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Abstract: Lake area, water level, and water storage changes of terminal lakes are vital for regional
water resource management and for understanding local hydrological processes. Nevertheless,
due to the complex geographical conditions, it is difficult to investigate and analyze this change
in ungauged regions. This study focuses on the ungauged, semi-arid Gahai Lake, a typical small
terminal lake in the Qaidam Basin. In addition to the scant observed data, satellite altimetry is
scarce for the excessively large fraction of outlier points. Here, we proposed an effective and simple
algorithm for extracting available lake elevation points from CryoSat-2, ICESat-2 and Sentinel-3.
Combining with the area data from Landsat, Gaofen (GF), and Ziyuan (ZY) satellites, we built
an optimal hypsographic curve (lake area versus water level) based on the existing short-term
data. Cross-validation was used to validate whether the curve accurately could predict the lake
water level in other periods. In addition, we used multisource high-resolution images including
Landsat and digital maps to extract the area data from 1975 to 2020, and we applied the curve to
estimate the water level for the corresponding period. Additionally, we adopted the pyramidal
frustum model (PFM) and the integral model (IM) to estimate the long-term water storage changes,
and analyzed the differences between these two models. We found that there has been an obvious
change in the area, water level, and water storage since the beginning of the 21st century, which
reflects the impact of climate change and human activities on hydrologic processes in the basin.
Importantly, agricultural activities have caused a rapid increase in water storage in the Gahai Lake
over the past decade. We collected as much multisource satellite data as possible; thus, we estimated
the long-term variations in the area, water level, and water storage of a small terminal lake combining
multiple models, which can provide an effective method to monitor lake changes in ungauged basins.

Keywords: multisource satellite data; terminal lake; lake area; lake water level; lake water storage

1. Introduction

As a key part of terrestrial water resources, lakes play an important role in runoff
regulation, water supply, and the ecological balance of the basin [1–3]. The Tibetan Plateau
(TP) is characterized by abundant lakes: there are over 1500 lakes with an area of over 1 km2

and a total lake area of more than 40,000 km2 [4]. In other words, the TP is a region with
a relatively dense distribution of lakes, and the evolution of lakes in this area and the effects
of climate change have attracted significant attention [5–7]. Located in the northeast part of
the TP, the Qaidam Basin is characterized by many semi-arid and arid inland lakes with
a fragile ecological balance. Most of these lakes are in a natural state; thus, the temporal
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and spatial variations of these lakes can accurately reflect the varying trends in regional
climate and hydrology [8]. The dry climate [9], the scarce precipitation [10], and the limited
water resources restrict regional economic and social development [11]. Therefore, this
study has important theoretical and practical significance for the scientific management of
water resources in the basin, the protection of the ecological environment, and the adaptive
countermeasures to protect water resources under environmental changes.

Lakes evolve mainly through variations in water level, area, and water storage. Water
levels are monitored and recorded via a series of hydrological stations around the lake.
However, few stations have been installed in the Qaidam Basin due to the complex topo-
graphic conditions and the huge maintenance cost [12]. Recently, with the development
of the satellite altimetry products such as TOPEX/POSEIDON [13], Jason-1/2/3 [14],
and CryoSat-2 [15], we can obtain long-term water level data for these lakes, which signifi-
cantly facilitates water level monitoring. However, because of the limitation of instruments
and observation conditions, there are some outliers in the data acquired by altimeter satel-
lites regarding lake surface-elevation, and these outliers need to be corrected or eliminated
before practical applications.

To solve this problem, two statistical methods are widely used, namely, the mean value
method [16] and the Pauta criterion method (denoted the “3σ method”) [17]. The mean
value method directly calculates the mean value of the lake surface elevation, and uses it as
the final water level of the lake; therefore, the result is greatly affected by outliers. The 3σ
criterion only accepts points within three mean distance errors as effective elevation points,
and only larger outliers can be eliminated from the calculation. Wen et al. [18] defined
spatially continuous points as effective elevation points if they differed from the mean ele-
vation by less than a critical value, and used the 3σ method to eliminate outliers. Benefiting
from more strict spatial constraints, the estimated water level is more accurate; however,
the altimetry data are not fully utilized. All these methods rely on the mean elevation,
based on which they eliminate data outliers. These methods are generally suitable for suffi-
ciently large point sets with small differences in elevation (usually applicable to large lakes).
Small point sets have a high proportion of outliers (generally for small lakes); therefore,
the elevation often deviates from the expected value, resulting in inaccurate estimates of
water level. Therefore, a novel method must be developed to accurately estimate the water
level of small lakes.

The area of lakes is mainly monitored by optical remote-sensing satellites. Although
Moderate Resolution Imaging Spectroradiometer (MODIS) images [19] and Landsat im-
ages [3] differ significantly in temporal and spatial resolution, they are both commonly
used. The time resolution of MODIS products is within 1 day, which is suitable for the short-
term and frequent monitoring of lake areas [20]. The time resolution of Landsat products is
16 days, which is a long period and is more suitable for monitoring long-term interannual
lake areas [21]. The spatial resolutions of the Landsat and MODIS optical images are 30 m
and 250 m, respectively. Wang et al. studied the difference in area extraction between Land-
sat and MODIS [22], and the results show that, for large lakes, the area extracted by MODIS
and Landsat products showed a strong linear relationship (R2 = 0.96), whereas that of small
lakes showed a weak linear relationship (R2 = 0.33). In other words, the two products
yielded almost identical results when monitoring the area of large lakes, but the results are
significantly different when monitoring the area of small lakes. Therefore, to summarize,
Landsat products are more suitable for the long-term monitoring of the area of small lakes
because they provide higher spatial resolution and appropriate time resolution compared
with MODIS products.

