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Abstract: Object tracking is an essential aspect of environmental perception technology for au-
tonomous vehicles. The existing object tracking algorithms can only be applied well to simple scenes.
When the scenes become complex, the algorithms have poor tracking performance and insufficient
robustness, and the problems of tracking drift and object loss are prone to occur. Therefore, a robust
object tracking algorithm for autonomous vehicles in complex scenes is proposed. Firstly, we study
the Siam-FC network and related algorithms, and analyze the problems that need to be addressed
in object tracking. Secondly, the construction of a double-template Siamese network model based
on multi-feature fusion is described, as is the use of the improved MobileNet V2 as the feature
extraction backbone network, and the attention mechanism and template online update mechanism
are introduced. Finally, relevant experiments were carried out based on public datasets and actual
driving videos, with the aim of fully testing the tracking performance of the proposed algorithm
on different objects in a variety of complex scenes. The results showed that, compared with other
algorithms, the proposed algorithm had high tracking accuracy and speed, demonstrated stronger
robustness and anti-interference abilities, and could still accurately track the object in real time with-
out the introduction of complex structures. This algorithm can be effectively applied in intelligent
vehicle driving assistance, and it will help to promote the further development and improvement of
computer vision technology in the field of environmental perception.

Keywords: environmental perception; autonomous vehicles; deep learning; Siamese network;
object tracking

1. Introduction

With the advancement of computer science and electronic information technology,
artificial intelligence as represented by computer vision has developed rapidly. Object
tracking is an essential aspect of computer vision, and it is widely used in fields such as
autonomous driving, human–computer interaction, intelligent transportation, and video
surveillance. Object tracking refers to automatically predicting the state of an object in
subsequent frames from a given video image sequence according to the feature and position
information of the object in the initial frame [1–3]. For intelligent vehicle driving assistance,
an important task is to accurately and efficiently identify and track pedestrians and vehicles
in the surrounding environment, which can help to greatly reduce incidences of traffic
accidents and fully protect people’s lives and property [4,5].

Considering that object tracking technology has important application value and
practical significance, experts and scholars from various countries have conducted in-depth
research on it and obtained effective findings. According to the principles of different
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algorithms, object tracking algorithms can generally be divided into generative tracking and
discriminative tracking methods. Generative tracking methods are relatively traditional
research methods. First, a model is established based on the apparent information of
the object and then the most similar region is found as the object by the optimization
algorithm in the region of interest, and the reliability of the similar region is guaranteed by
constantly updating the model [6–8]. Ross et al. [9] proposed a robust incremental learning
algorithm for object tracking. The linear space representation of principal component
analysis was used to model the appearance of the object, and the model was updated based
on incremental learning, which effectively improved the tracking performance. Arróspide
et al. [10] proposed an object tracking method based on variable-dimension particle filtering.
This method introduced a dynamically changing multidimensional space and solved the
problem of the entry and disappearance of objects in the tracking process. Du et al. [11]
proposed a MeanShift algorithm with adaptive block color histogram, which processed
both the color statistics and spatial information of the object and solved the problem of
inaccurate tracking in the original algorithm.

With the rapid development of machine learning and pattern recognition technology,
discriminative tracking methods have become the focus of research in object tracking.
Discriminative tracking methods usually convert object tracking into binary classification
and use one or more classifiers to separate the object from the surrounding background
as much as possible [12–14]. Discriminative tracking methods are mainly classified into
categories based on correlation filtering and deep learning. Tracking methods based on
correlation filtering adopt the signal similarity measurement in signal processing and find
the image block with the highest similarity to the model in each frame as the tracking result.
Danelljan et al. [15] proposed the discriminative scale space tracker for the scale change of
objects. Two independent correlation filters were used to predict and estimate the position
and size of the object, which showed good robustness. However, the additional correlation
filter increased the computational burden and slowed down the tracking speed significantly.
Henriques et al. [16] proposed a kernel correlation filter for high-speed tracking. The least
squares classifier was used to optimize the mean square error between the signals, which
accelerated the algorithm’s computation speed while maintaining the original complexity.
Liu et al. [17] used a multi-correlation filter to independently track multiple object blocks.
The tracking performance of occluded objects was effectively improved through adaptive
weighting, updating, and structural masking.

Due to the success of convolutional neural network (CNN) in image classification,
tracking methods based on deep learning have gradually become a research hotspot in
recent years. Wang et al. [18] proposed a visual tracking algorithm based on fully convolu-
tional neural network (FCNN). This algorithm combined feature selection network with
heat-map prediction network to study CNN features at different levels, which effectively
alleviated the problem of object shifting. Nam et al. [19] proposed a multi-domain CNN
for object tracking. The network was composed of shared layers and multiple branches
of domain-specific layers and achieved relatively high tracking accuracy through online
tracking. However, the real-time performance of the algorithm was poor because of the
large number of candidate bounding boxes. Song et al. [20] used an adversarial learning
algorithm for object tracking. The input features were discarded by randomly generating
masks through the generating network, with the aim of adapting to various appearance
changes of the object.

