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Abstract: Urban vegetation can be highly dynamic due to the complexity of different anthropogenic
drivers. Quantifying such dynamics is crucially important as it is a prerequisite to understanding its
social and ecological consequences. Previous studies have mostly focused on the urban vegetation
dynamics through monotonic trends analysis in certain intervals, but not considered the process
which provides important insights for urban vegetation management. Here, we developed an
approach that integrates trends with dynamic analysis to measure the vegetation dynamics from
the process perspective based on the time-series Landsat imagery and applied it in Shenzhen,
a coastal megacity in southern China, as an example. Our results indicated that Shenzhen was
turning green from 2000–2020, even though a large-scale urban expansion occurred during this
period. Approximately half of the city (49.5%) showed consistent trends in greening, most of which
were located in the areas within the ecological protection baseline. We also found that 35.3% of the
Shenzhen city experienced at least a one-time change in urban greenness that was mostly caused by
changes in land cover types (e.g., vegetation to developed land). Interestingly, 61.5% of these lands
showed trends in greening in the recent change period and most of them were distributed in build-up
areas. Our approach that integrates trends analysis and dynamic process reveals information that
cannot be discovered by monotonic trends analysis alone, and such information can provide insights
for urban vegetation planning and management.

Keywords: urban landscape dynamics; change process; temporally variation; Continuous Change
Detection and Classification; vegetation greening

1. Introduction

Urban vegetation provides valuable ecosystem services, such as heat mitigation, air
purification, and habitat preservation [1–3]. It also provides plenty of potential benefits
for human health and thereby becomes of crucial importance for urban human wellbeing.
For example, greenness exposure offers opportunities to reduce the risk of cardiovascu-
lar disease, metabolic disorder, and mental health [4–6]. Consequently, understanding
vegetation dynamics through time is widely of concern for stakeholders of urban design
and management.

Because of the advantages of temporally continuous and spatially explicit observa-
tions, satellite remote sensing data has been widely used and will be continually used
to monitor the vegetation dynamics via measures of vegetation index [7–10]. Based on
temporally dense data, such as AVHRR GIMMS, Terra MODIS, and SPOT VGT, the time-
series vegetation indices, Normalized Difference Vegetation Index (NDVI) or Enhanced

Remote Sens. 2021, 13, 3217. https://doi.org/10.3390/rs13163217 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7323-4906
https://orcid.org/0000-0002-2936-3708
https://doi.org/10.3390/rs13163217
https://doi.org/10.3390/rs13163217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163217
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163217?type=check_update&version=2


Remote Sens. 2021, 13, 3217 2 of 15

Vegetation Index (EVI), are largely used [11–14]. These studies mostly applied monotonic
trends analysis that uses either the linear regression model or the Mann-Kendall test to
investigate the trends of changes. An increase in NDVI/EVI time-series (generally de-
fined as greening) indicates enhanced vegetation growth and a decreasing one (defined
as browning) suggests reduced vegetation growth [15]. By integrating meteorological,
environmental, and socio-economic data, the driving forces such as climate change, insect
damage, and disturbance of fire, hurricane, and human activities can be inferred [16–18].
Such monotonic trends analysis has been successfully and extensively used to monitor
the vegetation dynamics and evaluate the vegetation growth status in forested land and
grassland [19,20].

However, the application of monotonic trend analysis for the vegetation dynamics in
urban areas still remains challenging for reasons that are caused by the highly dynamic
urban landscapes due to intensively anthropogenic activities [21,22]. First, the cover change
with vegetation skewed the trends quantified by the monotonic trends analysis in a certain
time interval [23–25]. Such total trends represented by monotonic greening or browning,
without considering the dynamics, cannot accurately reflect the urban vegetation greenness.
Second, the highly dynamic urban landscapes resulted in multiple processes in greenness,
which cannot be reflected by monotonic trends analysis [26,27]. Numerous studies have
demonstrated that the vegetation browning emerged when urban outward expansion
converted the forested land, grassland, and cultivated land to the developed land [28,29].
Nevertheless, the complex socio-ecological activities, such as tree planting in new urban
areas and lawns recreating in downtown areas, also led to vegetation recovery and thereby
contributed to the vegetation greening [29–33]. In the context of massive urban expansion,
this greening from the vegetation recovery will be hidden, without considering the change
from a process perspective. Third, the information on when the vegetation change occurs
and what status the vegetation (greening or browning) exhibits cannot be extracted by
monotonic trends analysis, while the status of vegetation growth in each sub-period, partic-
ularly in the recent period that varied in the length of duration, offers insights for managers
to evaluate policy effectiveness and create subsequent strategies [9,34]. Consequently, in
addition to the monotonic trends in a certain time interval, the urban vegetation dynamics
include the information on when the vegetation change occurs, how frequently the change
happens, and what the changing process exhibits. An approach needs to be developed to
measure the urban vegetation dynamics from the process perspective.

