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Abstract: To apply powerful deep-learning-based algorithms for object detection and classification in
infrared videos, it is necessary to have more training data in order to build high-performance models.
However, in many surveillance applications, one can have a lot more optical videos than infrared
videos. This lack of IR video datasets can be mitigated if optical-to-infrared video conversion is
possible. In this paper, we present a new approach for converting optical videos to infrared videos
using deep learning. The basic idea is to focus on target areas using attention generative adversarial
network (attention GAN), which will preserve the fidelity of target areas. The approach does not
require paired images. The performance of the proposed attention GAN has been demonstrated
using objective and subjective evaluations. Most importantly, the impact of attention GAN has been
demonstrated in improved target detection and classification performance using real-infrared videos.

Keywords: deep learning; mid-wave infrared (MWIR) videos; target detection and classification;
attention GAN; image conversion; video super-resolution; YOLO; ResNet

1. Introduction

There are two groups of target detection algorithms for infrared videos. One group
contains conventional algorithms that utilize supervised machine-learning algorithms. For
instance, there are some conventional target tracking methods [1,2]. The second group
of target detection and classification schemes uses deep-learning algorithms such as You
Only Look Once (YOLO) for larger objects in short-range optical and infrared videos [3–15].
Training videos are required in these algorithms. Among those deep-learning algorithms, it
is worth mentioning that some of them [3,4] are using compressive measurements directly
for target detection and classification. This means that no reconstruction of compressive
measurements is needed, and hence, fast target detection and classification can be achieved.
The algorithms in [5–14] require target locations to be known. All of the aforementioned
applications require a lot of videos for training.

In practical applications, we may have a lot of optical videos but only a handful
of infrared videos. Consequently, the performance of machine-learning algorithms for
surveillance and reconnaissance operations is seriously affected. Since optical videos are
abundant in the public domain, the objective of this research is to determine if one can
convert optical videos to infrared videos so that the performance of the machine-learning
algorithms using IR videos for surveillance and reconnaissance can be improved. In
particular, we focus on applying recent developments in a generative adversarial network
(GAN) for converting optical videos to mid-wave infrared (MWIR) videos. We developed a
customized attention GAN, which performed better than state-of-the-art methods [16–18].
Moreover, we compared the three GAN-based models using actual Defense Systems
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Information Analysis Center (DSIAC) videos [19]. We observed that when combining
the converted videos with the actual MWIR videos for training, we were able to improve
the intersection of the union (IoU) score of the target detection from 40.86% (without
augmentation) to 61.2% (with augmentation) for the 2000 m-range videos. In contrast, the
classification performance using ResNet was not as good as expected. We believe the root
cause is due to the small target size in those videos. To mitigate this target size issue, we
investigated the use of super-resolution videos to enhance the resolution of the target areas.
We then observed quite significant improvements in ResNet classification performance.

Our contributions are as follows. First, we propose a new attention-based GAN to
synthesize infrared videos from optical videos. Our approach does not require paired
images. We were able to improve on cycle GAN [16], dual GAN [17], and CUTGAN [18].
Second, using many DSIAC videos, we demonstrated that target detection performance us-
ing YOLO can be significantly improved with data augmentation. Third, we demonstrated
that the combination of data augmentation and video super-resolution can achieve good
target classification performance using ResNet.

Figure 1 shows the overall framework of our work, and our paper is organized as
follows. Section 2 summarizes the related work. Section 3 describes our proposed model
for optical-to-infrared video conversion. Section 4 summarizes the experimental results
of converting optical images to infrared images. Both objective and subjective results are
presented. Section 5 includes results where we incorporated the synthetic-infrared videos
into the training of target detection and classification deep-learning models. In Section 6, we
summarize the target classification results using a combination of video super-resolution
and attention GAN. Section 7 includes some discussions on a future research direction.
Finally, some remarks are included in Section 8.

Remote Sens. 2021, 13, x FOR PEER REVIEW 2 of 22 
 

 

a customized attention GAN, which performed better than state-of-the-art methods [16–
18]. Moreover, we compared the three GAN-based models using actual Defense Systems 
Information Analysis Center (DSIAC) videos [19]. We observed that when combining the 
converted videos with the actual MWIR videos for training, we were able to improve the 
intersection of the union (IoU) score of the target detection from 40.86% (without augmen-
tation) to 61.2% (with augmentation) for the 2000 m-range videos. In contrast, the classifi-
cation performance using ResNet was not as good as expected. We believe the root cause 
is due to the small target size in those videos. To mitigate this target size issue, we inves-
tigated the use of super-resolution videos to enhance the resolution of the target areas. We 
then observed quite significant improvements in ResNet classification performance. 

Our contributions are as follows. First, we propose a new attention-based GAN to 
synthesize infrared videos from optical videos. Our approach does not require paired im-
ages. We were able to improve on cycle GAN [16], dual GAN [17], and CUTGAN [18]. 
Second, using many DSIAC videos, we demonstrated that target detection performance 
using YOLO can be significantly improved with data augmentation. Third, we demon-
strated that the combination of data augmentation and video super-resolution can achieve 
good target classification performance using ResNet. 