The change in lake water storage (LWS) cannot be observed directly and is gen-
erally estimated using other data. Depending on the data used, the methods applied
to estimate LWS changes can be categorized as: (i) based on underwater topographic
data [23]; (ii) based on the gravity recovery and climate experiment (GRACE) product [24];
or (iii) based on area and water level data [25]. Method (i) uses a survey ship to map the un-
derwater topography of the lake and establishes a digital elevation model to calculate
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the LWS change when the water level changes. This method produces highly accurate
estimates and can be used to obtain the absolute LWS. However, significant manpower
and material resources are required to map the underwater topography of lakes, which can
be extremely difficult to carry out in areas such as plateaus and mountainous regions [6].
Method (ii) uses GRACE to calculate the terrestrial water storage, which combines the sim-
ulation results of a hydrological model to calculate the water storage of lakes. However,
the low spatial resolution (~100,000 km2) limits its application to the estimation of water
storage changes in small lakes [26]; thus, it is more suitable for studying global or regional
lakes instead of calculating water storage in small lakes. Method (iii) combines data of
the area and water level from lakes with mathematical models to estimate the water storage
of lakes [27], which has great potential in estimating the change in water storage in small
lakes [28]. Common mathematical models include the pyramidal frustum model (PFM) and
the integral model (IM) [29]. The former regards the water storage of lakes as the volume
of a pyramidal frustum. The latter is more abstract and regards the water storage of lakes
as the limit of the integral lake area functions over a certain water level interval. In recent
studies, researchers have estimated the water storage of lakes based on both the pyramidal
frustum [5,30–32] and integral models [33,34], but no studies have used both methods to
compare the results.

In addition, this method requires the lake area to be temporally matched to water
level (i.e., the time of data acquisition must be the same), but for most lakes, the periods of
the area and water level are different [35]. For some periods in a year, only data on the area
or water level are available, but not both. Therefore, these periods cannot be used to
monitor the long-term evolution of water storage. To solve this problem, we constructed
an optimal hypsographic curve of lake area versus water level based on the existing time-
matched data pairs (lake area, water level) [36]. As discussed by Håkanson [37], there are
many forms of curves, such as linear or polynomial; therefore, how to use existing data
to fit the optimal curve and accurately estimate the results for those periods remains to
be discussed. Busker et al. [30] applied a regression analysis to the hypsographic curve
among 137 lakes in the world and found that the area and water level of most lakes are
linearly related. Huang et al. [38] analyzed how the area is related to water level for Bosten
Lake and concluded that a cubic polynomial can best describe the hypsographic curve
for the lake. These studies show that the hypsographic curves of different lakes may
differ. Therefore, they must be analyzed in detail and optimized to ensure that the area or
water level of lakes is accurately estimated in periods when some data are missing. Such
an approach should ensure more accurate estimations of the long-term evolution of lake
water storage.

As a semi-arid terminal lake, Gahai Lake collects the runoff from the surrounding
lakes and rivers; thus, it directly reflects the characteristics of the surrounding water re-
sources [39]. In addition, Gahai Lake is extremely sensitive to climate change and human
activities [40]. This study used multisource remote-sensing data to estimate and analyze
the long-term evolution of the area, water level, and water storage of Gahai Lake. It first
proposes an algorithm to extract the water level of the lake based on the physical ge-
ography of the lake and other small terminal lakes, following which the rationality of
the algorithm is verified. Next, the existing time-matched data pairs are used to construct
and optimize a hypsographic curve. The long-term water level of Gahai Lake is then
predicted, and the long-term evolution of the area and the water level of Gahai Lake is ana-
lyzed. Combining these results with the pyramidal frustum model and the integral model,
the long-term evolution of water storage for Gahai Lake was estimated and the difference
between the estimated results of the two models was analyzed. Moreover, an attribution
analysis of the water storage of Gahai Lake was also carried out based on remote-sensing
precipitation data, land-use data, and runoff data. The novelty of this study is to overcome
the difficulty of water level extraction in small lakes, and to comprehensively investigate
the changes of lake area, water level and water storage in ungauged regions by combining
multi-source remote-sensing data and various models. The results of this study provide
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an important reference for not only acquiring the data of small, natural lakes, but also
analyzing the evolution of lake characteristics in data-deficient areas.

2. Study Area

The Gahai Lake (37◦05′58” N–37◦10′00” N, 97◦31′05” E–97◦35′47” E) is in the north-
east part of Qaidam Basin and belongs to a typical inland terminal lake on a plateau
(see Figure 1). To the north of Gahai Lake is Zongwulong Mountain, and to the south
are Nanshan and Yak Mountains. Intermittent rivers are connected to Keluke Lake and
Tosu Lake in the west, and rivers are connected to Ke Salt Lake in the east. The lake area
has a semi-arid climate, and there is no perennial surface runoff recharge for the lake
water, which mainly results from seasonal precipitation and underground diving. During
the flood peak, the Bayin River is the only river that provides seasonal recharge runoff.
According to the statistics of the Delingha Meteorological Station to the northwest of Ga-
hai Lake, the average annual temperature is 3.0 ◦C, the average annual precipitation is
126.6 mm, the average annual evaporation is 2242.8 mm, and the solar radiation intensity is
166 kcal/cm2 [41]. Due to its geographical condition, Gahai Lake lacks gauge data, which
makes it difficult to obtain water-level observations. A comprehensive understanding of
the evolution of the area, water level, and water storage is vital for managing the water
resources of the Qaidam Basin and the ecology and hydrology of the lake.

Figure 1. Location of the Gahai Lake within the Qaidam Basin.

3. Data and Methodology
3.1. Data
3.1.1. Satellite Altimetry Datasets

Scant satellite altimetry data are available for small lakes due to the revisit cycle
and track configuration of the altimeter satellite [35]. This study collected three satellite
altimetry datasets (CryoSat-2/SARIn, ICESat-2/ATLAS, and Sentinel-3B/SRAL) to extract
the Gahai lake water level (Table 1). All data are L2 products and have been corrected
by various instruments through geophysical considerations. The data were obtained
from the European Space Agency (https://eocat.esa.int/, access date: 10 January 2021),
the National Aeronautics, and Space Administration (https://nsidc.org/data/ATL13/
versions/3/, access date: 10 January 2021), and the Copernicus Open Access Hub (https:
//scihub.copernicus.eu/, access date: 10 January 2021). We adjusted the geodetic height
of the elevation points extracted from all three datasets based on the WGS-84 reference
ellipsoid. The average bias of the overlapping part among these datasets was calculated to
correct the elevations [34]. In the present study, the average biases of CryoSat-2/ICESat
and CryoSat-2/Sentinel-3 elevations were 0.045 m and 0.397 m, respectively.

https://eocat.esa.int/
https://nsidc.org/data/ATL13/versions/3/
https://nsidc.org/data/ATL13/versions/3/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
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Table 1. Remote-sensing images and satellite altimetry data.