To characterize the urban vegetation dynamics from the process perspective, it needs
to accurately detect the timing of change occurrence and track the time-varying trends
at the same time, which is not easy because urban landscapes are highly heterogeneous
and temporally dynamic, and the change trajectories of land cover in urban are vari-
ous [21,35–37]. With the opening of the Landsat archive and the free use of the Sentinel
data, several time-series-based approaches have been developed to help overcome these
challenges [26,38]. The approaches using the yearly imagery derived from the compositing
technique, such as Trends in Disturbance and Recovery (LandTrendr) [25] and Vegetation
Change Tracker (VCT) [39], have abilities to capture the timing information on when the
land cover abruptly changes [40,41]. In recent years, the approaches, including the Con-
tinuous Change Detection and Classification (CCDC) [42] and COntinuous monitoring
of Land Disturbance (COLD) [43], move forward to use all the available data to monitor
the inter-, intra- and seasonal change, and capture the timing of the change. Benefit from
the Google Earth Engine (GEE), a free cloud-based platform consists of multi-petabyte
publicly available geospatial datasets that have been widely used for the geospatial analysis
on a variety of high-impact at Earth-scale [44], the issue of frequent cloud coverage that
commonly affects the detection accuracy of vegetation dynamic when using single-image
approaches can be largely addressed by optimizing the input of image composition, such
as seasonal composition strategies, statistical operators, and band composition [45]. Addi-
tionally, several applications have also been developed on the GEE for improving change
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detection, such as changes based on the time-series urban land cover with high-resolution
(15 m) using pan-sharpened Landsat imagery [46].

Building upon the vegetation dynamics research, this study aims to further contribute
to this field by (1) developing an approach that integrates trends with dynamic analysis to
quantify the urban vegetation dynamics from the process perspective using temporally
dense Landsat imagery and (2) applying this approach in the megacity of Shenzhen, as an
example, to investigate the vegetation dynamics from 2000–2020, including the information
on when and how frequent the change occurs, and what the changing process exhibits.

2. Materials and Methods
2.1. Study Area

Shenzhen covers an administrative area of 1997 km2, with a population of 13.43 million
and GDP of 2692.71 billion RMB in 2019 [47]. Forty years ago, it used to be a village, with
only a population of 0.31 million and GDP of 0.2 billion RMB in 1979. Because of the
dramatic urban expansion, the size in 2017 was approximately 35 times to that in 1978
and the cover percentage of developed land in 2017 had increased to 48%, which was
larger than the together of forest, grass, and cropland, 44% [48]. In order to keep the urban
sustainable, the local government released an urban land-use management policy in 2005,
among which an ecological protection control baseline is delineated to limit the urban
expansion and restore the ecosystem function (Figure 1) [49]. The vegetation coverage of the
entire Shenzhen area increased from 48% to 62% in 2000–2018. The forest-cover percentage,
in particular, decreased firstly in 2000–2003 and then increased in 2003–2018 [50]. In this
study, we defined the areas located outside the ecological protection control baseline as
urban built-up areas.
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Figure 1. The geographic location of Shenzhen and the Landsat imagery in 2020 (R: SWIR 1 band,
G: NIR band, B: Red band). The yellow line represents the ecological protection baseline released in
year 2005.