Figure 1 shows the overall framework of our work, and our paper is organized as 
follows. Section 2 summarizes the related work. Section 3 describes our proposed model 
for optical-to-infrared video conversion. Section 4 summarizes the experimental results of 
converting optical images to infrared images. Both objective and subjective results are 
presented. Section 5 includes results where we incorporated the synthetic-infrared videos 
into the training of target detection and classification deep-learning models. In Section 6, 
we summarize the target classification results using a combination of video super-resolu-
tion and attention GAN. Section 7 includes some discussions on a future research direc-
tion. Finally, some remarks are included in Section 8. 

 
Figure 1. Framework highlighting the main parts of our paper. (a) Framework for converting optical videos to infrared 
videos using our proposed attention GAN; (b) baseline (left) and proposed framework for target detection and classifica-
tion (training data were augmented using converted infrared videos in our system); (c) baseline classification and pro-
posed classification system (training data augmented using converted IR videos) with the incorporation of video super-
resolution (VSR). 

Figure 1. Framework highlighting the main parts of our paper. (a) Framework for converting optical videos to infrared
videos using our proposed attention GAN; (b) baseline (left) and proposed framework for target detection and classi-
fication (training data were augmented using converted infrared videos in our system); (c) baseline classification and
proposed classification system (training data augmented using converted IR videos) with the incorporation of video
super-resolution (VSR).
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2. Related Work
2.1. Image-to-Image Translation Using GANs

Researchers have used GANs to convert image from one domain to another [16,20–23].
For example, Isola et al. proposed Pix2Pix GAN for image-to-image translation between
two domains, but it needs paired datasets for training [20]. After that, several GAN-based
models were proposed to mitigate this limitation including disco GAN [23], dual GAN [17],
and cycle GAN [16]. Later, the attention mechanism was introduced to GAN for image
conversion. In [24], authors used Resnet-18 as a teacher network to train the discriminator
of the GAN where the teacher taught the discriminator where to focus on the generated
image. In [25], researchers proposed a model with attention GAN for image-to-image
translation. SAGAN was introduced in [26], which used the self-attention mechanism for
generating fake images.

2.2. Image Conversion between Visible and IR Domains

In the past few years, few researchers have done image translation between the visible
and IR domain, including near-infrared (NIR) to visible [27–30], MWIR to grey-scale [31],
LWIR to RGB [32,33], and visible to IR [34]. Some general GAN network such as Pix2Pix
GAN [19,33,35] was also customized for RGB to IR image generation and for generating
infrared textures from visible images [36]. Moreover, in [37], authors used conditional
GAN to generate NIR spectral band from an RGB image where they used paired dataset for
this conversion. In addition, cycle GAN [16,38–40] was also used for visible-to-IR image
translation.

2.3. Video Super-Resolution

Video super-resolution (VSR) aims to enhance video resolution and improve sub-
sequent processing performance. VSR is inherently more challenging than single image
super-resolution (SSIR) due to the consideration of harnessing relevant information in tem-
poral domain. Frame concatenation is the vanilla approach to retain temporal information
for VSR [41,42]. Kappeler et al. [43] proposed a CNN-based VSR method where they used
the handcrafted optical flow method [44] for super-resolution. Later, Liu et al. [45] intro-
duced a temporal aggregation method to address the dynamic motion problem. However,
this method still requires concatenation of input frames, which negatively affects global
optimization. Recurrent neural networks (RNNs) have already become promising for
video captioning [46] and video summarization [47]. Huang et al. [48] utilized bidirectional
recurrent CNN for VSR, and further improvement was done by adding a motion compen-
sation module and a convLSTM layer [49]. Sajjadi et al. [50] developed an improved VSR
model by using many-to-many RNN, which used the previous high-resolution estimates
to improve the estimation for the next frame.

3. Converting Optical Videos to Infrared Videos
3.1. Architecture of the Proposed Model

Our proposed model is based on the architecture of cycle GAN, and Figure 2 shows
the architecture of our model for visible-to-IR image conversion. There are two generators
(G and F) and two discriminators (DX and DY) in the model. Figure 3 shows the architecture
of the generator, which used nine residual blocks along with convolution layers. Figure 4
shows the structure of the discriminator, which is a patch-based discriminator introduced
in [51], and we modified it by following [25]. In [24], authors used ResNet-18 [52] as a
teacher network to generate attention maps to teach the discriminators where to focus.
Inspired by [24], we use ResNet-18 as a teacher network in our model to train the generators
where to focus.

There are two types of attention GAN models in the literature for image-to-image
translation: self-attention-based GAN model [25,26] and teacher-attention-based GAN
model [24]. Self-attention mechanism uses the interactions among inputs to identify where
the model should focus to produce output. Teacher-attention methods utilize a well-trained
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model to generate an attention map to focus. The authors of [24] used the ResNet-18 model
trained with the ImageNet dataset to generate an attention map to facilitate medial image
augmentation. In our dataset, the objects of interest (different types of military vehicles) are
typically very small in images, since the images were taken from a distance. An attention
map generated by a self-attention mechanism will be distracted to other unrelated parts
in the images. We utilized the well-trained ResNet-18 model and finetuned it with our
dataset to classify the different types of military vehicles to force ResNet-18 to focus on the
vehicles in the images. Our proposed model then used the finetuned ResNet-18 model as a
teacher to generate an attention map for image-to-image translation.
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3.2. Objective Function

The proposed model has three loss functions: GAN loss, cycle-consistency loss, and
attention loss. In our model, there are two generators, G and F. Given the two domains,
visible and IR, let G to map from visible to IR and F to map from IR to visible. x is an
image from the visible domain and y is an image from the IR domain. G(x) denotes a
generated IR image from visible image, and F(y) represents a generated visible image from
IR image. We have two discriminators DX and DY where DX discriminates x from F(y) and
DY discriminates y from G(x).