Application Data Time Span
Resolution

Spatial Resolution
(m)

Temporal Resolution
(Day)

To build the hypsographic curve

Landsat ETM/OIL
GF/ZY

2010–2020

30
162/6

CryoSat-2
ICESat-2

Sentinel-3B
-

30
91
27

To analyze annual lake area variation Landsat TM/ETM/OIL 1987–2020 30 16
Digital map 1975 - -

3.1.2. Satellite Images and Digital Map

In our study, we used satellite images and digital maps to obtain the long-term lake
area series and build the hypsographic curve. Different datasets were adopted for different
applications (Table 1).

We applied the Landsat ETM/OIL, Gaofen (GF) and Ziyuan (ZY) series satellite
images (obtained from the China Centre for Resources Satellite Data and Application) to
build the hypsographic curve because these datasets match the altimetry data in time.
Based on previous research [34], satellite images that differed by less than three days from
the altimetry data were chosen to construct a hypsographic curve.

As for the relatively long-term lake area series, we used the Landsat TM/ETM/OIL
data derived from Geospatial Data Cloud (http://www.gscloud.cn/, access date: 18 Jan-
uary 2021) and the United States Geological Survey (https://earthexplorer.usgs.gov/,
access date: 20 January 2021), and corrected them with systematic radiometric and geomet-
ric corrections. In addition, images were selected from a relatively stable period of water
volume in September, based on a previous study in the plateau lakes [42]. We also used
a 1:100,000 scale digital map to extract the lake area in 1975.

3.1.3. Hydro-Climatic Data and Cropland Maps

In this study, we attributed the LWS change to climate change or agricultural ac-
tivity using hydro-climatic data (i.e., precipitation data and runoff data) and cropland
maps. The precipitation data were obtained from the IMERG V06 product of the global
precipitation measurement (GPM) mission (https://pmm/nasa/gov/GPM, access date:
05 March 2021). IMERG V06 is the third-level GPM product which was released in April
2019 and provides global precipitation data with a spatial–temporal resolution of 0.1◦ and
30 min. Previous studies showed that the GPM performs better than the tropical rainfall
measuring mission (TRMM) data on the TP [43]. The annual runoff data were recorded
by the Delingha Hydrological Station in the upper reaches of the Gahai Lake (Figure 1).
The runoff comes from the Bayin River and is used to irrigate cropland. The return water
of cropland irrigation flows into Gahai, which will change the LWS. However, there are
no available data about the return water of cropland irrigation. Therefore, we collected
cropland area data to analyze the influence on LWS change [44], which was obtained from
the MODIS MCD12Q1 product. MCD12Q1 is a third-class product of land cover type and
includes five different land cover classification schemes with a spatial resolution of 500 m
(https://lpdaac.usgs.gov/products/mcd12q1v006/ access date 06 March 2021) [45].

3.2. Methodology
3.2.1. Extraction of the Lake Area

Figure 2a shows the procedure used to extract the lake area. We first preprocessed all
the satellite images we collected, which included radiometric calibration and atmospheric
correction. The GF and ZY images were the L1 products without geometric correction;
therefore, we conducted the correction by using the Landsat as the benchmark. In addition,

http://www.gscloud.cn/
https://earthexplorer.usgs.gov/
https://pmm/nasa/gov/GPM
https://lpdaac.usgs.gov/products/mcd12q1v006/
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some Landsat/ETM images were striped, and we had to de-stripe them [46]. We discarded
images with cloud cover greater than 30%. This proportion is higher than in previous
studies [47,48]. There were fewer images (matching satellite altimetry data) available
for this study; therefore, we had to use cloud-covered images whenever possible. Then,
the water surface information was extracted by the normalized difference water index
(NDWI) Equation (1) [49]:

NDWI =

(
Bandgreen − BandNIR

)(
Bandgreen + BandNIR

) (1)

where Bandgreen is the green band reflectivity, and BandNIR is the near-infrared band reflectivity.

Figure 2. Content and method on (a) extraction of the lake area, (b) extraction of the lake water level, and (c) estimation of
the lake water storage (LWS) change.

After calculating and obtaining NDWI images, the threshold for water extraction from
the Gahai Lake region was determined by manual visual interpretation to be 0.3 from
April to June, 0.2 from July to September, and 0.1 from October to March. Manual visual
interpretation is very accurate, but it takes time and effort. We time-filtered the images,
which reduced the data-processing complexity. After the water body was extracted, it was
imported into ArcGIS to eliminate non-lake-water data. Then, the null values due to
cloud coverage were removed. When clouds covered both water and land, we determined
the water boundary based on the images of adjacent periods. The surface area of the lake
was calculated by using the projection of WGS 1984 UTM Zone 47N. Finally, the time series
of the lake area is obtained by using the above method.

3.2.2. Extraction of the Lake Water Level

Figure 2b shows the extraction of the lake water level and the screening methods. First,
the elevation points of the lake were extracted. This study combined three sets of satellite
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altimetry data. Although the data formats and observation standards differ, the observation
principles are basically the same [50–52]:

E = alt− range + c, (2)

where E is the distance from the lake surface to the WGS-84 reference ellipsoid, which is
called the lake water level in this paper; “alt” is the distance from the satellite to the WGS-84
reference ellipsoid; “range” is the distance from the satellite to the lake surface; and c is
the corrections.

In addition, this study used an L2 product. The water level of the lake was calculated;
therefore, the corresponding fields of lake water level could be read directly. In addition, to
screen the elevation points of the lake, we extracted the longitude, latitude, and collection
time of the elevation points. Table 2 shows the corresponding fields of the above data
derived from three products.

Table 2. Fields of satellite altimetry data used in this study.

Data Longitude Latitude Collection Time E = alt − range + c

CryoSat-2 Lon_poca_20_ku Lat_poca_20_ku Time_20_ku Height_1_20_ku
ICESat-2 Sseg_mean_lon Sseg_mean_lat Sseg_mean_time Ht_water_surf

Sentinel-3 Lon_cor_20_ku Lat_cor_20_ku Time_20_ku Sea_ice_sea_surf_20_ku

After determining the fields to be read, the elevation points of the lake surface (EPLS)
were obtained by filtering the lake boundary during the dry period, as shown in Figure 3a,b
(Sentinel-3, 12 April 2020 period data). The altimeter satellite is mostly based on radar or
laser altimeter measurements of the surface; therefore, the data quality is affected by various
combinations of factors, such as clouds, rainfall, sand, and lake-surface reflections [35],
resulting in scattered elevation points for the lake surface, not all of which are valid,
as shown in Figure 3c. This study thus proposes a mean-independent algorithm based
on two reasonable assumptions: (1) Gahai Lake is a typical terminal lake, so the water of
the lake does not flow out, the lake surface is relatively stable, and the elevation basically
remains the same in all places; and (2) the elevation data for the lake surface are normally
distributed, which means that the majority of elevation points are correct, and there are
only a few abnormal points. Table 3 illustrates the proposed algorithm.