2.2. Aquisition of Time-Series Landsat Imagery

We selected the EVI, a commonly used index and generated from Near-Infrared,
Red, and Blue bands of Landsat imagery [51], to quantify the vegetation dynamics. First,
the EVI optimized the vegetation signal with improved sensitivity in high biomass re-
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gions, and thus can successfully address the saturated signals problem over high biomass
conditions that are common for other ratio-based indices [51]. Second, the EVI decou-
ples the canopy background signal and reduces the atmosphere influences by using the
atmosphere-sensitive blue band to correct the red band. The calculation of EVI can be
found in Equation (1).

EVI = G× ρNIR + ρred
ρNIR + C1ρred − C2ρblue + L

(1)

where ρNIR, ρred and ρblue are the surface reflectance of the Near-Infrared, Red, and Blue
bands which are atmospherically or partially atmospherically corrected. The coefficients
C1 and C2 are the aerosol resistance term and L is the adjustment for vegetation canopy
background. The values of G, C1, C2, and L adopted in the EVI are 2.5, 6, 7.5, and 1,
respectively [52,53].

To maintain the quality and consistency for the time-series observation, the EVI was
calculated based on the Surface Reflectance (SR) product derived from the Landsat Level-1
data because the SR product improves comparisons between multiple images over the same
region by accounting for atmospheric effects such as aerosol scattering and thin clouds [43].
We selected the Landsat 5 and 7 Surface Reflectance Tier 1 that atmospherically corrected
using the LEDAPS and Landsat 8 Surface Reflectance Tier 1 that atmospherically corrected
using the LaSRC from GEE. The cloud cover and cloud shadow pixels were excluded using
the Quality Assessment (QA) band that integrated into the Tier 1 collection. Because of the
relatively low temporal frequency (16-day revisit capability), the number of available clear
observations, referring to pixels that are free of cloud, cloud shadow, and snow, is reduced.
Such a data preprocessing scheme significantly reduces the reliably representative annual
values generated by the image compositing method, such as annual median EVI and
monthly maximum EVI, for every year [54]. As a result, we used all the clear observations
in 2000–2020, instead of the best-pixel selection, to construct the temporally dense EVI
time-series. In this study, a total of 1702 images acquired in 2000–2020 were selected from
Landsat 5, 7, and 8. The spatiotemporal variation revealed by the percentage of the clear
observations can be found in Figure A1.

Based on the EVI time-series, the unique phenological characteristic of vegetation,
represented as a harmonic function with periodical change, can be observed [42]. When the
vegetation change occurs, the EVI time-series will be out of the original shape. If the
land cover with vegetation converts to other types, the EVI abruptly decreases and the
periodical property disappears on the time-series. If the vegetation suffers from diseases,
pests, and typhoons, or the vegetation in a pixel partially changes, the inter-annual change
reflected by the variation in EVI trends occurs. If the vegetation species changes or the
climate condition impacts the vegetation phenology, the periodical property on the EVI
time-series changes.

2.3. Change Detection for Urban Vegetation

To investigate the vegetation dynamics from the process perspective, we first detected
the timing and frequency of vegetation change by the approach of Continuous Change
Detection and Classification (CCDC) [23,42] based on the EVI time-series constructed from
the temporally dense Landsat imagery in 2000–2020. The CCDC is a robust approach for
monitoring land cover/land-use change and generating maps for any given time using
dense time-series satellite imagery. This algorithm contains three components: seasonality,
trend, and break. The seasonality corresponds to the seasonal change, mostly caused by
the vegetation phenology that is led by seasonal patterns of environmental factors, such as
precipitation and temperature. The trend focuses on gradual change, driven by vegetation
growth and degradation, climate change, and pests. The break refers to abrupt change,
generally caused by land cover change. The study from Zhu et al. (2014) that first presented
this approach by input all the Landsat bands to detect the various types of land cover
change. Recently, many studies also demonstrated that the CCDC is an adaptive approach
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in that the single band, such as the NDVI or EVI, can be used to detect the land cover
change for a single type [55]. The model of CCDC is shown in Equation (2):

ρ̂(i, x) = a0,i + a1,i cos
(

2π

T
x
)
+ b1,i sin

(
2π

T
x
)
+ c1,ix (2)

where ρ̂(i, x) is the predicted value for the i-th band of Landsat at Julian x, a0,i is the
coefficient for overall value for the i-th Landsat band, a1,i and b1,i are the coefficients for
the intra-annual change for the ith band, c1,i is the coefficients for inter-annual change for
i-th band, and T is the number of days in one year, which equals to 365.