By summarizing and analyzing the existing methods, it can be seen that the main
factors affecting the tracking performance of the algorithm include the object’s own factors
and environmental factors. Fast movement, appearance changes, scale changes, and
rigid and non-rigid features are typical object factors. Lighting changes, background
interference, image noise, and occlusion of irrelevant objects are common environmental
factors [21–26]. Generative tracking methods normally involve complex computation and
poor adaptability to the environment. When the object is in a cluttered background, tracking
loss is likely to occur [27–29]. Compared with generative tracking methods, discriminative
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tracking methods can better deal with complex problems in practical applications, and the
tracking accuracy is higher. Nevertheless, this type of algorithm involves a large amount
of calculation and slow operation speeds, which makes it difficult to meet the real-time
tracking requirements of intelligent vehicles [30–33]. In general, the current object tracking
algorithms can only be effectively applied to simple scenes. When the scenes become
complex, the algorithms have poor tracking performance and insufficient robustness
and cannot obtain high precision and real-time functionalities simultaneously [34–36].
Therefore, in view of the problems and shortcomings of existing algorithms, there is an
urgent need to develop a robust object tracking algorithm that can be effectively applied to
complex scenes, so as to improve the technical level of intelligent vehicle driving assistance.

Addressing the gaps of current methods, this study proposes a robust object tracking
algorithm for autonomous vehicles in complex scenes. The contribution of this work can
be summarized in the following three items. Firstly, the Siam-FC network and related
algorithms are studied, and the problems that need to be addressed in object tracking are
analyzed. Secondly, we discuss the construction of a double-template Siamese network
model based on multi-feature fusion with the improved MobileNet V2 used as the feature
extraction backbone network, and the attention mechanism and template online update
mechanism are introduced. Thirdly, we describe the relevant experiments that we carried
out based on the public datasets and actual driving videos, and the tracking performance
of the proposed algorithm is evaluated by using the methods of qualitative and quantita-
tive analysis and by conducting a comprehensive comparison with state-of-the-art object
tracking algorithms.

The rest of this article is organized as follows. In Section 2, the Siam-FC network and
related algorithms are briefly introduced and analyzed. In Section 3, a double-template
Siamese network model based on multi-feature fusion is established. In Section 4, tracking
experiments are described for the proposed algorithm based on public datasets and actual
driving videos. Finally, the conclusion is presented in Section 5.

2. Related Work
2.1. Siam-FC Network

The Siamese network is a supervised learning network framework for metric learning
that uses two neural networks with shared weights to compare the similarity of two features
through similarity measurement calculations. Different from the traditional object tracking
methods, this network structure transforms the object tracking problem into the similarity
learning problem, which can not only run in real time on the GPU but can also catch up
with or even exceed the related filtering methods combined with depth features in terms of
accuracy. Considering that there are few training datasets available in the object tracking
field, the Siamese network structure can naturally increase the amount of training data and
expand the limited datasets by inputting a pair of images each time, so as to achieve the
goal of fully training the network [37]. The Siam-FC network is a classical network model
that adopts the Siamese network framework for object tracking and was first proposed by
Bertinetto in 2016 [38]. The network structure of the Siam-FC network is shown in Figure 1.

The Siam-FC network adopts a double-branch structure; one branch is a template
branch and the other is a search branch. The network first performs feature extraction on
the object template and search area, conducts similarity measurement calculations, and
uses the similarity score response graph to determine the location of the tracking object in
the search area. The Siam-FC network transforms object tracking into a template matching
process and takes the full convolutional layer as the similarity measure function. The entire
process can be expressed as

f (z, x) = ϕ(z) ∗ ϕ(x) + b · I, (1)

where z and x represent the template image and search image, respectively; ϕ(z) and ϕ(x)
separately represent the feature maps of the template image and search image; ∗ is the
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inter-correlation operation; b is the bias term; I is the identity matrix; and f (z, x) is the
similarity score response of the two images.
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Figure 1. The network structure of the Siam-FC network.

Due to the fully connected network, the Siam-FC network can input images of different
sizes. It does not require online learning, which greatly reduces the time for the model
update, and thus it has good real-time performance. However, because the network always
takes the object in the first frame as the template, the tracking stability is significantly
worsened when the tracking object changes in appearance. Furthermore, the feature
extraction capability of the convolutional layer of the network is insufficient, and its
tracking accuracy needs to be improved.

2.2. Algorithms Related to Siam-FC

As the Siam-FC network has better comprehensive performance, many related algo-
rithms have emerged. Compared with the traditional correlation filtering methods, the
CNN features extracted by Siam-FC-related algorithms are more suitable for tracking data
and the entire model, the network expression ability is stronger, and competitive results
have been achieved on the existing tracking datasets. A comparison of some Siam-FC-
related algorithms is shown in Table 1.

Table 1. A comparison of some Siam-FC-related algorithms.

