 Plus). Data were collected from different
sampling stations for each lake in addition to stations in the respective tributaries (tribu-
taries and effluents) according to the characteristics of these aquatic ecosystems showed in
Figure 2. The locations were selected in the field considering the following criteria:

1. Morphology of the lake.
2. Presence of tributaries (away from their influence).
3. Presence of industrial effluents or urban discharges.
4. Depth.

At each of the lake stations, water samples were collected at 5 depths using a 5 L
Niskin sampling bottle. The samples were stored and transported in thermally insulated
boxes, duly refrigerated with ice at a temperature of approximately 5 ◦C for subsequent
analysis. The chemical analyses were carried out in the chemistry laboratory of the EULA-
Center Chile. This laboratory accredited by the National Institute of Normalization for the
Chilean Norm NCh ISO 17.025 of 2005.

http://www.meteochile.cl/
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2.3. Image Acquisition and Processing

A total of 15 multispectral Landsat images, 13 by L8 OLI (Operational Land Imager)
and 2 by L5 TM (Thematic Mapper) with a 30 × 30 m resolution, obtained from the official
site of the United States Geological Survey (USGS) Earth-Explorer (https://earthexplorer.
usgs.gov/) accessed on 20 December 2020 were used. The study area is covered by three
scenes with the following path/row: 233/88, 233/87 and 232/88. The selected images
were chosen according to quality, availability, a low percentage of cloud cover (0–12%)
and proximity to the sampling date (within a ±14 days difference of satellite overpasses).
To mask clouds, cirrus and shadows, the quality assessment (QA) bands were used and
confirmed with a visual inspection. Only data that was outside of cloud cover were used.
The lake’s edge was established using geospatial information from the DGA. Although the
satellite images covered an area greater than the lake, only the water body was considered
in the analysis.

Images preprocessing was carried out using ENVI 5.3 (Environment for Visualizing
Images), ArcGIS (ESRI’s v. 10.8.1) software tools and began with geometric correction (re-
projection to the UTM-WGS84 coordinates system, zone 19S) [26]. Radiometric calibration
is a common pre-processing step that attempts to compensate for radiometric errors from
sensor defects, variations in scan angle, and system noise to produce an image that repre-
sents the true spectral radiance at the sensor [27–29]. Therefore, radiometric calibration
to L5 TM images was carried out in accord with [28,29] and to L8 OLI images, across the
instructions proposed by the USGS [30] in Landsat 8 Data Users Handbook v.5, converting
the original digital number (DN) of each band to radiance values and then transforming
them to top-of-atmosphere (TOA) reflectance values, that include a correction for solar

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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angle and use of the rescaling factors and parameters found in the MTL.txt file [30,31]. The
atmospheric correction continued with the Dark Object Subtraction (DOS) technique [32].
This method is based on some pixels in the image being in complete shadow and their
radiances received at the satellite are due entirely to atmospheric scattering. Therefore,
this value is subtracted from each pixel value in the image [31]. DOS is widely used in
research applied to the water quality of aquatic ecosystems with remote sensing, such
as [31,33,34]. With the corrected bands the calculation of simple bands, spectral indices and
band combination was selected according to a literature review [5,33–35]. Table 2 present
the Landsat images selected and in situ measurements date.

Table 2. Landsat image characteristics and in situ measurements.

