How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA
Abstract
:1. Introduction
- (1)
- How do 2D and 3D USPs impact seasonal U-LSTs at different spatial scales (including both city block and pixel)?
- (2)
- Which USPs (2D or 3D) yield a relatively strong influence on seasonal U-LSTs?
- (3)
- How do UFZs affect the variations in seasonal U-LSTs?
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. LiDAR Point Clouds
2.2.2. Landsat Data
2.2.3. Supplementary Data
3. Methods
3.1. U-LST Retrieval
3.2. Land Cover and UFZ Mapping
3.3. Extraction of 2D and 3D USPS
3.4. Analyses of the Influences of UFZs and USPS on U-LSTs
3.4.1. Influences of UFZs on U-LSTs
3.4.2. Statistical Analysis
4. Results
4.1. Results of LST Retrieval across Different UFZs
4.2. Correlation between USPS and U-LSTs
4.3. Relative Importance of USPS for Seasonal LSTs
5. Discussion
5.1. Differences in the Effects of Green Infrastructure Parameters on Seasonal U-LSTs between City Block and Pixel Scales
5.2. Differences in the Effects of Built-Up Infrastructure Parameters on Seasonal U-LSTs between City Block and Pixel Scales
5.3. The Effects of UFZs on Seasonal U-LSTs
5.4. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Abbreviations | Definition |
---|---|
U-LSTs | Urban land surface temperatures |
2D | two-dimensional |
3D | three-dimensional |
USPs | Urban structure parameters |
UHI | Urban heat island |
LiDAR | Light Detection and Ranging |
LCZ | Local climate zone |
UFZ | Urban functional zone |
DSM | Digital surface model |
NYCDTT | New York City Department of Information Technology and Telecommunications |
USGS | United States Geological Survey |
OLI | Operational Land Imager |
TIRS | Thermal Infrared Sensor |
OSM | Open Street Map |
RF | Random Forest |
BC | Building coverage |
ISC_G | Impervious surface coverage at ground-level |
TP | Tree percentage |
GP | Grass percentage |
MBH | Mean building height |
MBV | Mean building volume |
FAI | Frontal area index |
CAR | Canyon aspect ratio |
FAR | Floor area ratio |
SVF | Sky view factor |
MTH | Mean tree height |
DI | Distribution Index |
MSE | Mean Square Error |
MBI | Morphological building index |
MSI | Morphological shadow index |
UCI | Urban complexity index |
GLCM | Gray-level Co-occurrence Matrix |
HOM | Homogeneity |
CON | Contrast |
ENT | Entropy |
NDVI | Normalized difference vegetation index |
NDWI | Normalized difference water index |
R | Red Band |
G | Green Band |
B | Blue Band |
NIR | Near-Infrared Band |
Man. | Manufacturing zone |
Com. | Commercial zone |
Res. | Residential zone |
M&R | mixed industrial and residential zones |
Is | the importance of the variable for summer U-LST |
Iw | the importance of the variable for winter U-LST |
Category | Features | Principle | Reference |
---|---|---|---|
Morphological Building Index (MBI) | The MBI was used to extract building by stablishing the relationship between implicit features and morphological operators of buildings. | [32] | |
Morphology features | Morphological Shadow Index (MSI) | The MSI is defined as the dual function of the MBI, i.e., the black top-hat morphological profiles, to highlight the shadow structures. | [33] |
Urban Complexity Index (UCI) | The UCI is constructed on the basis of 3D-WT, where the spatial variation of natural features is relatively smaller than the spectral variation but, in urban areas, shows more variation in the spatial domain. | [34] | |
Geometric features | Flatness | Flatness is obtained from DSM and refers to the flatness of non-ground points. Generally, the surface of buildings is flatter than vegetation. | [37] |
Vnd | The normal vectors of vegetation are more scattered and irregular, but are fixed in several directions of buildings. | [29] | |
nDSM | DSM contains the land surface information. | [28] | |
Textural feature | Gray-level Co-occurrence Matrix (GLCM) | This is generated from LiDAR. In the height image, the vegetation is more textured than the buildings. | [31] |
Homogeneity | This was generated from high-resolution orthophotos in 2017. The texture features of the study area were acquired based on GLCM. | [18] | |
Contrast | This was generated from high-resolution orthophotos in 2017. The texture features of the study area were acquired based on GLCM. | [18] | |
Entropy | This was generated from high-resolution orthophotos in 2017. The texture features of the study area were acquired based on GLCM. | [18] | |