CFNet DSiam SA-Siam SiamRPN

Release date July 2017 October 2017 June 2018 June 2018
Developers Valmadre et al. [39] Guo et al. [40] He et al. [41] Li et al. [42]

Training datasets ILSVRC 2015-VID
dataset

ILSVRC 2015-VID
dataset

Color images in the
ILSVRC 2015-VID

dataset

ILSVRC 2015-VID
dataset and

YouTube-BoundingBoxes
dataset

Outstanding feature

The correlation filtering
operation is integrated
into a single network
layer and embedded

into the network

Addition of the object
appearance change

conversion layer and
background

suppression conversion
layer in the x and z

branches, respectively

Use of two branch
networks to obtain

semantic features and
appearance features,

respectively

Application of the RPN
module to the tracking

task and transformation
of the similarity

measurement calculation
into classification and

regression

Valmadre et al. proposed the CFNet algorithm, based on the Siam-FC network, in
which a correlation filter was added to one of the branch structures. The embedded
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correlation filter could be interpreted as a differentiable deep neural network and can
backpropagate the loss to the convolutional layer. Therefore, CFNet combines the Siamese
network using offline training with the correlation filter for online learning, maximizing
their respective advantages so that it can perform end-to-end training. Guo et al. proposed
DSiam using a fast conversion learning model. The model can better adapt to the appear-
ance changes of the object and the background conversion, and the tracking performance
is further improved.

He et al. proposed SA-Siam, based on the Siam-FC network, which adopts two
heterogeneous Siamese networks to extract different features. One branch structure is
used to extract semantic features in image classification and the other is used to extract
appearance features in similarity matching. In addition, a channel attention module is
added to the semantic branch structure. The tracking performance of the network is
effectively improved.

Li et al. added a region proposal network (RPN) on the basis of the Siam-FC network
and then proposed SiamRPN. The first half of the network is a Siamese network structure
that is used to extract the totality of the semantic features. The second half of the network
is an RPN composed of classification and regression branches. The classification branch
is used to distinguish the tracking object from irrelevant background, and the regression
branch is used to generate the bounding boxes that match the actual object size. SiamRPN
transforms the similarity measurement calculation into classification and regression, which
markedly improves the tracking accuracy and speeds up the search for multi-scale objects.

2.3. Limitations of Existing Algorithms

So far, the existing Siam-FC-related algorithms have made considerable progress
compared with the original network, but some urgent problems remain. The limitations of
the existing algorithms can be summarized as follows:

(1) The adopted feature extraction backbone network has insufficient ability to extract
deep features, cannot identify the exact location of the tracking object in the search
area, and has poor tracking accuracy;

(2) The network model only performs object recognition based on deep features, ignoring
the detailed information of shallow features. When the scale of the tracking object
changes greatly, the object can be lost easily;

(3) The balance of tracking speed and tracking accuracy cannot be guaranteed. There
are too many training parameters and redundant features are prone to occur, and the
tracking efficiency is relatively low.

3. Network Model
3.1. Double-Template Siamese Network Model Based on Multi-Feature Fusion

Traditional Siamese network models usually perform offline training on large-scale
samples first, conduct similarity matching in the search image based on the template in
the first frame, and finally achieve the goal of object tracking. However, in the tracking
process, the appearance and scale of the object change greatly over time. If the network
model cannot be updated online in time, then the tracking errors generated will gradually
accumulate, making the tracking effect worse and worse. If the template is updated at
regular intervals with the latest tracking results, then the desired tracking effect cannot be
achieved because the template itself is not accurate, and the feature representation error of
the object becomes larger over time. Therefore, reasonable adjustments to the structure of
the Siamese network are needed in response to the aforementioned problems.

The Siam-FC network uses the unfilled AlexNet as the basic backbone network. Due
to the shallow depth of the AlexNet network, the feature extraction ability for deep features
of the object is insufficient. When the tracking object moves rapidly, motion blur is easily
produced, and the input video frame is low-resolution and blurry. The network model
cannot extract the deep semantic features of the object, resulting in a significant decline in
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the discriminative ability of the tracker. Consequently, a deeper basic backbone network is
needed to extract deep features.

Aimed at the problems of poor tracking performance and insufficient robustness in
Siam-FC-related algorithms in complicated scenarios, this study makes a considerable
improvement on the basis of the existing network and establishes a double-template
Siamese network model based on multi-feature fusion for object tracking. Figure 2 shows
the building blocks of the double-template Siamese network model based on multi-feature
fusion. Figure 3 presents the basic structure of the double-template Siamese network model
based on multi-feature fusion.
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Figure 3. The basic structure of the double-template Siamese network model based on multi-feature
fusion.

As shown in Figure 3, the proposed network model adopts a three-branch Siamese
network structure. In addition to the template branch based on the first frame and search
branch, a template branch based on the previous frame is added. The advantage of this
structure is that it overcomes the disadvantage of utilizing only the first frame template or
the latest template, and it can still track the latest object in real time without introducing
complex structures. The feature extraction network is redesigned and the improved
MobileNet V2 is used as the basic backbone network. MobileNet V2 is a lightweight CNN
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released by Google [43]. Its original model is composed of a conventional convolutional
layer, seven BottleNecks, and a pooling layer. Compared with AlexNet, MobileNet V2 has
a deeper network, smaller volume, and higher accuracy and involves less computation. To
realize multi-feature fusion and reduce irrelevant calculations, MobileNet V2 is optimized
properly and two convolutional layers of the seventh BottleNeck and pooling layer are
removed. Furthermore, to fully utilize the deep and shallow features, multiple attention
mechanisms are introduced after BottleNecks 3, 5, and 7 to achieve a significant expression
of the object features. The attention-adjusted feature maps are input into the region proposal
network branches, and a weighted summation on the classification and regression results
of the two template branches is performed to achieve the accurate object tracking. The
double-template Siamese network model based on multi-feature fusion improves and
optimizes the traditional template structure of the Siamese network, which is conducive to
achieving a balance of feature richness and parameter scale.