Lake Image ID Path/Row Year In Situ Date Image Date Days
Differences

Calafquén

LC82330872015028LGN01 233/87 2015 22 January 28 January ±6

LC82320882015053LGN01 232/88 2015 27 February 22 February ±5

LC82320882015085LGN01 232/88 2015 18 March 26 March ±8

LC82330872015300LGN01 233/87 2015 23 October 27 October ±5

LC82330872015332LGN01 233/87 2015 3 December 28 November ±5

LT52330872011081COA00 233/87 2011 22 March 22 March ±0

Neltume

LC82320882015021LGN01 232/88 2015 20 January 21 January ±1

LC82320882015053LGN01 232/88 2015 1 March 22 February ±7

LC82320882015085LGN01 232/88 2015 19 March 26 March ±7

LC82330882015300LGN01 233/88 2015 21 October 27 October ±6

LC82330872015332LGN01 233/87 2015 2 December 28 November ±4

LC82330882013278LGN01 233/88 2013 17 October 5 October ±12

Riñihue

LC82330882015028LGN01 233/88 2015 18 January 28 January ±10

LC82330882015044LGN01 233/88 2015 25 February 13 February ±12

LC82320882015069LGN01 232/88 2015 17 March 10 March ±7

LC82330882015300LGN01 233/88 2015 19 October 27 October ±8

LC82330882015332LGN01 233/88 2015 30 November 28 November ±2

LT52330882011081COA00 233/88 2011 23 March 22 March ±1

Panguipulli

LC82320882015021LGN01 232/88 2015 19 January 21 January ±3

LC82320882015053LGN01 232/88 2015 26 February 22 February ±4

LC82320882015085LGN01 232/88 2015 18 March 26 March ±8

LC82330872015284LGN01 233/87 2015 20 October 11 October ±9

LC82330872015332LGN01 233/87 2015 1 December 28 November ±3

LT52330882011081COA00 233/88 2011 22 March 22 March ±0

Puyehue

LC82330882015028LGN01 233/88 2015 24 January 28 January ±4

LC82320882015069LGN01 232/88 2015 24 January 10 March ±14

LC82320882015085LGN01 232/88 2015 21 March 26 March ±5

LC82330882015300LGN01 233/88 2015 25 October 27 October ±2

LC82330882015332LGN01 233/88 2015 5 December 28 November ±7

LC82330882013134LGN02 233/88 2013 9 May 14 May ±5

LC82330882013278LGN01 233/88 2013 15 October 5 October ±10
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2.4. Standardization of Existing Water Clarity Measurements

Field measurements of water clarity via SDD were acquired by the DGA between
2011 and 2012 (Calafquén, Panguipulli, Riñihue) and 2012–2013 (Puyehue, Neltume).
Measurements of water clarity via SDD and NTU were acquired on 25 January 2011
(Calafquén, Panguipulli, Riñihue) (n = 28) and 8 January 2013 (Puyehue, Neltume) (n = 28).
To standardize the different measures of water clarity, we developed a linear function
between SDD and NTU measures using the samples collected in January corresponding
to 2011 and 2013 following the methodology proposed by [5]. The resulting function was
used to convert in situ SDD measurements into correlative NTU.

2.5. Band Combinations, and Turbidity Index

Correlative NTU values were correlated to the corresponding cell value of four (n = 4)
independent bands (blue (B), green (G), red (R) and Near Infrared (N)) and sixteen (n = 16)
different band combinations consisting of bands B to N, including the Normalized Dif-
ference Turbidity Index (NDTI) which is calculated as (R − G)/(R + G) [5]. A simple
regression to develop a relation between in situ NTU measurements and space-based ob-
servations was used [33,36]. These bands and band combinations are regularly employed
to detect turbidity in water bodies [4,5,37]. The Pearson correlation coefficient (r) was
used to evaluate the correlation between NTU values and 20 independent bands, band
combinations and NDTI.

2.6. Empirical Models and Validation

In situ datasets and the preprocessed Landsat 8 images (11) during the monitoring
campaigns in 2015 were used to develop a set of empirical models for obtaining turbidity
or NTU. To reduce the possible errors in geometric correction of Landsat images and
the dynamics of water bodies, we used a sampling window with the 3 × 3 pixel mean
to extract the surface reflectance of the bands, band combinations, and NDTI spectral
index (i.e., the preprocessed Landsat data) according to [4]. The data selection for internal
validation/training and external validation/prediction was conducted according to the
methodology proposed by [38], which was the most useful of the several data selection
strategies that were tested in this study. The resulting data set consisted of the NTU re-
sponse variable (from the SDD) and best band or band combinations predictors for each
lake of the 4 selected images (2011–2013), resulting in 4 × 3 matrices. The strategy consists
of randomly selecting 70% of the data as the calibration series, with the remaining 30%
serving as the validation series. The models were evaluated based on the coefficient of
determination (R2), index of agreement (IA), mean bias error (MBE) and root mean square
error (RMSE). The RMSE is frequently used to compare the forecasting errors of different
NTU models [37,39,40]. In general, the RMSE quantifies the dispersion between simulated
and measured data, where low RMSE values indicate better model performance. Negative
(Positive) MBE indicates that the model results underestimate (super-estimate) measure-
ments. An IA value close to 1 indicates a more efficient model [41]. All statistical analysis
and figures in this study were realized in Origin Pro 2021 version 9.8.0.200 (Academic)
software. Finally, estimated turbidity maps were obtained from the models, using ArcGIS
10.8.1 software.