Table 3. Algorithm to extract elevation points.

Algorithm to Extract Elevation Points

Begin
(1) Enter the EPLS {p1, p2, pi} for the lake elevation point of a certain period.
(2) Take point p1 as the benchmark; if the other elevation points pi satisfy p1 − 0.3 < pi < p1 + 0.3
(units of m), put point pi into container List-1. Loop through all elevation points to get all
containers (List-1, List-2, . . . , List-i) and the stored point set.
(3) Count the length of the containers. The set of points in the longest container is the effective
elevation point (EEPLS) set. If two or more containers have the same length, find the standard
deviation of the point set for each container and take the point set with the smallest standard
deviation as the effective elevation point set for the lake.
(4) Calculate the average by EEPLS and output the final water level of the lake.
End
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Figure 3. The (a) horizontal and (b) vertical distribution of the elevation points of the lake surface (EPLS); and the (c) hori-
zontal and (d) vertical distribution of the effective elevation point (EEPLS) and outliers.

The lake water level for each period was calculated by using the proposed algorithm
to process the multisource satellite altimetry data. The number of EPLS and EEPLS in each
issue was counted, and the effective rate (ER = EEPLS/EPLS × 100%) was calculated to
compare the lake water levels from different periods. Moreover, data with ER and EPLS
numbers below a certain threshold were excluded (see Section 4.1.3) from the final results.

3.2.3. Estimation of the Lake Water Storage Changes

Figure 2c outlines the process for estimating lake water storage. After extracting
data of the area and water level, those with similar collection dates were selected to form
data pairs to establish a hypsographic curve. Linear, exponential, quadratic, and cubic
polynomial curves were selected to fit the existing time-matched pairs, and the coefficient
of determination (R2) and the root mean square error (RMSE) were used to evaluate how
much the curves match the existing data [53].

After establishing the optimized hypsographic curve, the missing water level was
predicted from a long time series of area, utilizing water level pairs, which could be used
with the PFM to estimate the long-term variations in water storage:

∆LWS =
1
3

(
At + At+1 +

√
At At+1

)
(Et+1 − Et) (3)

where ∆LWS is the change in lake water storage from time t to time t + 1, At and Et are
the area and water level at time t, and At+1 and Et+1 are the lake area and water level at
time t + 1.

In addition, the inverse function of E (A) was calculated to obtain A(E), and the IM (4)
could be used to estimate the change in water storage of the lake.

∆LWS =
∫ Et+1

Et
A(E)dE, (4)

where Et is the water level at t, Et+1 is the water level at t + 1, and A(E) is the inverse
function of the hypsographic curve E(A).

It is worth mentioning that in Equations (3) and (4), moment t + 1 is adjacent to
moment t; therefore, the two models could estimate the change in water storage only
between adjacent moments.

3.2.4. Verification of the Predicted Hypsographic Curve

As discussed in Section 3.2.3, the best fit hypsographic curve to the available data
could be selected based on the evaluation index R2 and the RMSE. However, the accuracy
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of the estimates produced by the curve for data-deficient periods needed to be verified
to ensure the long-term water level and water storage of the lake. This paper used cross-
validation to verify the accuracy of the hypsographic curve [54]. The basic idea of cross-
validation was to divide the original data into a training set and a validation set, and then
the training set was used to construct the function to produce the curve. Few time-matched
data pairs were available for Gahai Lake; therefore, all the data could be used to validate
the function for the hypsographic curve [55]. Leave-one-out cross-validation, which is
more applicable to small sample sets, was used in this study [56]. Thirty-two time-matched
data pairs were split into 32 sub-samples. Thirty-one sub-samples were used to construct
the curve E(A) of water level versus area, and the remaining sub-sample was used to verify
the accuracy of the curve. The cross-validation was repeated 32 times because each (area,
water level) data pair was used in one validation. Eventually, the absolute error and mean
absolute error of the 32 validations served to evaluate the accuracy of the curve. Figure 4
shows the leave-one-out cross-validation configuration.

Figure 4. Configuration of leave-one-out cross-validation.

4. Results and Analysis
4.1. Extraction of the Area and Water Level for Gahai Lake

The extraction results of lake areas and water levels in this study are presented in three
sections. Section 4.1.1 compares the lake area extracted from two types of optical images
to prove the necessity of using Landsat to extract small lake areas. Section 4.1.2 shows
the transit tracks of other altimetry satellites in Gahai, which reveal the scarcity of altimetry
data in this region. Section 4.1.3 describes the specific results of the proposed algorithm for
extracting lake level and the parameter setting process for eliminating outliers.

4.1.1. Comparison of Gahai Lake Area Extracted from Landsat and MODIS

As shown in Figure 5, the lake area extracted from Landsat and MODIS products over
the same periods varied significantly. From 2003 to 2019, the annual lake area extracted by
MODIS was 4.47–9.09% larger than that extracted by Landsat, with an average of 6.64%,
and the difference became narrow with an increasing lake area (see the green solid line).
This result is consistent with that of a previous study [22,57], in which the relative difference
in lake area extracted by the two products was closely related to the scale of the lake.

Figure 5. Comparison of lake area extracted from Landsat and MODIS products over the same periods.
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For large lakes, although the lake boundaries extracted by the MODIS and Landsat
products did not overlap and the calculated lake areas were different, the dissimilarity was
almost negligible compared with the large lake area. In this case, the products could be
combined or interchanged in practice [32]. For small lakes, the low spatial resolution of
MODIS means that the boundaries of small lakes are difficult to distinguish from surround-
ing features, forming mixed images; thus, a large uncertainty remained in the extracted
lake boundary. In addition, the large difference in spatial resolution between the two
products meant that the extracted lake boundaries may have differed by over 200 m, result-
ing in different calculated areas. The Landsat products provide better spatial resolution,
but the time resolution is limited, so they are more suitable for monitoring annual variation
in the lake area.