For each pixel, the CCDC estimated the seasonal, gradual, and abrupt changes for veg-
etation and recorded the positions of the change occurrence on the EVI time-series. Based on
these positions, the CCDC identified the year of vegetation change occurrence and counted
the number of the position for quantifying the vegetation change frequency. It has been con-
firmed that the CCDC is a computationally expensive method and needs huge data storage
because it requires a high temporal frequency of clear observation and it updates the time-
series model once the new observations are new available [42]. However, benefitting from
the powerful computational infrastructure from the GEE, these issues can be addressed
and the CCDC algorithm, tabbed as ee.Algorithms.TemporalSegmentation.Ccdc under the
Earth Engine algorithms documentation, has been officially released (https://developers.
google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc?hl=en, ac-
cessed on 10 June 2021). Here, we implemented the CCDC algorithm to detect the vegeta-
tion dynamics and lay out the frequency and the latest change year.

2.4. Trends Analysis and Changing Processes Characterization

After detecting the year of change for each pixel, the EVI time-series was segmented
into several fragments based on the change year, and the trends in each fragment (also
called change period) were calculated by the Ordinary Linear Square (OLS) regression
model (Equation (3)). As the change frequency of each pixel is different and the year of
change occurrence is time-varying, the duration of each fragment varied in length.

EVIt = ax + b (3)

where a is slope, b is constant, t represents the observation time, and the EVIt is the model
estimated EVI value for a pixel at time t.

Based on the trends in each fragment, three kinds of trends, nochange, browning,
and greening, respectively assigned as 1, 2, and 3, were identified and the processes of
vegetation dynamics can be exhibited from the matrix. For example, if there were two
changes, three intervals were segmented and the trends in each fragment were filled in the
matrix as shown in Table 1. The class of 123 in the matrix means the process of the vegetation
dynamics contains three stages, which change from nochange in the first fragment to
browning in the second fragment, and then turning green in the recent period. Here,
although all of the pixels had the same investigated period, 2000–2020, each pixel had
different numbers of fragments and each fragment had a different duration. As a result,
the sub-periods in the process of vegetation dynamics were not fixed. The area proportion
of each sub-period can be filled in the matrix to evaluate the how the urban vegetation
changes and what the recent status presents. The overview of the integrated approach and
its application can be found in Figure 2.

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc?hl=en
https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc?hl=en
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Table 1. Matrix for processes of vegetation dynamics based on the trends in each fragment with
different duration.

Status in the Second Fragment
Status in the Third Fragment

1 2 3

Status in the first
fragment

1
1 111 112 113
2 121 122 123
3 131 132 133

2
1 211 212 213
2 221 222 223
3 231 232 233

3
1 311 312 313
2 321 322 323
3 331 332 333
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Figure 2. Overview of the approach integrating the trends with dynamic analysis and characterization of the urban
vegetation from the process perspective.

3. Results
3.1. Non-Monotonous Trends of Vegetation Greenness in the Urban Area

We summarized the vegetation dynamics along with the urban outward expansion
and internal redevelopment based on all of the available EVI values calculated from the
time-series Landsat imagery in 2000–2020 (Figure 3). The EVI trajectories showed that
the vegetation greenness followed the non-monotonous trends and the processes varied
from different areas. Such non-monotonous trends were sometimes misleading from the
statistical significance and the positive or negative values.

As shown in Figure 3a, the pixel experienced a changing process of urban expansion,
in which the EVI abruptly decreased in 2012 and continuously increased in 2014–2020.
Although a browning trend was found on Line AB with a slope of −0.002 (p = 0.156), two
hidden greening trends, reflected from a positive slope of 0.013 (p = 0.000) in 2000–2012
and another positive slope of 0.031 (p = 0.000) in 2014–2020, were revealed from the
process-based analysis.