In MobileNet V2, each BottleNeck generally contains one or several inverted residual
structures, and the unit of the inverted residual structure is shown in Figure 4. Each inverted
residual structure usually consists of 1 × 1 point-to-point convolutional layers, 3 × 3
deep separable convolutional layers, and 1 × 1 point-to-point linear convolutional layers.
Compared with the traditional residual structure, the dimensions of the inverted residual
structure are first expanded and then compressed to increase the number of channels and
obtain more feature information. Different from the traditional convolutional layer, the
combined use of point-to-point convolutional layers and deep separable convolutional
layers greatly enriches the training features, avoids the destruction of the original features,
and helps to reduce the number of parameter calculations and improve the efficiency of
convolution operations. In addition, batch normalization processing is added after each
convolutional layer, and the ReLU6 activation function is added after the first point-to-
point convolutional layer and deep separable convolutional layer. The expression of the
ReLU6 activation function is as follows:

ReLU6(x) =


0, if x < 0
x, if 0 ≤ x ≤ 6
6, if x > 6

. (2)
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As the name suggests, the role of the ReLU6 activation function is to limit the max-
imum output to 6. This condition aims to avoid unnecessary numerical loss resulting
from the accuracy limitation of the mobile device so that it can still have good numerical
resolution at low accuracy. Through repeated tests, the best experimental results can be
obtained by setting the maximum output to 6. Furthermore, to avoid the information loss
of elements with values less than 0 after feature extraction, the ReLU6 activation function
is no longer added after the last point-to-point convolutional layer.

3.2. Attention Mechanism

In the Siam-FC network, the image features used are the deep features of the last layer
of the feature extraction network, while the shallow features are ignored. The properties of
deep and shallow features are completely different. Deep features contain rich semantic
feature information but the resolution is insufficient; shallow features contain enough
detailed feature information but the semantic features are deficient. When the appearance
and scale of the object change greatly in the cluttered background, tracking loss can easily
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occur; the introduction of attention mechanism is an effective measure to solve this problem.
In other words, attention mechanism is a kind of signal processing mechanism. First, a
quick scan of the global information is performed to obtain the salient objects or focus
areas and then the attention weight of the global information is reasonably redistributed
in order to focus on the key details and reduce the interference of irrelevant background
information. The attention mechanism in this study is mainly realized through the size
conversion, channel attention, and spatial attention modules.

3.2.1. Size Conversion Module

As the output features of BottleNecks 3, 5, and 7 are different in terms of size and
channel number, a size conversion module is required to unify their sizes and channel
numbers. For different sizes, this study adopts up-sampling operation to make the sizes
consistent; for different numbers of channels, this study uses 1 × 1 convolution kernels to
convert them to the same number of channels.

3.2.2. Channel Attention Module

The channel attention module mainly improves the weight of feature channels related
to the tracking object and reduces the weight of feature channels unrelated to the tracking
object in order to achieve the differential attention to the features of each channel. This
approach is beneficial for the elimination of interference noise and redundant features and
can improve the expression accuracy of key features. Figure 5 shows the structure of the
channel attention module.
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The structure of the channel attention module utilizes the SE-block in the SENet algo-
rithm for image classification [44]. In this structure, we first define the channel aggregate
of the input feature map:

A = [a1, a2, a3, . . . , an], (3)

where ak ∈ RH×W , k = 1, 2, 3, . . . , n.
After global pooling, the feature vector obtained is

b = [b1, b2, b3, . . . , bn], (4)

where bk ∈ RH×W , k = 1, 2, 3, . . . , n.
After the feature vector b passes through the first fully connected layer (FC), a ReLU

activation function is added to obtain the nonlinear result. Then, the sigmoid function is
added after passing through the second FC, and the resulting feature vector is

α = [α1, α2, α3, . . . , αn], (5)
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where αk ∈ RH×W , k = 1, 2, 3, . . . , n.
The feature vector α is superimposed on the original feature map A, and the feature

channel is rescaled. At this time, the channel aggregate of the channel attention feature
map is

A = α·A = [a1, a2, a3, . . . , an], (6)

where ak ∈ RH×W , k = 1, 2, 3, . . . , n.

3.2.3. Spatial Attention Module

The spatial attention module primarily assigns different weights to various spatial
positions on the feature map in order to realize the discrepant attention to various regions
of the image, which is helpful in further strengthening the relevance of the features in the
spatial position. Figure 6 presents the structure of the spatial attention module.
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The structure of the spatial attention module utilizes a non-local model for image
recognition [45]. In this structure, the convolution kernels with the size of 1 × 1 are first
used to convolve the input feature map, and three convolution results can be obtained.
Then, three different conversion functions are used to convert the convolution results
separately. The conversion functions f (x), g(x), and h(x) are as follows:

f (x) = W1 × x
g(x) = W2 × x
h(x) = W3 × x

, (7)

where W1 is the weight of function f (x), W2 is the weight of function g(x), and W3 is the
weight of function h(x).