4.1.2. Satellite Altimetry Data for the Area of Gahai Lake

Apart from the three altimetry satellite data in this study, the transits of other al-
timeter satellites over Gahai Lake can be obtained from the Aviso-CNES data center
(https://www.aviso.altimetry.fr/en/data/tools/pass-locator.html, access date: 26 January
2021) (see Figure 6a). Only two tracks transit over Gahai Lake, namely, Jason2_LRO (ad-
justed from July 2017 to July 2018) and EnviSat_new (after adjusting its orbit in November
2010). Jason2_LRO passed over Gahai Lake three times (orbital numbers cycle501/pass129,
cycle524/pass057, and cycle529/pass074, dated 25 July 2017, 6 March 2018, and 25 April
2018, respectively). The observation points (from Jason2_GDR data provided by AVISO)
are sparse, and only one point lay in Gahai Lake (see Figure 6b), with a value of 2885.741
m (reference WGS84 ellipsoid), which differed significantly from the other data presented
herein. EnviSat_new passed by Gahai Lake only once, and the result was similar to that of
Jason2_LRO. In addition, the transits over Gahai Lake by ICESat satellites were also counted
(https://nsidc.org/data/GLAH14/versions/34, access date: 27 January 2021), but the re-
sults were not recorded. To summarize, except for the altimeter satellite data used in this
study, there is little altimeter satellite coverage for the Gahai Lake. This may be the reason
why some public datasets (e.g., Hydroweb [58], DAHITI [59], and G-REALM [60]) lack
records of the water levels of Gahai Lake.

Figure 6. (a) Transit tracks of altimeter satellites (Jason 1/2/3/TP, Jason2_LRO, EnviSat_new, GeoSat,
Saral/ERS1/2/EnviSat, and Jason 1/2_IO) over the Gahai Lake area. (b) The elevation points of
Gahai Lake collected by the Jason2_LRO satellite.

4.1.3. Extraction of Water Level of Gahai Lake

To extract the initial water level of Gahai Lake and form a time series, the proposed
water-level extraction algorithm was used to calculate the data from three altimeter satel-
lites that passed over Gahai Lake (see Figure 7a). The apparent deviation of water level
from the data acquired on adjacent dates (see red solid circles) may result from an error
in the original lake-elevation point. To further analyze this phenomenon, the number of
lake elevation points (N_EPLS), the number of effective lake-elevation points (N_EEPLS),
and the percentage of effective lake-elevation points (RE) were collected and compared
for all periods of deviation in the water level, as indicated in Table 4. For the 14 periods
when the lake water level deviated, there were fewer than 40% of the effective elevation
points on the lake surface over 12 periods, which indicates that the original lake-elevation
points were widely dispersed (see Figure 8a). There were two periods in which RE > 40%,

https://www.aviso.altimetry.fr/en/data/tools/pass-locator.html
https://nsidc.org/data/GLAH14/versions/34
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but few initial lake-elevation points (see Figure 8b). These results suggest that the original
lake-elevation points may not be reliable. Therefore, the ER and EPLS in 3.2.2 were set to
40% and 8, respectively, to eliminate these possible anomalous water levels from the time
series of lake water levels. In the end, the water level of Gahai Lake was obtained, as shown
in Figure 7.

Figure 7. (a) Initial water level and (b) water level extracted by the algorithm of Gahai Lake.

Table 4. Elevation of lake surface during the period over which the water level deviated.

Period N_EPLS N_EEPLS ER Period N_EPLS N_EEPLS ER

2012/05/13 18.00 5.00 27.78% 2019/04/28 13.00 5.00 38.46%
2015/05/23 10.00 3.00 30.00% 2019/06/04 4.00 2.00 50.005%
2016/05/25 20.00 7.00 35.00% 2019/08/14 12.00 4.00 33.33%
2017/05/29 10.00 3.00 30.00% 2019/09/10 9.00 3.00 33.33%
2017/08/21 6.00 4.00 66.67% 2019/11/03 18.00 7.00 38.89%
2018/05/27 14.00 5.00 35.71% 2020/06/06 12.00 4.00 33.33%
2019/04/01 15.00 5.00 33.33% 2020/10/19 16.00 6.00 37.50%

Figure 8. Distribution of elevation points on the lake surface on (a) 13 May 2012 and (b) 21 August 2017.

4.2. Hypsographic Curves for Gahai Lake

Given the water level and corresponding area, four hypsographic curves were fitted
for Gahai Lake, as shown in Figure 9.
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Figure 9. Gahai Lake water level plotted versus lake area: (a) linear curve, (b) exponential curve, (c) quadratic curve and
(d) cubic curve.

The determination coefficients R2 for the four curves are 0.742, 0.742, 0.766, and 0.802,
and the RMSEs are 0.175 m, 0.175 m, 0.167 m, and 0.153 m, respectively. The cubic
polynomial curve had the highest coefficient of determination (0.802) and the lowest RMSE
(0.153 m), which meant that this curve fitted the data the best. However, when the lake
area exceeded 38,730 km2 (see Figure 9d), the water level tended to decrease. Considering
the geographical condition of Gahai Lake, there is no situation when if the area increases,
the water level decreases. In other words, the hypsographic curve of Gahai Lake increases
monotonically. The cubic polynomial curve was excluded because it did not meet this
criterion. For the other three curves, the quadratic polynomial curve provided the highest
coefficient of determination (0.766) and the lowest RMSE (0.167 m); therefore, this curve
was chosen as the optimized hypsographic curve for Gahai Lake:

E(A) = −0.028A2 + 2.307A + 2754.901. (5)

The hypsographic curve could not be established given a small range of lake levels
because of the inevitable observation errors and limits caused by the data acquisition dates
of lake area and water level. There was almost no obvious relationship (neither linear nor
nonlinear) between lake area and water level. In other words, the proposed method has
difficulty monitoring lakes with small changes in water level (especially when the variation
in water level is less than 1 m), which is consistent with the description by Xu et al. [61].
Conversely, lakes with less variation in water level are not the focus of attention.