A GAN loss is defined as [21]:

LGAN = LGAN(G, DY, x, y) + LGAN(F, DX , y, x) (1)

A cycle-consistency loss is defined over F(G(x)) and G(F(y)) as,

Lcyc =
∣∣∣∣F(G(x))− x

∣∣∣∣1+∣∣∣∣G(F(y))− y
∣∣∣∣

1 (2)

In our model, an attention loss is defined between the attention map (generated by
ResNet-18) of the input image and the output image of the generator as,

Latten = α||AM(x)−AM(G(x)||1 + β||AM(y)−AM(F(y))||1 (3)

The total loss of our model with hyperparameters α, β, and γ is defined:

Total Loss = LGAN + γLcyc + Latten (4)

4. Performance Evaluation of Attention GAN for Converting Optical Videos to
Infrared Videos
4.1. DSIAC Data

We selected five vehicles in the DSIAC videos for detection and classification. There
are optical and mid-wave infrared (MWIR) videos collected at distances ranging from
1000 m to 5000 m with 500 m increments. The five types of vehicles are shown in Figure 5.
These videos are challenging for several reasons. First, the target sizes are small due to long
distances. This is quite different from some benchmark datasets such as MOT Challenge [53]
where the range is short and the targets are big. Second, the target orientations also change
drastically. Third, the illuminations in different videos are also different. Fourth, the
cameras also move in some videos.
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Figure 5. Five vehicles in DSIAC: (a) BTR70; (b) BRDM2; (c) BMP2; (d) T72; (e) ZSU23-4.

In this research, we focus mostly on MWIR nighttime videos because MWIR is more
effective for surveillance during the night.

Here, we briefly highlight the background for optical and MWIR videos. The optical
and MWIR videos have very different characteristics. Optical imagers have a wavelength
between 0.4 and 0.8 microns, and MWIR imagers have a wavelength range between 3 and
5 microns. Optical cameras require external illuminations whereas MWIR counterparts
do not need external illumination sources because MWIR cameras are sensitive to heat
radiation from objects. Consequently, target shadows, illumination, and hot air turbulence
can affect the target detection performance in optical videos. MWIR imagery is dominated
by the thermal component at night, and hence, it is a much better surveillance tool than
visible imagers at night. Moreover, atmospheric obscurants cause much less scattering in
the MWIR bands than in the optical band. As a result, MWIR cameras are tolerant of heat
turbulence, smoke, dust, and fog.

We have considered DSIAC videos for our research to do optical image to MWIR
nighttime conversion, detection, and classification. DSIAC dataset has five different types
of vehicles including BMP2, BTR70, BRDM2, ZSU23-4, and T72. Optical and MWIR
videos were taken at 1000 m, 1500 m, and 2000 m distances. The video frame rate is
7 frames/second. The frame sizes of optical videos and MWIR videos are 640 × 480
and 640 × 512, respectively. The total number of frames is 1875 per optical video. On
the other hand, each MWIR video has 1800 frames. Each pixel is represented by 8 bits.
Figures 6 and 7 show the frames of the videos in our dataset. Some MWIR videos in
Figure 7 are very dark, and it is difficult to visualize the video contents. Later on, we will
apply contrast enhancement techniques to enhance the video quality.
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4.2. Training

We trained our proposed model with the videos taken from 1500 m distance and
applied the trained model to generate MWIR videos from optical videos taken from 1000 m
and 2000 m distances. The training was performed with unpaired frames of optical and
MWIR videos of BTR70 and ZSU234 at 1500 m. Figure 8 shows some unpaired frames used
for training. In total, we have used 3600 unpaired frames for each domain in the training
dataset. During training, we randomly cropped 256 × 256 patches, but full images were
used during testing. We used a batch size of 1 during training by following [16] and selected
50 as the number of image buffer. The Adam optimizer [54] was used during training. We
used Pytorch framework for implementation, and all experiments were conducted on a
NVIDIA GPU.
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4.3. Evaluation Metrics for Assessing the Conversion Performance
4.3.1. Inception Score (IS)

An inception score (IS) [55] is one of the widely used metrics for evaluating the quality
and diversity of images generated by GANs. IS considers the entropy of the probability
distribution that is generated by the pre-trained inception v3 model [56] on the generated
images. A higher inception score indicates the better quality of the generated images.

4.3.2. Frechet Inception Distance (FID)

Frechet inception distance (FID) [57] was specially developed for evaluating the
performance of a GAN. The FID score indicates the similarity between two collections of
images. Consistency between FID score and human judgement has made the FID score a
good indicator of the generated image’s quality. Statistics of the real and fake images are
considered for obtaining the FID score. When calculating FID, the Wasserstein-2 distance
between the features of real and synthetic images is calculated. The inception model [56]
generates the feature representations of the images for calculating FID. FID performs well
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in terms of robustness and discriminability. A lower FID score denotes more similarity
between the two data distributions.

4.3.3. Kernel Inception Distance (KID)

Similar to FID, Kernel inception distance (KID) [58] also indicates the quality of the
generated images of a GAN relative to the real images. The KID score is the maximum mean
discrepancy (MMD) between the inception representations of the real and fake images. The
inception model is used to obtain those feature representations of the images. KID scores
are consistent with human judgements when evaluating the quality of the synthetic images.
A lower KID score denotes the high quality of the synthetic images generated by GAN.