Spectral feature | Wave Spectrum of High-Resolution Orthophotos | Red Band (R), Green Band (G), Blue Band (B), and Near-Infrared Band (NIR) | [30] |
Normalized Difference Vegetation Index (NDVI) | NDVI = (NIR - R) / (NIR + R) | [35] | |
Normalized Difference Water Index(NDWI) | NDWI = (G - NIR) / (G + NIR) | [36] |
Type | Precision | Recall | Fl-Score | Support |
---|---|---|---|---|
Building | 0.93 | 0.91 | 0.92 | 9143 |
Tree | 0.82 | 0.82 | 0.82 | 3801 |
Grass | 0.80 | 0.84 | 0.82 | 2723 |
Bare soil | 0.82 | 0.87 | 0.85 | 2830 |
Impervious ground surface | 0.84 | 0.83 | 0.83 | 8780 |
Water body | 0.96 | 0.99 | 0.98 | 1938 |
Accuracy | 0.87 | 29215 | ||
Macro avg | 0.86 | 0.88 | 0.87 | 29215 |
Weighted avg | 0.87 | 0.87 | 0.87 | 29215 |
References
- Oke, R.T. Urban Climate and Global Environmental Change. Appl. Climatol. 1997, 273–287. [Google Scholar]
- Sarrat, C.; Lemonsu, A.; Masson, V.; Guedalia, D. Impact of Urban Heat Island on Regional Atmospheric Pollution. Atmos. Environ. 2006, 40, 1743–1758. [Google Scholar] [CrossRef]
- Imran, H.M.; Kala, J.; Ng, A.W.; Muthukumaran, S. Impacts of future urban expansion on urban heat island effects during heatwave events in the city of Melbourne in southeast Australia. Q. J. R. Meteorol. Soc. 2019, 145, 2586–2602. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; Li, D.; Bou-Zeid, E. High-resolution simulation of heatwave events in New York City. Theor. Appl. Climatol. 2017, 128, 89–102. [Google Scholar] [CrossRef]
- Lamb, G.C.; DiLorenzo, N. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights (St/Esa/Ser. A/352); Springer: New York, NY, USA, 2014. [Google Scholar]
- Lu, L.; Weng, Q.; Xiao, D.; Guo, H.; Li, Q.; Hui, W. Spatiotemporal Variation of Surface Urban Heat Islands in Relation to Land Cover Composition and Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sens. 2020, 12, 2713. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. 2010, 114, 504–513. [Google Scholar] [CrossRef] [Green Version]
- Ngie, A.; Abutaleb, K.; Ahmed, F.; Darwish, A.; Ahmed, M. Assessment of Urban Heat Island Using Satellite Remotely Sensed Imagery: A Review. S. Afr. Geogr. J. 2014, 96, 198–214. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal Remote Sensing of Urban Climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q. Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Li, W.; Cao, Q.; Lang, K.; Wu, J. Linking Potential Heat Source and Sink to Urban Heat Island: Heterogeneous Effects of Landscape Pattern on Land Surface Temperature. Sci. Total Environ. 2017, 586, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.; Guldmann, J.M. Spatial Statistical Analysis and Simulation of the Urban Heat Island in High-Density Central Cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Yu, S.; Chen, Z.; Yu, B.; Wang, L.; Wu, B.; Wu, J.; Zhao, F. Exploring the Relationship between 2d/3d Landscape Pattern and Land Surface Temperature Based on Explainable Extreme Gradient Boosting Tree: A Case Study of Shanghai, China. Sci. Total Environ. 2020, 725, 138229. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Böhner, J.; Ching, J.; Conrad, O.; Feddema, J.; Mills, G.; See, L.; Stewart, I. Mapping Local Climate Zones for a Worldwide Database of the Form and Function of Cities. ISPRS Int. J. Geoinf. 2015, 4, 199–219. [Google Scholar] [CrossRef] [Green Version]
- Bechtel, B.; See, L.; Mills, G.; Foley, M. Classification of Local Climate Zones Using Sar and Multispectral Data in an Arid Environment. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2016, 9, 3097–3105. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the Effects of 3d Urban Morphology on the Surface Urban Heat Island Effect in Urban Functional Zones by Using High-Resolution Remote Sensing Data: A Case Study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical Semantic Cognition for Urban Functional Zones with Vhr Satellite Images and Poi Data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S. Bringing Ecosystem Services into Economic Decision-Making: Land Use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. World Map of Köppen-Geiger climate classification. The University of Melbourne. Available online: https://web.archive.org/web/20150113015116/http://upload.wikimedia.org/wikipedia/commons/b/bb/Koppen_World_Map_%28retouched_version%29.png (accessed on 13 January 2015).
