Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban Land Use Data
2.3. Extract and Analyze Built-Up Areas from Multi-Source Data
2.3.1. Extract Built-Up Area Information from Old Maps
2.3.2. Extract Built-Up Area Information Remote Sensing Images
2.3.3. Analysis of Built-Up Areas in Different Periods
3. Results
3.1. Numerical Changes in Built-Up Area
3.1.1. Area of Urban Built-Ups Areas
3.1.2. Expansion Rate
3.1.3. Expansion Intensity
3.2. Spatio-Temporal Evolution of Urban Form
3.2.1. Compactness of Urban Form
3.2.2. Fractal Dimension of Urban Form
3.2.3. Shift of the Mean Center
3.3. Major Driving Factors and Urbanization
3.3.1. Natural Factors
3.3.2. Political Factors
3.3.3. Socio-Economic Factors
4. Discussions
4.1. Data Availability of Historical Data
4.2. Why Do We Need Longer Time Series Studies?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Liu, W.; Lu, D. Challenges and the way forward in China’s new-type urbanization. Land Use Policy 2016, 55, 334–339. [Google Scholar] [CrossRef]
- Jiao, L.; Mao, L.; Liu, Y. Multi-order Landscape Expansion Index: Characterizing urban expansion dynamics. Landsc. Urban Plan. 2015, 137, 30–39. [Google Scholar] [CrossRef]
- Li, G.; Li, F. Urban sprawl in China: Differences and socioeconomic drivers. Sci. Total Environ. 2019, 673, 367–377. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and spatial-temporal evolution analysis of urban land use efficiency under green development orientation: Case of the Yangtze River Delta urban agglomerations. Land 2021, 10, 715. [Google Scholar] [CrossRef]
- San-Antonio-Gómez, C.; Velilla, C.; Manzano-Agugliaro, F. Urban and landscape changes through historical maps: The Real Sitio of Aranjuez (1775–2005), a case study. Comput. Environ. Urban Syst. 2014, 44, 47–58. [Google Scholar] [CrossRef]
- Nicu, I.C.; Stoleriu, C.C. Land use changes and dynamics over the last century around churches of Moldavia, Bukovina, Northern Romania—Challenges and future perspectives. Habitat Int. 2019, 88, 101979. [Google Scholar] [CrossRef]
- Béliveau, M.; Germain, D.; Ianas, A.-N. Fifty-year spatiotemporal analysis of landscape changes in the Mont saint-hilaire UNESCO biosphere reserve (Quebec, Canada). Environ. Monit. Assess. 2017, 189, 215. [Google Scholar] [CrossRef]
- Picuno, P.; Cillis, G.; Statuto, D. Investigating the time evolution of a rural landscape: How historical maps may provide environmental information when processed using a GIS. Ecol. Eng. 2019, 139, 105580. [Google Scholar] [CrossRef]
- Szombara, S.; Lewińska, P.; Żądło, A.; Róg, M.; Maciuk, K. Analyses of the Prądnik riverbed shape based on archival and contemporary data sets—old maps, LiDAR, DTMs, orthophotomaps and cross-sectional profile measurements. Remote Sens. 2020, 12, 2208. [Google Scholar] [CrossRef]
- Conzen, M.R.G. Alnwick, Northumberland: A Study in Town Plan Analysis; George Philip: London, UK, 1960. [Google Scholar]
- Whitehand, J.W.R. The Urban Landscape: Historical Development and Management; Institute of British Geographers Special Publication 13; Academic Press: London, UK, 1981. [Google Scholar]
- He, F.; Ge, Q.; Zheng, J. Reckoning the areas of urban land use and their comparison in the Qing Dynasty in China. Acta Geogr. Sin. 2002, 57, 709–716. [Google Scholar]
- Cheng, Y. The urban size and administrative scales in the Qing dynasty. J. Yangzhou Univ. 2013, 11, 124–128. [Google Scholar]
- Ioannides, Y.M.; Zhang, J.F. Walled cities in late imperial China. J. Urban Econ. 2017, 97, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Chen, X.; Ju, M.; Ling, C.; Liu, G.; Liao, F.; Jia, Y.; Jiang, M. Reconstruction and pattern analysis of historical urbanization of Pre-Modern China in the 1910s using topographic maps and the GIS-ESDA model: A case study in Zhejiang Province, China. Sustainability 2020, 12, 537. [Google Scholar] [CrossRef] [Green Version]
- Tortora, A.; Statuto, D.; Picuno, P. Rural landscape planning through spatial modelling and image processing of historical maps. Land Use Policy 2015, 42, 71–82. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, S.; Xle, C. Remote sensing and GIS for urban growth analysis in China. Photogramm. Eng. Rem. Sens. 2020, 66, 593–598. [Google Scholar]
- Reba, M.; Seto, K. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Global Human Settlement Layer. Available online: https://ghslsys.jrc.ec.europa.eu/index.php (accessed on 18 August 2021).