4.4. Conversion Results
4.4.1. Attention Maps

Figure 9 shows two representative attention maps generated by the teacher network
(ResNet-18) during training of our attention GAN. It can be seen that the corresponding
vehicle areas in the attention maps are brighter than other areas. This means that more
emphasis will be placed in the vehicle areas during the training process. Consequently, the
attention GAN will generate more accurate results near the vehicle areas than cycle GAN.
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4.4.2. Qualitative Comparison

We compared our method with Cycle GAN [16], Dual GAN [17], and CUTGAN [18],
which are state-of-the-art methods for unsupervised image-to-image translation. Both
Cycle GAN and Dual GAN have two generators and two discriminators. On the other
hand, CUTGAN uses one generator and one discriminator. They use unpaired datasets
for training. All models were trained with the same dataset. Figure 10 shows results
for visible-to-MWIR translation by different models. It is observed that results by Cycle
GAN, Dual GAN, and CUTGAN contain visible artifacts, and the fine details of objects are
not preserved. On the other hand, results by our model have much better visual quality,
and the vehicles have been correctly translated to the IR domain. It should be noted that
although the target areas are consistent, there are some artifacts in the background. We
applied two post-processing steps (contrast enhancement and Gaussian filter) to the results,
and Figure 11 shows the processed results.

4.4.3. Quantitative Comparison

Table 1 shows the IS, FID, and KID for different models. We can see that the proposed
model outperformed Cycle GAN, Dual GAN, and CUTGAN in terms of IS. For FID and
KID, the proposed model also won over the competing methods in most of the cases.
Tables 2 and 3 list quantitative metrics after the post-processing steps, and the proposed
methods won all cases in terms of FID and KID.
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Table 1. Performance metrics comparison among different methods. Bold numbers indicate best-performing methods.

Vehicle Distance
Cycle GAN Dual GAN CUTGAN Our Method

IS FID KID IS FID KID IS FID KID IS FID KID

T72
1000 m 1.12 3.16 48.57 1.13 3.39 53.29 1.10 3.52 55.41 1.17 2.98 46.45

2000 m 1.11 3.15 49.40 1.08 3.09 49.09 1.08 3.35 51.37 1.17 3.00 48.98

BRDM2
1000 m 1.11 2.96 46.41 1.05 4.02 70.04 1.06 3.63 57.91 1.14 3.49 58.70

2000 m 1.16 3.16 49.11 1.06 2.71 42.82 1.06 3.33 50.94 1.11 3.26 52.48

BTR70
1000 m 1.19 3.06 46.14 1.19 3.55 57.66 1.11 3.56 55.91 1.12 3.60 59.18

2000 m 1.05 2.99 47.05 1.03 2.62 40.56 1.04 3.42 52.77 1.12 2.69 42.72

BMP2
1000 m 1.12 3.28 49.71 1.14 3.77 61.56 1.15 3.54 55.38 1.23 2.94 45.91

2000 m 1.05 2.85 45.14 1.05 2.32 35.98 1.04 3.41 52.63 1.19 3.01 48.51

ZSU23-4
1000 m 1.15 3.18 48.68 1.12 3.38 53.14 1.08 3.54 55.67 1.27 2.94 46.64

2000 m 1.24 2.84 44.15 1.04 3.24 53.48 1.05 3.37 52.12 1.14 2.98 48.48

Overall Scores 1.13 3.06 47.44 1.09 3.21 51.76 1.08 3.47 54.01 1.17 3.09 49.81
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Table 2. Performance metrics comparison among different methods after post-processing. Bold numbers indicate best-
performing methods.

Vehicle Distance
Cycle GAN Dual GAN CUTGAN Our Method

IS FID KID IS FID KID IS FID KID IS FID KID

T72
1000 m 1.57 4.39 72.85 1.31 3.81 59.80 1.36 3.89 65.63 1.28 2.34 34.42

2000 m 1.45 4.18 68.79 1.23 3.59 55.89 1.26 3.82 61.54 1.43 2.03 29.11

BRDM2
1000 m 1.41 4.26 71.89 1.27 3.24 48.94 1.25 4.18 71.66 1.30 2.22 32.47

2000 m 1.36 5.03 88.62 1.24 3.45 53.63 1.15 3.92 64.41 1.38 2.18 32.00

BTR70
1000 m 1.65 4.27 66.91 1.35 3.65 55.78 1.35 4.23 72.63 1.28 2.23 32.56

2000 m 1.35 5.32 96.93 1.23 3.65 58.30 1.12 3.99 66.44 1.25 1.96 28.72

BMP2
1000 m 1.41 4.32 70.09 1.33 3.74 57.63 1.42 4.27 71.63 1.39 2.34 34.07

2000 m 1.35 4.11 70.69 1.20 3.70 60.23 1.16 4.09 68.52 1.35 2.26 33.46

ZSU23-4
1000 m 1.53 4.41 71.78 1.37 3.74 58.34 1.33 3.83 64.08 1.27 2.26 33.28

2000 m 1.34 4.11 68.56 1.24 3.83 62.37 1.25 3.81 62.25 1.36 2.18 32.48

Overall Scores 1.44 4.44 74.71 1.28 3.64 57.09 1.27 4.00 66.88 1.33 2.20 32.26

Table 3. Performance metrics comparison of our proposed model before and after post-processing. Bold numbers indicate
best-performing methods.