The output result of function f (x) is transposed, and then matrix multiplication is
performed with the output result of function g(x). After the calculation of the Softmax
function, the spatial attention map can be obtained, and the calculation formula is

Yb,a =
e f (xa)

T×g(xb)

∑W H
k=1 e f (xa)

T×g(xb)
, (8)
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where a represents the a-th position in the input image; b represents the b-th position in
the input image; f (·) is the output result of function f (x); and g(·) is the output result of
function g(x).

The spatial attention map and output result of function h(x) perform the matrix
multiplication, and then the result is added to the original feature map x. The feature map
adjusted by the spatial attention module can thus be obtained. The relevant calculation
formula is

Ob = xb + β× (∑W H
a=1 Yb,a × h(xa)), (9)

where β is the weight parameter and h(·) is the output result of function h(x).

3.3. Template Online Update

As the features and states of the object in the two adjacent frames change minimally
during the tracking process, the candidate object that is more similar to the object in the
previous frame should be selected as the tracking object, rather than the selection being
simply based on the highest response map. Therefore, a new scoring vector needs to be
established according to the size, aspect ratio, and position of the object.

Based on the assumptions that the size of the tracking boxes of the previous frame
is (w, h) and the length and width vector group of candidate objects in the new frame is
{wi, hi}n

i=1, i is the identifier of candidate objects and n is the number of candidate objects.
When the size, aspect ratio, and position of the object in two adjacent frames are different,
the reliability of the tracking results is low. According to these three characteristics, the
reliability weight is defined as follows:

Ob = xb + β× (∑W H
a=1 Yb,a × h(xa)), (10)

where s = max(
√

wihi√
wh

,
√

wh√
wihi

), r = max( w/h
wi/hi

, wi/hi
w/h ), and p =

√
(wi−w)2+(hi−h)2

2L2 (L is the

side length of the search area).
In the object tracking process, the degree of occlusion can be divided into full occlusion,

partial occlusion, and no occlusion. When the object is occluded, the influence of position
is ignored, and the reliability weight is redefined as follows:

Wi = exp(−(s× r− 1)). (11)

The tracking result score of each candidate object is

Si = Wiscorei, (12)

where scorei is the initial score of the candidate object.
As the state of the object changes randomly, the tracking results of subsequent frames

cannot be guaranteed to be completely reliable, except for the first frame. Therefore, the
best tracking result score for a candidate object should not be regarded as the final tracking
result of the frame but should be combined with the cumulative result of the previous
frame as follows:

St = (1− λ)St−1 + λS∗t , (13)

where S∗t is the best tracking result score of the candidate object and λ is the update rate,
which is 0 when the object is completely occluded.

In addition, when the object is under incomplete occlusion, to reduce the influence of
interference and noise, the update rate is set to be proportional to the best tracking result
score of the candidate objects as follows:

λ = λinitS∗t , (14)

where λinit is the initial update rate, which is set to 0.4 in this study.
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Before object tracking, the object image of the first frame is cropped, and it is set as the
template of the first and previous frames. During the tracking process, the template of the
first frame remains unchanged, and the template of the previous frame is updated online
according to the degree of occlusion. When the best tracking result score of the candidate
object is higher than the preset threshold, it indicates that the reliability of the tracking
result is relatively high, the tracking object is not obviously occluded, and the features
and state of the object have changed minimally; the template of the previous frame is then
updated immediately. Otherwise, the template of the previous frame remains the same.

4. Experiments
4.1. Experimental Environment

The software environment consists of an Ubuntu 16.04 64-bit operating system, with
the PyTorch deep learning framework, CUDA 9.1, cuDNN 7.1, and Python 3.8.0.

The hardware environment consists of an Intel Core i7-7700 CPU @ 3.60 GHz processor,
with 32 GB memory and an NVIDIA GeForce GTX 1080Ti GPU, 11 GB.

4.2. Object Tracking Experiment Based on Public Datasets
4.2.1. Public Datasets

Different public datasets are respectively used as training and testing sets to obtain
better experimental results. This study uses the YouTube-BoundingBoxes dataset as the
training set, which is a large-scale dataset of video URLs released by Google in 2017 [46].
This dataset is composed of 380,000 15–20 s video clips and contains 23 categories including
5 million single-object bounding boxes with manual annotations. The internal images
of the dataset are obtained through intensive sampling with high image quality, and the
classification accuracy of the bounding boxes can reach 95%, which makes it an extremely
effective training dataset for object detection and object tracking.

This study uses the OTB2015 dataset as the testing set, which was expanded by Wu
from the OTB2013 dataset [47]. This dataset has become one of the benchmarks for evaluat-
ing object tracking algorithms. It consists of 100 fully annotated video sequences, a quarter
of which use grayscale data. All the sequences cover 11 challenging aspects: occlusion
(OCC), illumination variation (IV), scale variation (SV), motion blur (MB), background
clutter (BC), deformation (DEF), fast motion (FM), in-plane rotation (IPR), out-of-plane
rotation (OPR), out-of-view (OV), and low resolution (LR). The OTB2015 dataset fully takes
into account the various challenging aspects that may appear in complex scenes, which is
conducive to the comprehensive testing of the robustness of object tracking algorithms in
practical application scenarios. Representative images of some video sequences from the
OTB2015 dataset are shown in Figure 7.
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4.2.2. Training Settings and Evaluation Indicators

The end-to-end collaborative training is conducted based on the YouTube-Bounding
Boxes dataset. During training, the sizes of the template images of the first and previous
frames are each set to 127 × 127, whilst that of search image is set to 255 × 255, and the
size of the output response map is set to 17 × 17. When the tracking object is not obviously
occluded, the anchor step of the RPN is always set to 8, and the aspect ratio includes 1/3,
1/2, 1, 2, and 3.