The changing process of urban redevelopment is summarized in Figure 3b–d, although
the EVI values are from different residential areas. When no land cover change occurs
and the vegetation continuously grows, a monotonous trend can be simply evaluated.
Figure 3b shows a significant increase of the EVI trend on Line AB with a slope of 0.008
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(p = 0.000). When a residential/commercial/industrial area is dismantled, an abrupt
change occurs on the EVI time-series. Figure 3c shows an insignificant trend presented
by Line AB (0.001, p = 0.203) during 2000–2020, while a significantly decreased trend in
2018–2020 was found on Line CD, with a negative slope of −0.049 (p = 0.000). When the
residential/commercial/industrial area is redeveloped, the trend will turn green along
with the tree replanting. Figure 3d shows a vegetation recovery process, due to which the
EVI experienced fluctuant changes of browning and greening, and finally turned green
from 2015 with a positive slope of 0.012 (p = 0.008).

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 16 
 

 

evaluated. Figure 3b shows a significant increase of the EVI trend on Line AB with a slope 
of 0.008 (p = 0.000). When a residential/commercial/industrial area is dismantled, an ab-
rupt change occurs on the EVI time-series. Figure 3c shows an insignificant trend pre-
sented by Line AB (0.001, p = 0.203) during 2000–2020, while a significantly decreased 
trend in 2018–2020 was found on Line CD, with a negative slope of −0.049 (p = 0.000). 
When the residential/commercial/industrial area is redeveloped, the trend will turn green 
along with the tree replanting. Figure 3d shows a vegetation recovery process, due to 
which the EVI experienced fluctuant changes of browning and greening, and finally 
turned green from 2015 with a positive slope of 0.012 (p = 0.008). 

 
Figure 3. Total trends and process of vegetation greenness along with the urban expansion and 
internal renewal. a shows the process of green loss, green gain, and turning green along with the 
urban expansion; b, c, and d show different stages in the process of greenness along with the ur-
ban redevelopment. The blue filled dot represents the EVI value of one pixel and the yellow dot is 
the EVI from the latest change period. The historical very high-resolution image is captured from 
Google Earth.  

Figure 3. Total trends and process of vegetation greenness along with the urban expansion and
internal renewal. a shows the process of green loss, green gain, and turning green along with the
urban expansion; b, c, and d show different stages in the process of greenness along with the urban
redevelopment. The blue filled dot represents the EVI value of one pixel and the yellow dot is
the EVI from the latest change period. The historical very high-resolution image is captured from
Google Earth.
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3.2. Spatial Pattern of the Vegetation Dynamics from a Process Perspective

The results of vegetation dynamics from the maps and statistical analysis showed
35.3% of the entire Shenzhen saw at least one-time change and the frequent changes were
mostly distributed in the built-up areas, located from the central to the northeast urban
areas (Figure 4a,b). Comparing the spatial extents of each level on change frequency, the
cover percentages, in order of the change occurrence number, were 22.0%, 9.2%, 3.0%,
and 1.1%.
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Integrating the trends with dynamics, the statistical results showed 71.2% of all
of Shenzhen was greening, among which 49.5% showed consistent trends in greening
during the period of 2000–2020 and 21.7% revealed its status of turning green in the recent
change period, which began from the latest year of change occurrence detected by the
CCDC algorithm to the year of 2020. The results also showed only 13.7% was browning,
including 5.2% of persistent browning and 8.5% turning brown. Here, we only display the
matrix for the processes of vegetation dynamics with persistence, one-time, and two-time
changes caused by land cover, seasonal, and trend changes because their area proportion
was over 95%. After summarizing the matrices with one- and two-time changes, three
major processes included browning-to-turning green assigned as 23, 123, 223, 233, and
323; no change-to-turning green assigned as 13,113, and 133; and probably turning green
assigned as 131 and 231. The areas were 99.0 km2, 108.3 km2, and 20 km2, respectively
(Figure 5b,c). It was also found that 106 km2 exhibited green loss, including types of 31, 32,
311, 312, 321, 322, 331, and 332.