Vehicle Distance
Before Post-Processing After Post-Processing

IS FID KID IS FID KID

T72
1000 m 1.17 2.98 46.45 1.28 2.34 34.42

2000 m 1.17 3.00 48.98 1.43 2.03 29.11

BRDM2
1000 m 1.14 3.49 58.70 1.30 2.22 32.47

2000 m 1.11 3.26 52.48 1.38 2.18 32.00

BTR70
1000 m 1.12 3.60 59.18 1.28 2.23 32.56

2000 m 1.12 2.69 42.72 1.25 1.96 28.72

BMP2
1000 m 1.23 2.94 45.91 1.39 2.34 34.07

2000 m 1.19 3.01 48.51 1.35 2.26 33.46

ZSU23-4
1000 m 1.27 2.94 46.64 1.27 2.26 33.28

2000 m 1.14 2.98 48.48 1.36 2.18 32.48

Overall Scores 1.17 3.09 49.81 1.33 2.20 32.26

5. Impact of Converted Videos on Target Detection and Classification Performance

For a given surveillance mission, we can divide it into two phases. The first phase is
the training of the algorithms. We will first need to build target detection and classification
models. In our approach, we propose to use YOLO for target detection and ResNet for
classification. To train both YOLO and ResNet, we will create a training database by
utilizing both real-infrared and synthetic-infrared videos. The synthetic-infrared videos
are converted using our attention GAN. The second phase is the operational phase. We
will feed the testing IR videos from various ranges into YOLO for target detection. The
target locations will be fed into ResNet for classification. To enhance the classification
performance, we propose to apply a VSR algorithm to increase the resolution of the input
testing videos before feeding them into ResNet. It turns out that VSR does improve the
overall performance of the target classification.
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5.1. YOLO for Target Detection

In some conventional object trackers such as those conventional methods mentioned
in [1], initial bounding boxes are needed to be manually placed on the objects in the first
frame. This is a serious limitation involving human intervention. In contrast, YOLO and
faster R-CNN do not require bounding boxes to be placed on some objects in the first
frame. Once trained, YOLO and faster R-CNN can detect objects in any frames. The
YOLO tracker [59] is fast and demonstrates similar performance to the faster R-CNN [60].
The input image is resized to 448 × 448. There are 24 convolutional layers and two
fully connected layers. The output is 7 × 7 × 30. We have used YOLOv2 because it is
more accurate than YOLO version 1. The training of YOLO is quite simple. Images with
ground-truth target locations are needed. The bounding box for each vehicle was manually
determined using tools in MATLAB. For YOLO, the last layer of the deep-learning model
was retrained. We did not change any of the activation functions. YOLO took approximately
2000 epochs to train.

YOLO also comes with a built-in classification module. However, based on our earlier
evaluations, the classification accuracy using YOLO’s built-in module is not good compared
to ResNet [52].

5.2. ResNet for Target Classification

As mentioned earlier, YOLO’s built-in classifier did not perform well, which is prob-
ably because we have limited training data. Moreover, we think that although YOLO is
good for object detection, its built-in classifier is probably more suitable for inter-class
(humans, vehicles, bikes, etc.) discrimination and not good for intra-class (e.g., BTR70 vs.
BMP2) discrimination. The ResNet-18 model is an 18-layer convolutional neural network
(CNN) that has the advantage of avoiding performance saturation and/or degradation
when training deeper layers, which is a common problem among other CNN architectures.
The ResNet-18 model avoids the performance saturation by implementing an identity
shortcut connection, which skips one or more layers and learns the residual mapping of
the layer rather than the original mapping.

It is necessary to explain the relationship between YOLO and ResNet. YOLO was used
to determine where, in each frame, the vehicles were located. YOLO generated bounding
boxes for those vehicles, and the data were used to crop the vehicles from the image. The
cropped vehicles would be fed into the ResNet-18 for classification, and classification
results were generated. To be more specific, ResNet-18 is used directly after the bounding
box information is obtained from YOLO.

Training of ResNet requires target patches. The targets are cropped from training
videos. Mirror images are then created. We then perform data augmentation using scaling
(larger and smaller), rotation (every 45 degrees), and illumination (brighter and dimmer)
to create more training data. For each cropped target, we are able to create a dataset with
64 more images. For ResNet, the last layer of the deep-learning model was retrained. The
ResNet model was trained until the validation score reached a steady-state value.

5.3. Performance Metrics for Assessing Target Detection and Classification Performance

The six different performance metrics used to quantify the detection performance are:
center location error (CLE) [1], distance precision at 10 pixels (DP@10) [1], estimates in
ground truth (EinGT) [15], intersection over union (IoU) [15], and percentage of frames
with detection (% det.) [15]. These metrics have been widely used by researchers in the
past. We briefly summarize them below:

Center location error (CLE): It is the error between the center of the bounding box and
the ground-truth bounding box. Smaller means better. CLE is calculated by measuring
the distance between the ground-truth center location (Cx,gt, Cy,gt) and the detected center
location (Cx,est, Cy,est). Mathematically, CLE is given by

CLE =

√(
Cx,est − Cx,gt

)2
+
(
Cy,est − Cy,gt

)2 (5)
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Distance precision (DP): It is the percentage of frames where the centroids of detected
bounding boxes are within 10 pixels of the centroid of ground-truth bounding boxes. Close
to 1 or 100% indicates good results.