- Jiang, J.; Zhang, J.; Zhang, Y.; Zhang, C.; Tian, G. Estimating nitrogen oxides emissions at city scale in China with a nightlight remote sensing model. Sci. Total Environ. 2016, 544, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Long, Y.; Jin, X.; Yang, X.; Zhou, Y. Reconstruction of historical arable land use patterns using constrained cellular automata: A case study of Jiangsu, China. Appl. Geogr. 2014, 52, 67–77. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, W.; Wang, W.; Juang, J.; Hong, J.; Kato, T.; Luyssaert, S. Reconstructing Taiwan’s land cover changes between 1904 and 2015 from historical maps and satellite images. Sci. Rep. 2019, 9, 3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zohar, M. Follow the road: Historical GIS for evaluating the development of routes in the Negev region during the twentieth century. Cartogr. Geogr. Inf. Sci. 2019, 46, 532–546. [Google Scholar] [CrossRef]
- Jin, X.; Pan, Q.; Yang, X.; Bai, Q.; Zhou, Y. Reconstructing the historical spatial land use pattern for Jiangsu Province in mid-Qing Dynasty. J. Geogr. Sci. 2016, 26, 1689–1706. [Google Scholar] [CrossRef]
- Xie, J.; Jin, X.; Lin, Y.; Cheng, Y.; Yang, X.; Bai, Q.; Zhou, Y. Quantitative estimation and spatial reconstruction of urban and rural construction land in Jiangsu Province, 1820–1985. J. Geogr. Sci. 2017, 27, 1185–1208. [Google Scholar] [CrossRef]
- Xue, Q.; Jin, X.; Cheng, Y.; Yang, X.; Jia, X.; Zhou, Y. The historical process of the masonry city walls construction in China during 1 to 17 centuries AD. PLoS ONE 2019, 14, e0214119. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Jin, X.; Miao, L.; Yang, X. A historical reconstruction of cropland in China from 1900 to 2016. Earth Syst. Sci. Data 2021, 13, 3203–3218. [Google Scholar] [CrossRef]
- Sun, T.; Sun, R.; Khan, M.S.; Chen, L. Urbanization increased annual precipitation in temperate climate zone: A case in Beijing-Tianjin-Hebei region of North China. Ecol. Indic. 2021, 126, 107621. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Z. Spatial differentiation characteristics and driving mechanism of rural-industrial Land transition: A case study of Beijing-Tianjin-Hebei region, China. Land Use Policy 2021, 102, 105239. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Wang, F. Isolated or integrated? Planning and management of urban renewal for historic areas in old Beijing city, based on the association network system. Habitat Int. 2019, 93, 102049. [Google Scholar] [CrossRef]
- He, X.; Zhou, C.; Zhang, J.; Yuan, X. Using wavelet transforms to fuse nighttime light data and POI big data to extract urban built-up areas. Remote Sens. 2020, 12, 3887. [Google Scholar] [CrossRef]
- Varshney, A. Improved NDBI differencing algorithm for built-up regions change detection from remote-sensing data: An automated approach. Remote Sens. Lett. 2013, 4, 504–512. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Zhu, Z.; Chen, H.; Tang, X.; Gong, J. Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities. Remote Sens. Environ. 2019, 226, 51–73. [Google Scholar] [CrossRef]