2.7. Water Clarity and Meteorological Conditions

Seasonal meteorological factors such as wind speed (WS) and precipitation impact
water turbidity [42], due to their ability to affect the movements of sediments. For ex-
ample, in Lobo reservoir [43] it was observed that maximum particulate and organic
matter resuspension is caused by turbulence on days of high wind speed. In reference [44]
it is said that the turbidity of the surface layer is attributed to the decrease in incom-
ing water caused by the decrease in rainfall, which, in turn, causes a decrease in the
buoyancy of the hydrothermal plumes. In addition, it could cause a reduction in the
supply of sediment from runoff. To analyze climatic factors influencing variations in
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estimated turbidity, meteorological data on precipitation and wind direction/speed were
used. The meteorological data analyzed were obtained from Dirección Meteorológica
de Chile (DMC, https://climatologia.meteochile.gob.cl/) accessed on 20 December 2020
and Instituto Nacional de Investigaciones Agrarias (INIA, https://agrometeorologia.cl/)
accessed on 26 December 2020. The wind direction/speed and precipitation data (e.g., on
the day, on the last 3 days when the satellite image was captured) were taken from stations
close to study lakes, Santa Carla station (−39.67◦S, 72.61◦W, 264 m.a.s.l) representative to
(Calafquén, Neltume, Panguipulli, and Riñihue lakes) and Rupanco or Rucatayo stations
(−40.74◦S, −72.66◦W, 272 m.a.s.l) representative of the conditions of Puyehue lake (see
Figure 1).

3. Results
3.1. Behavior In Situ Limnology Parameters at Sampling Stations in the Study Lakes

Table 3 shows the average of SDD, Chl-a, NTU and temperature values obtained in
the monitoring campaigns during 2015. The behavior of temperature fluctuated between
14.9 ± 5.6–16.1 ± 4.4 ◦C with a maximum value of 25.9 ◦C in Neltume lake. Water clarity
during all campaigns was measurement via SDD and indicate that the average fluctuated
between 11.9± 5.8 m (Calafquén) to 6.8± 2.8 m (Puyehue) lakes. These aquatic ecosystems
also presented the highest and lowest values of transparency (SDD) at 17.0 m and 2.5 m.
The average Chl-a values fluctuated between 0.5–0.8 µg/L for Riñihue and Calafquén lakes.
The NTU values during 2015 were estimated through the relationship between SDD and
NTU. The average values of NTU ranged from 1.5 ± 1.0 NTU until 9.2 ± 1.6 NTU for
Puyehue and Neltume lakes. Hence, the trophic state of the studied lakes can be classified
as oligotrophic or ultra-oligotrophic, with low nutrient levels and productivity.

Table 3. Descriptive statistic from lake Calafquén (CAL), lake Neltume (NEL), lake Riñihue (RIÑ),
lake Panguipulli (PAN) and lake Puyehue (PUY).