Estimates in ground truth (EinGT): It is the percentage of the frames where the
centroids of the detected bounding boxes are inside the ground-truth bounding boxes. It
depends on the size of the bounding box and is simply a less strict version of the DP metric.
Close to 1 or 100% indicates good results.

Intersection over union (IoU): It is the ratio of the intersected area over the union of
the estimated and ground-truth bounding boxes.

IoU =
Area o f Intersection

Area o f Union
(6)

Percentage of frames with detection (% det.): This is the percentage of the number of
frames that have detection. It is between 0 and 100%.

We used confusion matrices for evaluating vehicle classification performance using
ResNet. From the confusion matrix, we can also evaluate overall accuracy (OA), average
accuracy (AA), and the kappa coefficient.

5.4. Training and Testing Procedures

In the training, we used 1500 m original nighttime MWIR videos and attention GAN
(aGAN)-converted videos from 1000 m, 1500 m, and 2000 m optical videos. Altogether,
there are 20 videos to train the YOLO and ResNet models. In testing, we used 1000 m,
1500 m, and 2000 m videos.

5.4.1. Baseline Results Using Only 1500 m Infrared Videos for Training

Tables 4 and 5 summarize the baseline YOLO detection and ResNet classification
results, respectively. Here, baseline means that the YOLO and ResNet models were trained
using only the 1500 m infrared videos without any data augmentation using our attention
GAN. The baseline performance metrics will be used as a baseline to compare against the
results of using converted videos with attention GAN. There are three different distances
that have test results: 1000 m, 1500 m, and 2000 m. Please note that 1500 m testing results
are only used as reference, as training data also used 1500 m videos. There is an obvious
deterioration in accuracy as the vehicle distance moves from 1500 m, the distance the model
was trained on.

From Tables 4 and 5, each metric trends worse as it moves further away from the
trained 1500 m distance. This is a trend that is seen across both detection and classification
statistics. The overall degradation in accuracy as distances move from the trained distances
is quite extreme. For example, with detection, the AP value, measuring the amount of
overlap between ground truth and detected bounding box, halves with each increase of
500 m. When looking at overall trends, although there is only one distance closer than
1500, it seems that the model performs better when moving closer than trained rather than
moving further away.
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Table 4. Baseline YOLO detection results using only 1500 m infrared videos for training. The metrics
are named as follows: center location error (CLE), distance precision (DP), estimates in ground truth
(EinGT), intersection over union (IoU), average precision (AP), and detection percentage (% det.).

1000 m CLE DP EinGT IoU % det.

BTR70 4.075 100.00% 100.00% 61.90% 97.78%
BRDM2 3.194 100.00% 100.00% 76.89% 95.72%
BMP2 4.038 100.00% 100.00% 73.90% 88.33%

T72 3.574 100.00% 100.00% 73.87% 96.33%
ZSU23-4 3.607 100.00% 100.00% 74.04% 99.61%

Avg 3.698 100.00% 100.00% 72.12% 95.56%

1500 m CLE DP EinGT IoU % det.

BTR70 1.201 100.00% 100.00% 70.56% 91.17%
BRDM2 1.279 100.00% 100.00% 78.54% 91.06%
BMP2 1.092 100.00% 100.00% 87.70% 91.06%

T72 1.497 100.00% 100.00% 85.21% 91.11%
ZSU23-4 1.233 100.00% 100.00% 77.58% 90.00%

Avg 1.260 100.00% 100.00% 79.92% 90.88%

2000 m CLE DP EinGT IoU % det.

BTR70 1.861 100.00% 100.00% 30.64% 93.44%
BRDM2 3.023 100.00% 100.00% 37.74% 90.50%
BMP2 3.542 100.00% 100.00% 58.01% 41.83%

T72 2.276 100.00% 100.00% 39.80% 98.44%
ZSU23-4 8.953 97.83% 97.83% 38.11% 84.56%

Avg 3.931 99.57% 99.57% 40.86% 81.76%

Table 5. Baseline ResNet classification results using only 1500 m infrared videos for training. Confu-
sion matrices with overall accuracy (OA), average accuracy (AA), and kappa.

1000 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 1839 24 8 17 79
BRDM2 0 2107 2 3 0
BMP2 0 7 1412 275 17

T72 43 2 251 2070 92
ZSU23-4 1 85 40 127 1982

Class Stats OA 89.76% AA 89.74% kappa 0.900

1500 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 1849 0 0 0 2
BRDM2 0 1808 0 0 0
BMP2 0 0 1800 0 0

T72 0 0 0 1829 0
ZSU23-4 0 0 0 0 1882

Class Stats OA 99.98% AA 99.98% kappa 1.00

2000 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 1511 49 167 56 84
BRDM2 0 1834 18 12 37
BMP2 7 30 715 0 2

T72 15 272 159 1739 95
ZSU23-4 0 90 191 0 1472

Class Stats OA 84.99% AA 86.50% kappa 0.85

5.4.2. Results with Attention GAN Augmented Data

The focus here is on performance evaluation of target detection and classification
models using the augmented data converted by attention GAN. The training data include
1500 m infrared videos, converted infrared videos by attention GAN from 1000 m, 1500 m,
and 2000 m optical videos. In the baseline models, we only used the 1500 m MWIR
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videos. In this case, we focused on testing infrared videos at 1000, 1500, and 2000 m
distances because the target size is too small for longer ranges. Table 6 shows the YOLO
detection metrics for each distance, while Table 7 shows the ResNet classification metrics
and confusion matrices of each distance.