4.3. Variations in the Area, Water Level and Water Storage of Gahai Lake
4.3.1. Variations in the Area of Gahai Lake

Figure 10 shows the interannual variations in the area of Gahai Lake. From 1975 to
2020, the lake area fluctuated within the range of 28.37–38.57 km2, showing a slightly in-
creasing trend of 0.14 km2/y, and the lake area increased by 20.17% in 45 years. The whole
period can be divided into two sub-periods based on the short-term variations in the lake
area. In the first sub-period (1975–1999), the lake area contracted: the lake area fluctu-
ated between 32.10 and 28.44 km2 and decreased slightly by 0.15 km2/y. From 1975 to
1987, the lake area decreased at a rate of 0.29 km2/y for a total of 3.53 km2. It entered
a short period of expansion, during which the lake area increased by 1.69 km2 at a rate of
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0.34 km2/y. The lake again entered a period of decreasing area in 1992, when it shrank at
a rate of 0.26 km2/y until reaching a minimum area of 28.44 km2 in 1999. In the second
sub-period (2000–2020), the lake expanded by 9.74 km2 at a rate of 0.49 km2/y. During this
period, the lake area expanded from 2001 to 2013 for 12 consecutive years. It increased
by 6.71 km2, which was equal to 23.65% of the lake area in 2001, at an increasing rate of
0.56 km2/y. From 2013 to 2016, the lake area contracted slightly by 0.28 km2 at a rate of
0.09 km2/y. In 2016, the lake entered a period of rapid increase, which had never happened
over the past 45 years. By 2020, the lake area had increased by 3.78 km2, with an increasing
rate of 0.94 km2/y, which significantly exceeded the rates (increasing or decreasing) of all
other periods.

Figure 10. Interannual variation of the area of Gahai Lake.

To summarize, during the first sub-period (1975–1999), the lake area was decreasing
slightly. During the second sub-period (2000–2020), the lake area increased at a relatively
high rate, especially in recent years. The high increasing rate in the lake area (up to threefold
greater than the previous period) distinguishes the later period from the previous one.

Figure 11 shows the spatial variations in the lake area. During the first sub-period,
the lake area only varied slightly at the boundary, with relatively larger variations in the north
and southeast regions. During the second sub-period, the lake area changed significantly
compared with the first sub-period, with large expansions in the north, south, and southeast
parts of the lake, but there is only little variation in the northeast part of the lake. Optical
images and a digital elevation model of the lake area show that the northeast part of the lake
is dominated by a cliff, so very little variation in this area can be seen unless the water level
increases significantly. In short, due to the steep slope in the northeast part of the lake,
the lake area in this region remains unchanged despite the fluctuation of the water level,
whereas the slopes in other parts of the lake are relatively small and therefore are more
prone to significant variations in lake area.
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Figure 11. Spatial variations of Gahai Lake.

4.3.2. Variations in the Water Level of Gahai Lake

Based on the variations in lake area from 1975 to 2020 in Section 4.3.1, a quadratic
polynomial was adopted as the optimum curve to describe the water level of the lake over
this period. Figure 12 shows the interannual variation in the water level of Gahai Lake.

Figure 12. Interannual variation in the water level of Gahai Lake.

From 1975 to 2020, the water level fluctuated between 2797.58 m and 2801.79 m,
showing a slight upward trend of 0.04 m/y on average. Similarly, the whole period can be
divided into two sub-periods based on short-term variations in water level. During the first
sub-period (1975–1999), the water level decreased from 2799.80 m to 2797.63 m, at a rate
of 0.09 m/y. From 1975 to 1987, the water level dropped by 2.09 m, at a decreasing rate
of 0.17 m/y. From 1987 to 1992, the water level increased by 1.08 m at a rate of 0.22 m/y.
From 1992 to 1999, the water level again declined at a rate of 0.17 m/y to reach a minimum
of 2797.63 m in 1999.

During the second sub-period (2000–2020), the water level increased by 3.89 m at
an average rate of 0.19 m/y. From 2001 to 2013, the water level grew monotonically at
0.29 m/y, with a total increase of 3.43 m, which accounted for 88.18% of the total increase
in the second sub-period. The water level saw a relatively rapid increase during these
12 years. From 2013 to 2016, the water level remained almost stable, with only a slight
decrease of 0.09 m over these three years (0.03 m/y). From 2016 to 2020, the water level
rose at 0.22 m/y for a total increase of 0.87 m, which was similar to the growth in other
periods, whereas the lake area in the same period increased rapidly compared with that
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in other periods. This shows that even within the same period, variations in the lake area
and the water level may be different.

Figure 13 shows how lake area and water level vary over different periods. From 2016
to 2020, the increasing rates in the area were 2.76 times and 1.68 times greater than those from
1987 to 1992 and from 2001 to 2013, respectively. The analogous comparison for water level
gives factors of 1.00 and 0.76, respectively. These results indicate that the significant increase
in area from 2016 to 2020 resulted from only a small increase in water level. Thus, the area
and water level are only single indicators of variations in lake water resources, and any
analysis of lake properties based solely on an area or on water level is incomplete. In this
particular case, different indicators may lead to completely different conclusions when
the lake has a high water level or large area. Therefore, it is estimated that the variations
in water storage directly influence the water resources of the lake.

Figure 13. Rates of change in the area and water level of Gahai Lake over different periods.

4.3.3. Variations in Water Storage of Gahai Lake

Given the data on lake area and water level from 1975 to 2020, the pyramidal frustum
model and integral model were adopted to estimate the variations in water storage of
the lake during this period. Figure 14 shows the change in water storage estimated by
the two models (blue and red curves) and the difference between the two models (gray
histogram). The results of the pyramidal frustum model and the integral model show that
over the 45 years, water storage increased by 68.79 × 106 m3 and 82.33 × 106 m3, which
give rates of 1.53 × 106 m3/y and 1.83 × 106 m3/y, respectively. Compared with the result
gained from the integral model, water storage saw a less significant increase over 45 years
in the pyramidal frustum model. With respect to the water storage level in 1975 (arbitrarily
set to zero), the pyramidal frustum model estimated that the water storage first decreased
to a minimum of −67.15 × 106 m3 in 2001, and then rose to a maximum of 68.79 × 106 m3

in 2020. The analogous numbers for the integral model were −93.30 and 82.33 × 106 m3,
respectively. To summarize, the water-storage trends estimated by the two models were
similar, but the specific values differed.

Figure 14. Annual variations in water storage of the lake estimated by the two models.

This difference may be explained by the fact that the two models are based on different
principles for estimating variations in water storage. The pyramidal frustum model regards



Remote Sens. 2021, 13, 3221 16 of 23

the variation in water storage as the volume of a regular prism, whereas the actual lake
basin has an irregular shape, which leads to greater uncertainty in the resulting estimation.
The integral model regards the variation in water storage as the limit of the integral of
the lake-area function over a certain water level interval, which is theoretically more rigor-
ous than the pyramidal frustum model, but it is limited by the accuracy of the hypsographic
curve. Given the lack of in situ measurement data on water storage, it is impossible to
objectively assess the results of these models. The mean value of the two results was used
as the final changes in lake water storage to balance the contributions of the two models,
as shown in Figure 15.