3.3. Trends in Recent Change Period for Vegetation Greenness

Focusing on the recent change period, the latest shifts in the trends mostly appeared
before 2012, with 66.4% of Shenzhen city with change, indicating a large number of long-
term changes occurred in 2000–2020 (Figure 6b). Except for the persistent change, the
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relatively long-term changes were primarily located in the built-up area, while the short-
term changes varied greatly from different areas. The spatial pattern of the latest year of
change occurrence showed those short-term changes clustered in four regions, including
the western coastal area, central but besides the ecological protection control baseline, the
northeast build-up area, and the zone around the northern reservoirs (Figure 6a).
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According to the duration of the latest period that starts from the latest year of
change occurrence to the year 2020 and the corresponding trends in the latest period, the
long-term changes mostly had positive values of EVI slopes and the area proportion of
greening in Shenzhen decreased from 2.3% in 2001–2020 to 0.2% in 2019–2020, while the
short-term changes showed more insignificant EVI trends with an increased percentage of
0.4% in 2012–2020 to 1.8% in 2019–2020 (Figure 6b). The statistical results of time-varying
trends from the boxplot showed those long-term observations had slower change rates.
Interestingly, the data distribution of the slopes with positive and negative values were
similar, although the amount of them was quite different (Figure 6e,f).

4. Discussion
4.1. The Application of the Temporally Dense Imagery for the Process Identification in Urban
Vegetation Greenness

Relatively few studies investigated the urban vegetation dynamics from the process
perspective. Our results showed the non-monotonous trends of the vegetation dynamics in
urban areas were more complicated because the frequent changes generated several turning
points in the EVI time-series, such that the greenness experienced multiple processes
(Figures 3 and 4). These multiple processes skewed the trends derived from the linear
regression model, misleading the identification of greening and browning via statistical
significance and the slope values of trends (Figures 3 and 4). For example, the EVI slope in
Figure 3a calculated by the linear regression model exhibited an insignificant decreased
trend, with a slope of −0.002. While the process-based analysis showed the vegetation
dynamics experienced three stages, including greening in the first stage, insignificant
change in the second stage, and greening again in the latest stage, with the slope values of
0.013 (p = 0.000), −0.010 (p = 0.571), and 0.031 (p = 0.000) (Figure 3a). Such effects led by the
highly dynamic landscapes, however, can only be improved by the process-based analysis
using the temporally dense imagery because the time-series approaches, such as CCDC in
this study, segment the EVI time-series into fragments and then evaluate the trends in each
sub-period from the piecewise perspective [9,23].

The trends analysis using the temporally dense Landsat data allows more subtle
understandings of the urban vegetation change, compared to the composition approach
applied to Landsat data that follows a best-pixel selection [56]. As the revisit period of Landsat
5, 7, and 8 was 16 days, the strategy of best-pixel selection, such as annual median EVI or
monthly median EVI, will reduce the reliably representative annual value for every year by
the Landsat data after removing the cloud cover and cloud shadow pixels. The advantage of
the temporally dense data accelerates the detection of structural changes, such as vegetation
phenology [57,58] and lake/reservoir shoreline change [59]. The outliers resulting from the
simple criteria such as the maximum NDVI or mean NDVI in the growing season based
on the time-series can be largely eliminated, which is especially applicable to the regions
where the data is frequently absent due to the cloudy and rainy conditions. Additionally,
except for the abrupt changes caused by conversions among different land cover types, the
inter- and intra-annual changes reflected from the time-series spectral characteristics can
only be detected based on the temporally dense imagery [34].

4.2. Process and Recent Trends for the Urban Vegetation Greenness

The information provided from the process analysis, including when the change
occurs, how frequently the change happens, and what the changing process experiences,
help to better evaluate the vegetation quality and ecosystem function. Compared to most
concerns of the vegetation dynamics, including the trends before and after disturbances
in forest and grassland, urban ecologists prefer the multiple changes, such as repeated
conversions from barren land to grassland in the urban redevelopment process, because
the frequent change potentially influences the urban ecosystem properties (e.g. biodiversity
and provision of ecosystem services) [26,60–62]. The process matrix showed 71.2% (versus
66.7% evaluated from the linear regression model, Figure 3) of Shenzhen was greening,
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including not only 49.5% of consistent green but also 21.7% of turning green in the latest
period. This suggests that the temporal decomposition reveals more information which is
frequently ignored and hidden in the total trends quantified by the linear regression model
(Figures 5 and 6d). The finding also showed the processes varied greatly even for the
greening was found in the latest period (Figure 5). For example, 99 km2 had experienced
the process of browning first and then turning green after a period of insignificant change,
while 108 km2 had experienced the process of insignificant change first and then turning
green. These variations display different stages of urban development, which are beneficial
to infer the possible drivers.