Parameters Statistical
Indicators CAL NEL RIÑ PAN PUY

SDD

min–max (m) 8.0–17.0 2.3–14.5 6.5–15.0 5.2–16.0 2.5–10.4

Average ± σ 11.9 ± 5.8 8.2 ± 3.8 10.5 ± 2.7 9.4 ± 3.7 6.8 ± 2.8

CV (%) 48.8 45.6 26.0 39.7 40.9

n 43 43 42 42 43

Chl-a

min–max (µg/L) 0.1–2.6 0.1–0.7 0.1–1.1 0.1–1.4 0.1–2.7

Average ± σ 0.8 ± 0.6 0.3 ± 0.1 0.5 ± 0.2 0.5 ± 0.3 0.5 ± 0.2

CV (%) 89.2 54.3 76.6 80.0 43.0

n 42 42 42 42 43

Turbidity

min-max (NTU) 0.2–3.9 6.9–12.0 1.0–3.9 1.1–8.0 0.3–3.7

Average ± σ 1.8 ± 1.1 9.2 ± 1.6 2.3 ± 0.9 3.4 ± 1.9 1.5 ± 1.0

CV (%) 62.3 17.5 39.8 56.2 60.5

n 25 25 25 25 25

Temp

min–max (◦T) 10.0–21.7 7.1–25.9 8,6–20.7 7.3–24.6 9.4–22.5

Average ± σ 15.7 ± 0.7 14.9 ± 5.6 15.4 ± 4.1 16.1 ± 4.4 14.9 ± 4.6

CV (%) 4.3 37.5 26.6 27.5 30.7

n 43 43 42 42 43

CV—coefficient of variation, n—data number, and σ—standard deviation

https://climatologia.meteochile.gob.cl/
https://agrometeorologia.cl/
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3.2. In Situ Secchi Disk Depth (SDD) Measurements into Correlative Nephelometric Turbidity
Units (NTU)

A strong negative correlation (r > −0.92) was found between SDD measurements and
simultaneous NTU measurements (see Table 4). This relation allowed us to derive NTU
values for all SDD data collected during other sampling periods.

Table 4. Correlation between SDD and NTU measurements.

Lake Relations r R2

Calafquén NTU = −0.30 SDD + 5.15 −0.99 0.98

Neltume NTU = −0.39 SDD + 12.96 −0.97 0.94

Panguipulli NTU = −0.51 SDD + 9.00 −0.92 0.85

Riñihue NTU = −0.26 SDD + 5.19 −0.95 0.91

Puyehue NTU = −0.44 SDD + 4.79 −0.99 0.98

3.3. Empirical Models and Validation

Figure 3 shows the Pearson correlation between the turbidity variable and 4 band/
16 band combinations/NDTI from the processing of the 11 satellite images. Significant
band correlations included various combinations of the blue, green, red and near-infrared
bands. For Calafquén lake, twelve significant turbidity relationships were ranging from
−0.67 to 0.97 (p-value ≤ 0.001). Neltume and Panguipulli lakes had 16 significant cor-
relations (p-value ≤ 0.001) and three (p-value ≤ 0.01) ranging from −0.67 to 0.88 and
0.60 to 0.85, respectively. Riñihue lake had four significant correlations with a signif-
icance level (p-value ≤ 0.001) ranging from −0.76 to −0.83 and three correlations of
(p-value ≤ 0.01). Meanwhile the Puyehue lake only had two significant correlations
r = −0.91 (p-value ≤ 0.001). For more detail on the significance level look at Figure S1.
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The performance of the five best models was evaluated based on determination
coefficient (R2), RMSE, IA and MBE as shown in Table 5. The empirical models showed
highest R2 and IA values ranged between 0.93 to 0.99, and 0.85 to 0.97 respectively, which
indicates a good score for all models. An inspection of Table 5 reveals that the model
underestimates the NTU measurements at Calafquén, Neltume and Puyehue lakes and
super-estimate in Panguipulli and Riñihue lakes. However, the MBE values were smallest.
Similarly, the RMSE values were lowest ranged between 0.31 NTU to 1.03 NTU. Therefore,
the estimated NTU values are close to the observed values.

Table 5. The models of turbidity estimation and statistical indicator for each lake.