Figure 15. Final changes in the water storage of Gahai Lake.

Over the period 1975–2020, water storage in Gahai Lake increased by approximately
75.56 × 106 m3, at an increasing rate of 1.68 × 106 m3/y. The whole period was again
divided into two sub-periods, in the first of which (1975–1999) water storage varied more
drastically, decreasing at an average of 3.26 × 106 m3/y. During the period 1975–1987,
water storage fell by 75.38 × 106 m3 (−6.28 × 106 m3/y). In the following five years, water
storage increased by 38.72 × 106 m3 (+7.74 × 106 m3/y). From 1992 to 1999, water storage
again dropped by 41.68 × 106 m3 (−5.95 × 106 m3/y).

The second sub-period (2000–2020) saw a steady increase in water storage. It increased
by 1.45 × 106 m3 (+7.23 × 106 m3/y). From 2001 to 2013, water storage increased for 12
consecutive years, with a total increase of 1.25 × 106 m3 (+10.46 × 106 m 3/y). The water
storage in 2008 was the same as in 1975. From 2013 to 2016, the water storage changed
slightly, decreasing by 3.52 × 106 m3 (−1.17 × 106 m3/y). During the period 2016–2020,
water storage rose by 33.82 × 106 m3 (+8.45 × 106 m3/y), which was slower than that from
2001 to 2013, but similar to the growth rate from 1987 to 1992. These results differ from
those for the area and water level of the lake during the same period, which again confirms
the conclusion drawn in Section 4.3.2.

5. Discussion
5.1. Rationalization for the Extraction of Water Level of the Lake

Figure 16 shows the water levels of lakes extracted using the mean method, the 3σ
method, and the proposed algorithm. The water levels for each period are given by
the mean and standard deviation of the set of lake elevation points run by the given
method. The water level based on the point set processed by the proposed method had
the smallest standard deviation (0.12 m); the mean method and the 3σ method produced
standard deviations of 0.97 m and 0.69 m, respectively, which were significantly greater than
that of the proposed method. The overall water level of the lake was generally consistent
among the three methods, but large differences did exist on specific dates. The six most
controversial water-level points were selected to analyze this difference (see Figure 17).
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Figure 16. Water levels of Gahai Lake extracted by different methods on (a) 29 May 2017, (b) 27 May
2018, (c) 28 April 2019, (d)10 September 2019, (e) 30 November 2019, and (f) 19 October 2020.

Figure 17. Results extracted by the proposed algorithm and the two other algorithms on
(a) 29 May 2017, (b) 27 May 2018, (c) 28 April 2019, (d)10 September 2019, (e) 30 November 2019,
and (f) 19 October 2020. The red and green dashed lines denote the results extracted by the mean
method and by the 3σ method, respectively.

The results extracted by the mean method and the 3σ method were almost the same
(red dashed line and green dashed line), but were significantly affected by outliers. When
outliers strongly differed from other elevation points, the extraction results of the mean
method deviated from the expected value (see Figure 17b). The 3σ method can eliminate
the most egregious outliers, although it has difficulty eliminating minor ones (i.e., devia-
tions of 1–5 m; see Figure 17a,c–f). The results of the 3σ method were the same as those of
the mean method, which indicates that the outliers were not eliminated, but rather counted
in the calculation of the water level. In addition, the 3σ method and the mean method
were difficult to apply to small lakes. Large lakes often have a sufficient number of lake
elevation points; therefore, the 3σ method can easily eliminate the most prominent outliers
using the mean value as a reference, and the mean method can rely on sufficient points to
offset the outliers. However, for small lakes such as Gahai Lake, only a small number of
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lake elevation points are available because of the small lake area and the configuration of
the orbits of altimeter satellites. This small number of lake elevation points leads to more
randomly distributed outliers due to the influence of cloud cover, the reflection of the land–
water boundary [35], and other factors (see Figure 17a,b,d,f). Given the small number of
lake elevation points, taking the mean cannot offset these outliers. The 3σ method is also
unreliable in this case because the mean value deviates from the expected value. Although
the threshold of this method can be adjusted to σ or 2σ, selecting the threshold can be very
complicated because of the different values of the outlying lake elevation points.

Based on the two assumptions of the proposed method, the largest set of elevation
points in a certain elevation range (the fluctuation of water level in Gahai Lake was rela-
tively stable in a single measurement; thus, the range of elevation was selected as ±0.3 m)
was considered as the effective set of elevation points of the lake. The observation did not
contain outliers because outlier points are relatively independent and randomly distributed,
and therefore are rarely clustered within a certain range of elevation. The proposed method
is thus more suitable for extracting the water level of small lakes.

5.2. Validation of the Hypsographic Curve

To justify the water level and water storage of lakes estimated by the quadratic
polynomial curve, the accuracy of the hypsographic curve was explored by using the leave-
one-out cross-validation method in Section 3.2.4

Figure 18 shows the results of the leave-one-out cross-validation of various hypso-
graphic curves. The x-axis shows the area from the time-matched data pairs used for
testing, and the y-axis shows the value of absolute error in water level (for ease of analy-
sis). The results are divided into four sections based on the trend of the absolute error of
the curve for a given area. In the first section (34.60–35.78 km2), the linear curve (blue solid
line) and exponential curve (red dashed line) produce the smallest mean absolute error
(0.066 m), followed by the quadratic polynomial curve (0.077 m), and the cubic polynomial
curve (0.092 m). In the second section (35.78–36.49 km2), the cubic polynomial curve
gives the smallest mean absolute error (0.076 m), followed by the linear and exponential
curves (0.114 m) and then the quadratic polynomial curve (0.123 m). In the third section
(36.49–37.02 km2), both the linear and exponential curves give mean absolute errors of
0.188 m, and the other two curves give 0.193 m. In the fourth section (37.02–39.55 km2),
the cubic polynomial curve gives the smallest mean absolute error (0.176 m), followed by
the quadratic polynomial curve (0.189 m), the linear curve (0.197 m), and the exponen-
tial curve (0.197 m). In addition, over the entire range of lake-area values (34.60–39.55
km2), the smallest mean absolute error was produced by the cubic polynomial curve
(0.146 m), followed by the quadratic polynomial curve (0.157 m), the linear curve (0.158 m),
and the exponential curve (0.158 m).