The stochastic gradient descent method is used for network optimization, the momen-
tum coefficient is set to 0.9, and the weight attenuation value is set to 0.0001. The training
process is divided into 50 rounds, and the learning rate decreases logarithmically from 0.03
to 0.0005 with the number of training rounds.

The object tracking algorithms were usually quantified based on the evaluation in-
dicators to accurately evaluate their performance. The evaluation indicators used in this
study mainly included the overlap rate (OR) and center location error (CLE).

The OR is the final overlap ratio of the predicted and real boxes; that is, the ratio of
the intersection area of the predicted and real boxes to the union area of the two boxes. The
maximum value is 1 and the minimum value is 0. This value is used to reflect the closeness
between the tracking result and the real object, also known as the success rate, which can
be expressed by the following formula:

OR =
Area(RT ∩ RG)

Area(RT ∪ RG)
, (15)

where RT represents the region of the predicted box, RG represents the region of the real
box, and Area(·) represents the number of pixels in the area.

The CLE refers to the center position error between the final predicted box and the
real box; that is, the Euclidean distance between the center coordinates of the predicted
and real boxes. This indicator is used to reflect the tracking accuracy of the algorithms and
can be expressed by the following formula:

CLE =

√
(xT − xG)

2 + (yT − yG)
2, (16)

where (xT , yT) is the center coordinate of the predicted box and (xG, yG) is the center
coordinate of the real box.

4.2.3. Analysis and Discussion of Testing Results

To fully test the tracking effect of the proposed object tracking algorithm in complex
scenes, six typical video sequences from the OTB2015 dataset are selected as testing se-
quences. The selected video sequences cover all challenging aspects in order to better
simulate the possible interference factors that may appear in actual road scenes. The testing
sequences and their challenging aspects are listed in Table 2. Furthermore, we select six
state-of-the-art object tracking algorithms for experiments: CFNet, SA-Siam and SiamRPN,
based on the Siamese network framework; and SRDCF [48], MCCT [49], and SACF [50],
with the correlation filtering model. The above algorithms are consistent with the system
operating environment of the proposed algorithm, and related tests are performed based
on the same tracking dataset to comprehensively evaluate the tracking performance of the
proposed network model.

1. Qualitative analysis and discussion

We observe the tracking results of the testing sequences in a variety of complex scenes,
and analyze and discuss the performance of the algorithms in image description. Figure 8
shows the tracking results of different object tracking algorithms for the testing sequences.
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Table 2. Testing sequences and their challenging aspects.

Video Sequence Challenging Aspects

CarDark IV, BC
Human4 IV, SV, OCC, DEF
BlurCar1 MB, FM

MotorRolling IV, SV, MB, FM, IPR, BC, LR
Suv OCC, IPR, OV

Biker SV, OCC, MB, FM, OPR, OV, LR

The above figure shows the tracking performances of the seven object tracking algo-
rithms, including the proposed algorithm, for different testing sequences, and the tracking
results are represented by bounding boxes of different colors.

In the CarDark video sequence, the main challenging aspects are IV and BC. In the
initial frames, all tracking algorithms can closely follow the tracking object. However,
at the 289th frame, due to the dark light and the presence of an interfering vehicle with
similar characteristics to the tracking vehicle in the background, CFNet exhibits tracking
drift. At the 309th frame, SRDCF also shows tracking drift due to a similar interference
vehicle. At the 393rd frame, all the tracking algorithms except for CFNet and SRDCF, which
completely lost the object, perform well without losing the object.

In the Human4 video sequence, the main challenging aspects are DEF, OCC, SV, and IV.
The scale of the tracking person in this video sequence is small, the features contained in the
object are limited, and interference occurs from unrelated surrounding objects. However,
the tracking is easy in general because of the simple background. At the 195th frame, only
CFNet has a positioning error and the tracking box deviates from the object person. At
the 255th frame, CFNet repositions accurately and moves with the tracking person, as the
other tracking algorithms.

In the BlurCar1 video sequence, the main challenging aspects are MB and FM. In the
initial frames without motion blur, all algorithms can track the object vehicle accurately.
However, at the 256th frame, the video image begins to become blurred due to camera
shaking. At the 257th frame, all the algorithms except for the proposed algorithm have
different degrees of tracking drift. As the video image gradually recovers its clarity,
all algorithms can track the object vehicle stably at the 516th frame, indicating that the
algorithms have memory functions and can save the key features of the object vehicle. With
the rapid movement of the vehicle, the background of the video image is further blurred.
At the 768th frame, CFNet, SRDCF, and MCCT completely lose the tracking object, thereby
resulting in tracking failure.