The temporally variant trends in the latest change period that starts from the latest
change year detected by the CCDC algorithm and ends in the year 2020 exhibit the recent
status of vegetation growth and provide opportunities to accurately evaluate the provi-
sion of ecosystem services, although the durations varied from different areas (Figure 6).
For example, the pixels in the northeast built-up area showed greening in the recent period,
suggesting the dwelling environment was improved, although those pixels used to be forest
and the urban expansion abruptly decreased the EVI [49]. Such time-varying trends are
especially appropriate for the comparison of the ecosystem service provision between the
old and new urban areas because the effects of urban outward expansion can be exclusive
and can be used to better project the vegetation change.

More importantly, the vegetation dynamics investigated from the process perspective
will help government agencies better assess the effectiveness of urban management policies
and then implement subsequent planning strategies. The first outcome, change frequency,
from the dynamic analysis can be used to evaluate the ecosystem stability. The spatial
pattern of change frequency showed the vegetation growth in the eastern area was more
stable than that in the western area, although both of them were located inside the ecological
protection baseline. When combining the changing process, timing information, and the
trends in the recent change period, a large number of dynamics were mostly caused by
vegetation recovery after the year 2005 but before 2012, suggesting the previous protection
policy, delineating the baseline in 2005, was effective [49]. This forest recovery led to fast
greening in a short time interval (Figure 6); the ecosystem continues to function, however,
relies on the stability that copes with the obstacles arising from nature and changing
environment [63,64]. As a result, how to improve the ecosystem stability, such as increasing
the vegetation diversity and making appropriate management schemes, becomes a further
consideration for urban planning to achieve the goal of sustainability.

4.3. Limitation and Future Work

In this study, we implemented the CCDC algorithm to detect the vegetation dynamics
only based on the EVI time-series constructed from the Landsat SR imagery collection.
However, previous studies showed the change detection accuracy will be improved when
all of the spectral bands are used as input [42]. Comparing to the Landsat image, the Sentinel-
2 data had finer spatial resolution (10 m and 20 m) and temporal resolution (5-day).
Additionally, the wavelengths of Sentinel data are more sensitive to the chlorophyll content
and phenological states [45,65,66]. It will be more promising when using the Sentinel data
to quantify the urban vegetation dynamic. Our results from the process-based analysis
showed the Shenzhen city is greening but varies greatly in different areas (Figure 6c,d).
Several studies suggested the local climate and the economic input, including irrigation
and fertilization, are related to urban greening [31,67], while the economic levels are varied
from different regions, which may impact the vegetation greenness. Therefore, more studies
need to be performed across many other cities to test and explore the drivers behind
urban greenness.

5. Conclusions

This study presented a method that integrates the trends with dynamic analysis and
then applied it to investigate the vegetation dynamic from a process perspective in the
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megacity of Shenzhen by using the temporally dense Landsat imagery. Compared to
monotonic trend analysis, this integrated approach has the ability to provide more detailed
dynamic information on when and how frequently vegetation change occurs, and what the
changing process is. Using the integrated approach, we found that Shenzhen was turning
green in 2000–2020, even though a large-scale urban expansion occurred during this period.
Nearly half of the city (49.5%) showed consistent trends in greening, most of which were
located inside the ecological protection baseline. We also found that 35.3% of Shenzhen
experienced at least one abrupt change in vegetation greenness, among which 61.5% of
these lands showed trends in turning green in the recent change period. Such information
on vegetation greenness, frequently hidden by the trends analysis alone, can be revealed
by our approach that integrates the trends with a dynamic process and provides insights
for urban vegetation management.
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Appendix A

Based on the Google Earth Engine platform, the Landsat dataset can be easy to collect
and prepare. Here, it needs at least two senses from Landsat to cover the entirety of
Shenzhen. A total of 1702 images acquired in 2000–2020 were selected from Landsat 5, 7,
and 8 and the available values of every pixel ranged from 446 to 1380. After removing the
pixels with cloud cover and cloud shadow, the percentage of clear observations ranged
from 15% to 65% (Figure A1).
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