Table 6. Detection metrics for the YOLO model trained with augmented data from attention GAN.

1000 m CLE DP EinGT IoU % det.

BTR70 3.208 100.00% 100.00% 69.02% 99.78%
BRDM2 3.140 100.00% 100.00% 75.59% 95.61%
BMP2 3.326 100.00% 100.00% 80.30% 99.89%

T72 3.568 99.84% 99.88% 76.50% 99.61%
ZSU23-4 2.879 100.00% 100.00% 75.79% 100.00%

Avg 3.224 99.97% 99.98% 75.44% 98.98%

1500 m CLE DP EinGT IoU % det.

BTR70 1.342 100.00% 100.00% 79.79% 100.00%
BRDM2 2.361 100.00% 100.00% 73.46% 97.67%
BMP2 1.134 100.00% 100.00% 87.77% 100.00%

T72 2.076 100.00% 100.00% 77.60% 99.94%
ZSU23-4 2.782 99.39% 99.39% 79.47% 100.00%

Avg 1.939 99.88% 99.88% 79.62% 99.52%

2000 m CLE DP EinGT IoU % det.

BTR70 1.192 100.00% 100.00% 52.53% 98.44%
BRDM2 4.781 99.28% 99.28% 49.90% 89.28%
BMP2 2.343 99.83% 99.83% 72.53% 66.00%

T72 2.151 99.88% 99.88% 67.05% 98.28%
ZSU23-4 1.786 100.00% 100.00% 64.00% 87.67%

Avg 2.451 99.80% 99.80% 61.20% 87.93%

Table 7. Confusion matrices and classification metrics for attention-GAN-trained ResNet model.

1000 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 1528 831 2 54 53
BRDM2 220 1708 2 5 0
BMP2 20 306 1413 340 56

T72 93 1235 38 971 252
ZSU23-4 226 975 2 228 321

Class Stats OA 54.26% AA 54.30% kappa 0.4283

1500 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 1258 455 0 79 3
BRDM2 117 2082 1 121 0
BMP2 6 171 1592 3 3

T72 17 347 0 1787 14
ZSU23-4 33 513 12 55 1030

Class Stats OA 79.89% AA 78.94% kappa 0.7487

2000 m BTR70 BRDM2 BMP2 T72 ZSU23-4

BTR70 127 267 0 1192 0
BRDM2 41 546 3 544 0
BMP2 0 8 1 5 179

T72 6 32 0 1279 0
ZSU23-4 29 702 0 826 0

Class Stats OA 33.75% AA 30.76% kappa 0.1719
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Partially, due to an anomaly for the BRDM2 CLE metric, there is a decrease in accuracy
for 2000 m. However, most other metrics are at least slightly improved. The largest overall
improvement comes from the 2000 m distance, and the largest metric improvement is
the detection percentage. Classification results do not show many differences. Possible
reason is that the converted video contains shape information about vehicles that helped
the detection performances. However, the conversion was imperfect and did not preserve
detailed textures of vehicles. Therefore, the performances of vehicle classification remain
similar.

Here, we would like to compare the baseline results in Section 5.4.1 and the attention
GAN results in this section. We focus only on the 2000 m case.

We first compare the YOLO detection results. From Tables 4 and 6, we can clearly
see that data augmentation using attention GAN clearly improved the baseline YOLO
performance in almost every metric.

In contrast, the ResNet with attention GAN results in Table 7 do not improve over
that of the baseline ResNet results in Table 5. This is mainly because the attention-GAN-
converted videos lack some detailed textures for the targets, and those additional synthetic
videos in the training data actually interfered with the original videos. As a result, the
trained ResNet model with attention GAN augmented data did not perform as well as the
baseline ResNet.

6. Enhancement of Target Classification Using Super-Resolution Videos

From the end of Section 5, we noticed that converted videos using attention GAN
did not improve the ResNet classification performance in long-range videos. We think
the reason is due to the small target size in the long-range videos. Since ResNet needs to
normalize input images to certain standard sizes of 448× 448, the target area becomes even
smaller because the DSIAC videos are 640 × 480. The study in this section focuses on the
use of video super-resolution (VSR) algorithms to enlarge the target area. Consequently,
the target size will be bigger. Because of the above reasoning, we only focus on the
target area inside the bounding boxes. It is assumed that YOLO has already detected the
target. Now, we would like to see if we can improve the classification performance using
super-resolution videos.

6.1. Vehicle Classification Architecture with Video Super-Resolution

For this investigation, at first, we cropped only the vehicle portion from each of
the video frames. Then, we used the pre-trained video super-resolution (VSR) model to
enhance the resolution of these cropped vehicle sub-image frames up to 4×. This pre-
trained model takes seven frames as an input to predict the high-resolution center frame.
We applied this pre-trained VSR model on our 2000 m, 1500 m, and 1000 m cropped vehicle
dataset to obtain 4× higher-resolution vehicle video frames. Figure 12 shows the IR object
classification block diagram.
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6.2. Video Super-Resolution Algorithm

For VSR, we used the recurrent back-projection network (RBPN) model developed by
Haris et al. [61]. This model combines spatial and temporal information from continuous
video frames using a recurrent encoder–decoder resulting in high-resolution frame genera-
tion compared to the other state-of-the-art VSR. Video frames were enhanced four times
using the VSR model. These enhanced frames were then fed to the pre-trained ResNet-18
as input for classification. For this project, we only used the 1500 m dataset to finetune the
ResNet-18 model for classification. Then, we applied the trained ResNet model to classify
the vehicles in the 1000 m and 2000 m cropped vehicles dataset with and without enhanced
resolution, histogram matching, and image stretching. For finetuning, we set the learning
rate to 0.001, training epochs to 300, and optimizer as stochastic gradient descent (SGD).