Figure 18. Validation of the accuracy of different hypsographic curves.
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To summarize, the cubic polynomial curve produced the most accurate estimate of
area or water level, followed by the quadratic polynomial curve, the exponential curve,
and the linear curve. However, the cubic polynomial curve did not match the geography
condition of Gahai Lake; therefore, the quadratic polynomial curve was used to estimate
the area or water level of the lake in periods devoid of data.

5.3. Discussion of Variations in Water Storage of Gahai Lake

Figure 19 shows the annual water storage in Gahai Lake from 2001 to 2020 and
as a function of annual precipitation at the lake, annual runoff volume, and annual variation
in cropland relative to 2001. Figure 19a shows that the annual precipitation fluctuated
significantly over the years, with a slight overall increase, whereas the annual water
storage of the lake increased monotonically over the same period. The two trends show
different patterns. The correlation coefficient between the two datasets was R = 0.15 and
the significance level was p > 0.1, which indicates that no correlation existed between
the two sets (see Figure 19b). Similar results were obtained for annual variation in runoff
volume (see Figure 19c), which also showed no correlation with water storage (R = 0.24,
p > 0.1; see Figure 19d). Moreover, the annual variation in cropland in the upper lake
region and the annual variation in lake water storage both exhibited a long period of
monotonic increase (see Figure 19e); thus, the two are strongly correlated (R = 0.76, p < 0.01;
see Figure 19f).

Figure 19. The left column shows variations in water storage plotted along with (a) variation
in precipitation, (c) variation in runoff volume, and (e) variation in cropland cover relative to 2001.
The right column shows the water storage as a function of (b) variation in precipitation, (d) runoff
volume, and (f) cropland area relative to 2001.

Over the past 20 years, precipitation in the lake and runoff from the Bayin River basin
have had little effect on the variations in water storage in the lake; therefore, the cropland
area appears to be the main factor contributing to variations in the water storage of the lake.
This effect is indirect because a variation in the cropland area will lead to a variation in irri-
gation volume. Given that heavy irrigation is applied to the area, a variation in cropland
area will produce a proportional variation in the amount of receding irrigation water that
flows into the lake as subsurface and surface runoff, which then affects the water storage
in the lake. In recent years, in particular, the water storage has increased at a higher rate
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than previous years, reflecting the rapid increase in cropland area and the concomitant
irrigation withdrawal in upstream areas, which leads to a serious waste of local agricul-
tural water. Therefore, more scientific irrigation methods should be adopted to ensure
the efficient and appropriate use of agricultural water.

6. Conclusions

The combination of multisource data proves to be a feasible way to detect variations
in small lakes at low and middle latitudes. This study estimated variations in the area,
water level, and water storage of the Gahai Lake from 1975 to 2020 and analyzed the related
trends and the physical mechanisms that give rise to these trends. The results show that
the area and water level of Gahai Lake have increased over the past 45 years, but in recent
years, the trends of the two indicators are significantly different. This not only reflects
the topographic characteristics of the Gahai Lake basin, but also indicates that it is difficult
to accurately determine the variations in lakes based on lake area or water level alone.
Instead, water storage has proven to be the most direct and accurate indicator.

The water level of relatively small lakes such as the Gahai Lake is difficult to be
accurately determined because it offers few elevation points and a high proportion of
outliers. To overcome this problem, this study proposes an algorithm to extract the effective
elevation points of the lake without relying on their mean value, and it is shown that this
algorithm can accurately extract the water level of the lake. In addition, the altimeter-
satellite revisit time left some periods with few or no data; therefore, the existing time-
matched data pairs had to be used to fill in these gaps. Four different functions were
applied to the existing data and they were tested to find out which one provides the best
estimate of water level versus area in the periods with little or no data. These trials show
that a quadratic polynomial method can best estimate the hypsographic curve for Gahai
Lake. Water level, as a function of area, reflects the shape of the lake basin to some extent,
and this function may differ for different types of lakes. Therefore, it is recommended that
the function used to estimate water level versus area should be thoroughly investigated
before using it to estimate variations in water storage in lakes to ensure its optimality.

Two models were used to estimate the water storage changes of Gahai Lake, and the dif-
ferences in the results were discussed. The results show that the water storage trends of
Gahai Lake estimated by the two models were similar, but there were large differences
in the values, which may be due to different principles of the two models. The pyramidal
frustum model was difficult to fit to the actual lake basin shape; thus, the reliability of
the results was low. The integral model is theoretically more rigorous, but it was limited
by the accuracy of the hypsographic curve. No in situ measurement data were available
for verification; therefore, the mean value of the two results was used as the final changes
in lake water storage to balance the contributions of the two models. Finally, we believe
that analyzing the results of different models and fully considering the contributions of all
results is an effective way to estimate the changes in lake water storage in ungauged regions.

Hypsographic curves (lake area versus water level) are indispensable for predicting
lake areas or water levels in some periods and for estimating variations in water storage
in lakes by applying prismatic or integral models. However, due to the launch time and
orbit configuration of optical remote-sensing satellites and altimeter satellites, the time-
matched (lake area, water level) data pairs are temporally insufficient. The problem is
expected to be overcome in the future when NASA launches surface water and ocean
topography (SWOT) tasks in 2022 (https://swot.jpl.nasa.gov/, access date: 15 April 2021),
which will carry sensors that can capture both the water level and area of lakes, and obtain
data pairs with almost perfect temporal correlation, thereby greatly improving the accuracy
by which water level versus area may be determined [62]. This will greatly improve
the accuracy of estimated variations in water storage in lakes. Therefore, it will be possible
to develop accurate remote-sensing monitoring of variations in water storage in small
lakes such as the Gahai Lake in the near future. However, the long time-series data of
variations in the area, water level, and water storage will still rely on imperfect data

https://swot.jpl.nasa.gov/
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provided by the previous missions (e.g., Landsat, CryoSat) for some time. Moreover,
the joint application of conventional data and SWOT data, and their inter-validation, may
be an issue worth investigating in the future.

The analysis of water storage changes in the Gahai Lake indicates that a key con-
tributing factor to these variations is the irrigation withdrawal from the upper reaches of
the Gahai Lake over the past 20 years. The expanding irrigation of this cropland area and
the concomitant rise in irrigation runoff appear to be the main contributor to the increase
in water storage in Gahai Lake. This phenomenon reveals the inefficient use of agricultural
water that results from crude heavy irrigation. Therefore, it is suggested that local authori-
ties should improve the irrigation methods used on cropland to ensure the efficient and
appropriate use of agricultural water.
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