In the MotorRolling video sequence, the main challenging aspects are IPR, LR, BC, SV,
IV, MB, and FM. At the 68th frame, the video image has low resolution and motion blur
is produced due to the fast motion of the motorcycle. Except for the proposed algorithm
and SiamRPN, all other algorithms show slight tracking drift. At the 76th frame, the
video image is still blurred and the motorcycle rotates in the air under a complex and dim
background. The tracking boxes of all the algorithms except for the proposed algorithm
deviate from the tracking object.

In the Suv video sequence, the main challenging aspects are OCC, IPR, and OV. In
the initial frame, all algorithms perform well in tracking the object vehicle. Starting from
the 509th frame, the object vehicle begins to be partially obscured. At the 536th frame,
the object vehicle is completely obscured by roadside trees. All the algorithms except
for the proposed algorithm, SiamRPN, and SA-Siam show obvious tracking drift. At the
576th frame, the object vehicle is no longer occluded by the surrounding environment, but
some tracking algorithms are not accurate enough for object positioning, indicating that
long-term occlusion has a certain effect on the tracking performance of the algorithms.
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In the Biker video sequence, the main challenging aspects are OV, SV, OPR, MB, FM,
LR, and OCC. At the 21st frame, the biker rides forward, and all algorithms can achieve
accurate tracking of his face. At the 73rd frame, due to the out-of-plane rotation of the
bicycle, the biker’s face is sideways and beyond the edge of the image, and only the
proposed algorithm can track it stably. At the 86th frame, the biker rides backward. Owing
to the limited object features extracted, all the algorithms except for the proposed algorithm
and SiamRPN have a small range of tracking drift.

From the qualitative analysis of the test results, it can be seen that other object tracking
algorithms have limitations, and most of them can only be applied to a single simple
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scenario. When the environment changes dramatically or the appearance of the object
changes significantly, it is easy for tracking drift to occur or even for the object to be lost.
The proposed algorithm can still achieve effective tracking of different objects in complex
scenes, and the bounding boxes are accurate and of the appropriate size. It shows good
robustness with regard to the changes in appearance of the object and various degrees of
occlusion, as well as excellent environmental adaptability with regard to the illumination
variation and differing background.

2. Quantitative analysis and discussion

The tracking results of the different object tracking algorithms in the testing sequences
are quantified, and the performances of the algorithms are analyzed and discussed in the
form of numerical comparison. The average OR and average CLE of the various object
tracking algorithms in the testing sequences are shown in Tables 3 and 4, respectively.

Table 3. The average OR (%) of the various object tracking algorithms in the testing sequences.

Video Sequence SRDCF MCCT SACF CFNet SA-Siam SiamRPN Ours

CarDark 58.9 68.5 69.2 64.3 74.1 78.4 82.5
Human4 79.5 80.6 87.1 68.4 82.5 84.6 85.8
BlurCar1 58.2 59.0 65.4 55.8 72.3 76.5 80.6

MotorRolling 57.9 58.8 62.7 54.7 72.5 77.4 80.1
Suv 58.6 57.7 63.5 52.3 76.1 77.8 79.4

Biker 80.1 83.4 85.2 75.7 82.8 85.6 86.5
Average 65.5 68.0 72.2 61.9 76.7 80.1 82.5

Table 4. The average CLE (pixels) of the various object tracking algorithms in the testing sequences.

Video Sequence SRDCF MCCT SACF CFNet SA-Siam SiamRPN Ours

CarDark 16.3 14.4 13.6 21.1 12.5 11.3 9.1
Human4 6.4 6.2 5.5 10.6 6.0 5.9 5.7
BlurCar1 21.7 19.5 16.6 23.8 14.5 12.8 10.4

MotorRolling 16.6 16.3 15.9 24.2 14.8 11.6 10.5
Suv 16.9 18.2 15.1 21.4 12.8 12.2 11.2

Biker 6.2 5.0 4.5 10.1 5.3 4.2 3.8
Average 14.0 13.3 11.9 18.5 11.0 9.7 8.5

From the quantitative analysis of testing results, it can be seen that, compared with
other object tracking algorithms, the proposed algorithm shows outstanding performance
in all testing sequences. The mean value of the average OR is the highest, reaching 82.5%,
and the mean value of the average CLE is the lowest, only 8.5 pixels. The proposed
algorithm obtains the best performance parameters in all the video sequences except for the
Human4 video sequence. Among the correlation filtering algorithms, SACF is the best of
its kind, but there is still a big gap compared with the proposed algorithm. Such algorithms
can be better applied for object tracking in simple scenes, and the shortcomings of having
insufficient robustness are easily exposed in complex backgrounds. Although the linear
interpolation update in the correlation filtering model can lead to the tracker gradually
adapting to the current features of the object without losing the initial features, gradual
accumulation occurs due to tracking errors in the long-term tracking process. When the
tracking object is occluded for a long time, this kind of algorithm encounters difficulty
in accurately locating the latest position of the object. Compared with the correlation
filtering algorithms, the other algorithms based on the Siamese network framework exhibit
better tracking performances, except for CFNet. Among them, the proposed algorithm
performs better than SiamRPN, largely due to the effective fusion of deep and shallow
features and the online updating mechanism of dynamic templates. The robustness of
the network model is significantly enhanced by dynamically adjusting parameters and
updating templates. Although SA-Siam also deploys a channel attention module, due to
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the lack of a tracking result detection mechanism, some useless background information is
learned by mistake, making it prone to exhibiting tracking drift with cluttered backgrounds.
In other words, the proposed algorithm can approach the real object to the greatest extent in
a variety of complex scenes, with high tracking accuracy and powerful anti-jamming ability
for different interference factors, indicating that the double-template Siamese network
model based on multi-feature fusion can greatly enhance the stability of the algorithm
while effectively improving its tracking performance.