Lake Best Model R2 RMSE (NTU) IA MBE (NTU)

Calafquén NTU = −107.06 (R + N) + 5.42 0.93 0.37 0.85 −0.22

Neltume NTU = 7.34 (G/N) + 2.16 0.98 0.46 0.96 −0.21

Panguipulli NTU = 6.98 (G/N) − 2.69 0.94 1.03 0.92 0.44

Riñihue NTU = −10.78 (R) + 3.21 0.99 0.31 0.97 0.12

Puyehue NTU= −2.70 (B/G) + 4.43 0.99 0.45 0.95 −0.36

Figure 4 presents the scatter plots comparing satellite-derived and in-situ measured
turbidity. The values showed a high coefficient of determination (R2 > 0.93), suggesting
that all models predict NTU values very well. Therefore, the models can be used as an
early warning tool for changes in water clarity. Indeed, reached a better or similar R2 than
other regression equations for the NTU models from Landsat-8 shown by [5,37,39].
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3.4. Spatial Distribution of Estimated Turbidity in Araucanian Lakes

Figure 5 indicates the spatial distribution of turbidity derived from Landsat 8, with
NTU estimated by developed empirical models of each lake in two different seasons
(summer and spring of Southern Hemisphere). The value of NTU is representative of the
upper layer (euphotic zone, 90% of the incident radiation).
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In general, turbidity levels are low, with an increase in the winter and spring seasons.
In all lakes the turbidity increments were different (see Figure 5). It can note that the highest
turbidity is reported in Neltume lake with values in the range of 10.3–12.3 NTU). This
could be because it is the shallowest lake (86 m depth), with the smallest area (9.86 km2)
and it has four tributaries that contribute sediment, increasing turbidity. While the lowest
NTU values are reported for Puyehue lake (0.8–1.3 NTU).

3.5. Influence of Meteorological Conditions in the Study Area

For a better analysis of physical forcing and their interplay in the distribution of
turbidity at the local scale of the five lakes, we compared a short time series of turbidity,
precipitation, WS and direction in the period covered by Landsat 8 imagery. The meteoro-
logical variables study was taken from stations Santa Carla representative to (Calafquén,
Neltume, Panguipulliand Riñihue lakes) and Rupanco station representative of the condi-
tions of Puyehue lake (see Figure 1).

Figure 6 shows the behavior of monthly values of accumulated precipitation during
2015. The maximum accumulation rate of precipitation occurs between the winter and
spring months (rainy seasons), while the minimum accumulated precipitation values were
obtained in the summer months (0 mm, dry season). The highest accumulated value
(444.5 mm) during 2015 was reported in the month of July (see Figure S2) in the area. The
highest turbidity values correspond to the rainy period (winter and spring seasons) and the
lowest to the dry period (summer season). The precipitation variable is directly correlated
(R2 = 0.91) with the turbidity reported in the study lakes (with p-value ≤ 0.001).

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 18 
 

 

In general, turbidity levels are low, with an increase in the winter and spring seasons. 
In all lakes the turbidity increments were different (see Figure 5). It can note that the high-
est turbidity is reported in Neltume lake with values in the range of 10.3–12.3 NTU). This 
could be because it is the shallowest lake (86 m depth), with the smallest area (9.86 km2) 
and it has four tributaries that contribute sediment, increasing turbidity. While the lowest 
NTU values are reported for Puyehue lake (0.8–1.3 NTU). 

3.5. Influence of Meteorological Conditions in the Study Area 
For a better analysis of physical forcing and their interplay in the distribution of tur-

bidity at the local scale of the five lakes, we compared a short time series of turbidity, 
precipitation, WS and direction in the period covered by Landsat 8 imagery. The meteor-
ological variables study was taken from stations Santa Carla representative to (Calafquén, 
Neltume, Panguipulliand Riñihue lakes) and Rupanco station representative of the con-
ditions of Puyehue lake (see Figure 1). 

Figure 6 shows the behavior of monthly values of accumulated precipitation during 
2015. The maximum accumulation rate of precipitation occurs between the winter and 
spring months (rainy seasons), while the minimum accumulated precipitation values 
were obtained in the summer months (0 mm, dry season). The highest accumulated value 
(444.5 mm) during 2015 was reported in the month of July (see Figure S2) in the area. The 
highest turbidity values correspond to the rainy period (winter and spring seasons) and 
the lowest to the dry period (summer season). The precipitation variable is directly corre-
lated (R2 = 0.91) with the turbidity reported in the study lakes (with p-value ≤ 0.001). 