Figure 13 shows the overview of VSR [61]. I is a low-resolution video frame. Model
takes are the LR frames {It−1, It−2 . . . , It−n, It } where It is the target frame. The VSR model
goal is to produce SRt, which is the high-resolution version of It. The network has two
approaches. In the horizontal blue-line flow, the model extracts features from the target
frame, and in the vertical red-line flow, the model computes the residual features from
a pair of the targets to neighbor frames and the precomputed dense motion flow maps
(Ft−1, Ft−2). On each projection step, the model observes the missing details on the target
frame and extracts the residual features from each neighbor frame to recover the missing
details. More details of this VSR model can be found in [61].
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6.3. Results

It should be noted that 1500 m optical videos were converted to MWIR videos by
attention GAN. The converted infrared videos were then used to train the ResNet. In our
experiments here, we did not convert the 1000 m and 2000 m optical videos to infrared
because the ResNet classification results in Section 5 showed that the converted videos did
not help ResNet. As explained earlier, the likely reason is that the converted 1000 m and
2000 m videos interfered with the actual IR videos during the training process and thereby
degraded the ResNet classification. In short, the experiments in this section can be seen in
Figure 14 below.
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To test the above framework, we used two separate datasets in the DSIAC database.
Table 8 summarizes those videos in our experiments. There are MWIR daytime and MWIR
nighttime, with five videos in each case. Each video has 1800 frames.

Table 8. Testing dataset details.

Type of Data Resolution
Number of Frames Per Class

BTR70 BRDM2 BMP2 T72 ZSU23-4

MWIR Day
1000 m 1800 1800 1800 1800 1800

2000 m 1800 1800 1800 1800 1800

MWIR Night
1000 m 1800 1800 1800 1800 1800

2000 m 1800 1800 1800 1800 1800

The classification results are summarized in Table 9. There are two separate studies.

Table 9. Classification results with different settings. Bold numbers indicate best-performing methods.

Video Type Range Models
Accuracy w/o

Augmentation Using
Attention GAN

Accuracy w
Augmentation Using

Attention GAN

(a) Test results using daytime infrared videos

MWIR Day

1000 m
Without VSR 36.45 60.01

With VSR 85.56 85.83

2000 m
Without VSR 53.95 46.46

With VSR 81.23 92.562

(b) Test results using nighttime infrared videos

MWIR Night

1000 m
Without VSR 76 91.82

With VSR 76.51 64.206

2000 m
Without VSR 87.2 71.94

With VSR 69.98 77.92

• Testing on MWIR daytime videos.

There are four sub-cases in each range: (a) without both VSR and data augmentation
(by attention GAN); (b) with VSR and without data augmentation; (c) without VSR and
with data augmentation; (d) with both VSR and data augmentation. We can see that the
classification results with VSR (MWIR Day) are improved quite a lot for both 1000 m and
2000 m videos regardless of data augmentation. In some cases, the improvements are over
30%. The 2000 m video results with both VSR and data augmentation are also improved by
11% as compared to the case in which no data augmentation is used.
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• Testing on MWIR nighttime videos.

Results on MWIR nighttime videos are mixed, as shown in Table 9. In two out of
the four cases with VSR, we see slightly improved performance. While the 1000 m case
with data augmentation and 2000 m case without data augmentation showed degraded
performance. The converted data have low quality, and more research is needed along this
direction.

7. Discussion

We have explored a data augmentation method to mitigate data scarcity in the IR
domain for deep-network training by converting largely available labelled visible videos
to the IR domain. Our method outperformed state-of-the-art methods for generating IR
images from visible images. In addition, we have demonstrated that the converted IR
images increased the detection and classification accuracies in the IR domain. Furthermore,
we have proved that video super-resolution can be an effective way to improve object
detection in video. There are some possible alternatives to mitigate the data hungry issue
in deep learning such as transfer learning, in which datasets from similar domain can be
utilized to pre-train a deep model, and the domain-specific dataset is then used to finetune
the pre-trained data to improve the performance. For object detection in an IR video, we
will investigate which method is more effective in future work.

8. Conclusions

In this paper, we presented a new approach to convert optical videos to infrared
videos. Our proposed attention GAN model can generate more stable IR images and better
vehicles’ shapes in the IR domain than the cycle GAN. We also observed that attention GAN
helps the YOLO detection performance. In particular, the average precision of the target
detection was improved from 41% (without augmentation) to 62% (with augmentation)
for the 2000 m videos. However, the converted videos did not help ResNet classification
performance. We then investigated the use of a video super-resolution technique to enhance
the ResNet classification performance. Some positive impacts on the ResNet classification
performance have been observed. However, more research is still needed in this area. One
future direction is to develop an integrated framework for target detection and classification
that combines VSR, attention GAN, and more recent target detectors and classifiers.
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