Data | Data Type | Source | Original Resolution or Scale |
---|---|---|---|
Military topographic maps surveyed in the Republic of China | Old maps | Surveying and mapping agency of local government | 1:50,000, 1:100,000 |
Landsat | Remote sensing images | USGS (United States Geological Survey) | 30 m |
Administrative border | Vector data (.shp) | 1:250,000 |
Urban Built-Up Areas | City Inside the Walls | Outer City |
---|---|---|
Spatial distribution characteristics | Located at the center of the city, surrounded by city walls | Mainly located on the outer edge of the city, or along the traffic line |
Interpretation examples of old maps | In this example, Area A is the city inside the wall, while areas B, C, and D are the outer cities. |
City | Mean Center (1920s) | Mean Center (2020) | Offset Distance | Offset Direction | ||
---|---|---|---|---|---|---|
Beijing | 116.390° E | 39.907° N | 116.413° E | 39.969° N | 7.175 km | Northeast |
Tianjin | 117.185° E | 39.138° N | 117.301° E | 39.088° N | 11.461 km | Southeast |
Baoding | 115.491° E | 38.858° N | 115.484° E | 38.853° N | 0.823 km | Southwest |
Cangzhou | 116.856° E | 38.308° N | 116.868° E | 38.312° N | 1.139 km | Northeast |
Chengde | 117.932° E | 40.975° N | 117.891° E | 40.971° N | 3.475 km | Southwest |
Handan | 114.481° E | 36.606° N | 114.483° E | 36.589° N | 1.901 km | Southeast |
Hengshui | 115.704° E | 37.727° N | 115.722° E | 37.752° N | 3.202 km | Northeast |
Langfang | 116.693° E | 39.515° N | 116.718° E | 39.530° N | 0.738 km | Northeast |
Qinhuangdao | 119.598° E | 39.924° N | 119.539° E | 39.928° N | 5.056 km | Northwest |
Shijiazhuang | 114.478° E | 38.009° N | 114.515° E | 38.038° N | 4.577 km | Northeast |
Tangshan | 118.199° E | 39.621° N | 118.175° E | 39.629° N | 2.242 km | Northwest |
Xingtai | 117.501° E | 37.065° N | 117.497° E | 37.052° N | 1.490 km | Southwest |
Zhangjiakou | 114.878° E | 40.819° N | 114.896° E | 40.789° N | 3.668 km | Southeast |
Year | Provincial Capital | Year | Provincial Capital |
---|---|---|---|
1860 | Baoding | 1945 | Beiping (Beijing) |
1870 | Baoding & Tianjin | 1946 | Baoding |
1902 | Tianjin | 1947 | Beiping (Beijing) |
1928 | Beiping (Beijing) | 1949 | Baoding |
1930 | Tianjin | 1958 | Tianjin |
1935 | Baoding | 1966 | Baoding |
1937 | Tianjin | 1968 to present | Shijiazhuang |
1939 | Baoding |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Sun, Z.; Wang, Y.; Wang, Y. Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data. Remote Sens. 2021, 13, 3264. https://doi.org/10.3390/rs13163264
Li S, Sun Z, Wang Y, Wang Y. Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data. Remote Sensing. 2021; 13(16):3264. https://doi.org/10.3390/rs13163264
Chicago/Turabian StyleLi, Shuang, Zhongqiu Sun, Yafei Wang, and Yuxia Wang. 2021. "Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data" Remote Sensing 13, no. 16: 3264. https://doi.org/10.3390/rs13163264
APA StyleLi, S., Sun, Z., Wang, Y., & Wang, Y. (2021). Understanding Urban Growth in Beijing-Tianjin-Hebei Region over the Past 100 Years Using Old Maps and Landsat Data. Remote Sensing, 13(16), 3264. https://doi.org/10.3390/rs13163264