 
Figure 6. Accumulation monthly rate of precipitation, average monthly wind speed, and temperature in all study lakes 
and estimated turbidity. 

The wind forcing values were taken in a three-day window before the Landsat 8 ac-
quisitions, and are represented in the four diagrams in Figure S3. The wind speed at the 
Santa Carla station was 6–8 km/h, while at the Rupanco station was 4–6 km/h. The Santa 

Figure 6. Accumulation monthly rate of precipitation, average monthly wind speed, and temperature in all study lakes and
estimated turbidity.

The wind forcing values were taken in a three-day window before the Landsat 8
acquisitions, and are represented in the four diagrams in Figure S3. The wind speed at the
Santa Carla station was 6–8 km/h, while at the Rupanco station was 4–6 km/h. The Santa
Carla wind rose (Figure S3) shows that the typical Puelche wind that blows from the N to
the NE is the predominant wind characteristic of South-Central Chile, followed by winds
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from the NW sector in spring (Figure S3). Furthermore, the wind analyses for Rupanco
(Figure S3) clearly show that the N winds for this season are the strongest and occur with
the highest frequency during 80% of the time in the investigated period. The wind increase
shows a bimodal distribution between the NE and NW winds except for Rupanco in the
summer season. The diagrams are quite different, mainly due to the different capacities
of each station to detect winds. This is essentially related to geographical factors. We
do not find a good correlation between wind direction and estimated turbidity, but we
obtain a good correlation with the WS (R2 = 0.75). Similar results were reported by [4] in
Diefenbaker lake.

4. Discussion

Water clarity is an important aspect of the freshwater lake system. Increases or
decreases in water clarity can negatively affect the biological component of the system
which can be adapted to specific light penetration conditions [9]. Remote sensing was used
as an early alert tool for water clarity changes in an inland aquatic ecosystem in South-
Central Chile. Particularly in Chile, this study and methodology are relevant because
there are not enough data to assess the state of water resources, mainly in lake systems
https://snia.mop.gob.cl/ accessed on 20 January 2021. The monitoring lake network only
covers 20 of the 375 lakes with areas larger than 3 km2 [22]. On the other hand, due to the
climatic conditions of the south, the satellite images captured in the winter period present
extensive cloud cover that makes it impossible to acquire specific data from the North
Patagonian aquatic ecosystems. Hence the marked importance in developing empirical
models for estimating parameters of water quality, applicable for any period of the year.

Water turbidity was modeled in five lakes in South-Central Chile through seven
monitoring campaigns during 2015. From 15 multispectral Landsat images (13 L8 OLI, 2
L5 TM) with a resolution of 30 × 30 m, turbidity index values were predicted based on four
simple bands (green, blue, red and infrared) and a combination of 16 bands. For modelling
we used 100 records of NTU as response variable and 20 spectral band combinations as
predictor variable. Linear regression models were constructed using the best correlation
between NTU and band combination. The empirical models were evaluated using four
statistical indicators (R2, RSME, IA and MBE) to select the best model per lake. The models
present a good agreement between NTU modeled and in situ measurements with low
RSME values. Indeed, they had higher coefficients of determination and IA compared to
those used in other studies [17,42,45]. The reported MBE indicates a low bias for all models.

Thanks to the unprecedented spatial and radiometric resolution of the L8 sensor,
we then mapped the turbidity estimated in 2015 to use as an early warning tool for
changes in water clarity. Turbidity for the Araucanian lakes studied is low (range between
0.3–12.3 NTU), with marked seasonal differences of a slight increase in winter and spring.
The lake with the highest turbidity was Neltume lake (12.3 NTU, spring season). This
behavior could be influenced by the hydrodynamic condition of these lake systems, where
they present a summer stratification, for which the euphotic surface layer is separated
by a temperature gradient from the deeper or lower layer (aphotic), which prevents the
circulation of the water column during this season of year. Also, in the summer months
(higher surface temperature) the rainfall regime is lower than in the other seasons of the
year. After the breakdown of the stratification, a gradual mixture of the water column
would be generated in the autumn–winter and spring seasons, where a hydrodynamically
mixed column of water is present, with the suspension of particles such as total or dissolved
solids and other contributions of the basin, which allows a greater movement of the water
column by internal circulation, and in these months greater contributions are evidenced
due to a higher rainfall regime and increased surface runoff [42].