For autonomous vehicles, one crucial feature is that the tracking speed of the algorithm
must meet the real-time requirements. Table 5 shows the tracking speeds of the different
object tracking algorithms in the testing sequences.

Table 5. The tracking speeds of the different object tracking algorithms in the testing sequences.

Algorithm SRDCF MCCT SACF CFNet SA-Siam SiamRPN Ours

FPS 24 40 42 67 52 58 56
Real time N Y Y Y Y Y Y

In this article, the algorithm with tracking speeds above 30 FPS is considered to meet
the requirements for real-time tracking. It can be seen intuitively from the above table
that, among the correlation filtering algorithms, SACF and MCCT have higher tracking
speeds, while SRDCF does not meet the requirements for real-time tracking. The algorithms
based on the Siamese network framework all meet the requirements for real-time tracking.
Among them, CFNet has the highest tracking speed, reaching 67 FPS, and the proposed
algorithm ranks third, reaching 56 FPS, slightly behind CFNet and SiamRPN. The results
show that, although the attention mechanism and template online update mechanism are
introduced into the network model, it does not have a great impact on the tracking speed,
but it further improves the tracking accuracy while ensuring good real-time performance.

4.3. Object Tracking Experiment Based on Actual Driving Videos

To fully test the object tracking performance of the proposed algorithm, in addition to
using public datasets for experiments, in this study we also conduct related experiments
based on actual driving videos. The actual driving videos used were recorded in urban
and rural public roads to better simulate the actual driving environment. The videos are
divided into five sequences according to the different tracking objects (car, pedestrian, bus,
bicycle, and motorbike) in order to cover more of the objects encountered in the actual
driving process. Each video sequence contains a different number of frames. Among the
video sequences, that of the car is the largest, with 2849 frames, and the video sequence
of the motorbike is the smallest, with 1564 frames. The average number of frames is 2232.
The LabelImg tool is used to manually label the tracking objects in the actual driving video
sequences, ignoring the label box errors caused by the naked eye, and the default label
values are the true values. Figure 9 presents representative images of the tracking results
of the proposed algorithm for different actual driving video sequences. Table 6 shows the
tracking results for various types of objects in the actual driving video sequences.

The table shows that the testing results are closely related to the types of tracking
objects, and the various tracking objects correspond to different testing results. The best
testing result is obtained for the pedestrian video sequence: the average OR is 88.1%, the
average CLE is 4.8 pixels, and the tracking speed is 62 FPS. The worst testing result was
obtained for the bus video sequence, for which the average OR is 80.7%, the average CLE
is 10.2 pixels, and the tracking speed is 53 FPS. To sum up, the average OR of the proposed
algorithm for the actual driving video sequences is 84.7%, the average CLE is 6.9 pixels,
and the tracking speed is 58 FPS, thereby meeting the real-time tracking requirements.
The testing results show that the proposed algorithm demonstrates admirable tracking
performance for different objects, and the network model has good generalization ability
and can realize accurate and real-time tracking of various objects in the actual driving
environment.
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In other words, whether using public datasets or actual driving videos, the double-
template Siamese network model based on multi-feature fusion shows good accuracy
and real-time performance in experiments, which can be effectively applied to real-time
object tracking of autonomous vehicles, and is conducive to the further development and
improvement of computer vision technology for intelligent vehicle driving assistance.

5. Conclusions

This study proposed a robust object tracking algorithm for autonomous vehicles in
complex scenes. We improved and optimized the traditional template structure of the
Siamese network and constructed a double-template Siamese network model based on
multi-feature fusion. In addition to the first frame-template branch and search branch,
the previous frame-template branch was also added. The improved lightweight network
MobileNet V2 was used as the backbone network to improve the ability to extract deep
and shallow features of objects, and the attention mechanism and template online update
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mechanism were introduced. Finally, related experiments were carried out based on public
datasets and actual driving videos. The testing results showed that the proposed algorithm
had high tracking accuracy and speed and good tracking performance for different objects
in a variety of complex scenes.

Compared with existing object tracking algorithms, the proposed algorithm exhibits
stronger robustness and better anti-interference abilities, and it can still accurately track
objects in real time without introducing complex structures. This algorithm can be ef-
fectively applied in intelligent vehicle driving assistance, and it will help to promote the
further development and improvement of computer vision technology in the field of envi-
ronmental perception. By efficiently identifying and tracking pedestrians and cars in the
surrounding environment, it could have the benefit of greatly alleviating traffic congestion
and effectively guaranteeing road traffic safety. Considering the variety of objects in actual
road scenes, we plan to conduct in-depth research on a multi-object tracking algorithm and
a trajectory prediction algorithm in the future, and carry out hardware implementation
and practical application based on FPGA, so as to better meet the real needs of society.
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