The maximum accumulation rate of precipitation occurs in the winter and spring
months, coinciding with the highest values of NTU. In both meteorological stations, the
precipitation is greater towards the first and last days of every month (all seasons), which
coincides with the dates of the processed Landsat images; therefore, this shows the influence

https://snia.mop.gob.cl/
https://snia.mop.gob.cl/
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of the precipitation on the turbidity behavior. To know how meteorological conditions
contribute to the variability of turbidity were correlated with precipitation, wind speed
and wind direction. The precipitation and wind speed showed high correlation (R2 = 0.91
and 0.75) with the turbidity reported in each lake. Precipitation in conjunction with wind
speed may have induced sediment resuspension during the rainy season which in turn
contributed to turbidity in the upper reaches of lakes.

It is relevant to point out that the remote-sensing tool allows monitoring of repre-
sentative limnological variables of the trophic state in the lakes and improves the spatial
representativeness of the measurements [14,16,17]. In the planning and management of
the water quality of the oligotrophic lakes studied here, it is important to consider the
precautionary principle, that is, to have as an objective the monitoring of these lakes that
have an oligotrophic water quality to prevent them from evolving irreversibly to a deteri-
orated water quality. Recently, there has been evidence that Panguipulli lake is showing
the first signs of eutrophication [16], this being particularly noticeable in an increase of
microalgae biomass in the lake bay, which coincides with a deterioration of water and
sediment quality in this bay. Although the lakes have good water quality conditions, we
recommend gradually reducing the pressure of anthropogenic activities around the basin
and in the lake, to maintain what are still good water quality conditions. We suggest
gradually reducing the pressure of anthropogenic activities, for example, land use change,
considering scenarios of climate change and water deficit in this region [46,47]. Decreased
precipitation and deforestation could mean a decrease in base flows in these lakes.

In situ turbidity measurements and monitoring campaigns are often costly and time-
consuming, limiting their spatial and temporal representation in large and remote lakes. In
this way, remote sensing processing and its relation to in situ measurements allows model-
ing to provide early information on water quality changes in aquatic ecosystems. The use
of the models and maps developed in this work can be applied to obtain a real-time assess-
ment of the turbidity parameter representative of water quality and provide information to
assess water clarity for governmental decisions and environmental protection planning.

5. Conclusions

To our knowledge, this is the first time that a model to estimate turbidity in Araucanian
lakes has been used incorporating in situ measurement Secchi disk depth, and Landsat
images, rather than using single bands and a band combination. The lakes studied have
maintained their oligotrophy, related to a high quality of the water bodies and a low
productivity present in the in-situ measurements. The accuracy of the empirical models
was generally high, with RMSE values ranging from 0.31 to 1.03 NTU values over the range
of 0.3 to 12.3 NTU in the validation data not used for model development. Therefore, the
models can be used as an early warning tool for changes in water clarity. Spatio-temporal
variation shown in turbidity maps was low with a slight increase during spring months.
The assembled meteorological data (precipitation and wind speed) had a direct influence
on water turbidity, following a seasonal cycle. The results provide information to evaluate
the water quality for governmental decisions and environmental protection planning. As
well as reconstructing large turbidity datasets, this allows analyzing transparency trends in
those lakes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13163133/s1, Figure S1: Relationships between our field measured turbidity (NTU) and band
and band ratios from Landsat-8 OLI in (a) Calafquén, (b) Neltume, (c) Panguipulli, (d) Riñihue and
(e) Puyehue lake, Figure S2: Contour plot for daily values of average precipitation during the 2015
year for (a) Santa Carla and (b) Rupanco station. Source: INIA, Figure S3: Wind roses in summer and
spring months during the 2015 year for (a,b) Santa Carla and (c,d) Rupanco station. Source: INIA.
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