- Kaplan, K. Usda Unveils New Plant Hardiness Zone Map. In USDA-ARS Website.; 2012. Available online: http://www.ars.usda.gov/is/br/zonemap/zonemap.htm (accessed on 29 November 2020).
- New York City Department of Information Technology and Telecommunications (NYCDITT). 2017 ALS Data. Available online: http://gis.ny.gov/elevation/lidar-coverage.htm (accessed on 1 February 2019).
- Clark, R.N.; Swayze, G.A.; Wise, R.A.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. Usgs Digital Spectral Library Splib06a. In US Geological Survey; U.S. Geological Survey: Reston, VA, USA, 2007. [Google Scholar]
- Yang, Q.; Huang, X.; Tang, Q. The Footprint of Urban Heat Island Effect in 302 Chinese Cities: Temporal Trends and Associated Factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef]
- Hu, D.Y.; Qiao, K.; Wang, X.L.; Zhao, L.M.; Ji, G.H. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm. J. Remote Sen. 2015, 19, 964–976. (In Chinese) [Google Scholar]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land Surface Temperature Retrieval from Landsat Tm 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Cao, S.S.; Hu, D.Y.; Hu, Z.; Zhao, W.; Chen, S.; Yu, C. Comparison of Spatial Structures of Urban Agglomerations between the Beijing-Tianjin-Hebei and Boswash Based on the Subpixel-Level Impervious Surface Coverage Product. Int. J Geogr. Inf. Sci. 2018, 28, 306–322. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Zhang, Y.; Zou, Z.; Xu, S.; He, X.; Chen, S. Automatic Building Extraction from Lidar Data Fusion of Point and Grid-Based Features. ISPRS J. Photogramm. Remote Sens. 2017, 130, 294–307. [Google Scholar] [CrossRef]
- Faridatul, M.I.; Wu, B. Automatic Classification of Major Urban Land Covers Based on Novel Spectral Indices. ISPRS Int. J. Geoinf. 2018, 7, 453. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.P. A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral Geoeye-1 Imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.P. Morphological Building/Shadow Index for Building Extraction from High-Resolution Imagery over Urban Areas. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2011, 5, 161–172. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.P. A Multiscale Urban Complexity Index Based on 3d Wavelet Transform for Spectral–Spatial Feature Extraction and Classification: An Evaluation on the 8-Channel Worldview-2 Imagery. Int. J. Remote Sens. 2012, 33, 2641–2656. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the Modis Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (Ndwi) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Neumann, U. Fast and Extensible Building Modeling from Airborne Lidar Data. In Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Irvine, CA, USA, 5–7 November 2008; pp. 1–8. [Google Scholar]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Koks, E.; Taubenböck, H.; van Vliet, J. Continental-Scale Mapping and Analysis of 3d Building Structure. Remote Sens. Environ. 2020, 245, 111859. [Google Scholar] [CrossRef]
- Kanda, M.; Kawai, T.; Nakagawa, K. A Simple Theoretical Radiation Scheme for Regular Building Arrays. Boundary Layer Meteorol. 2005, 114, 71–90. [Google Scholar] [CrossRef]
- Kanda, M.; Kawai, T.; Kanega, M.; Moriwaki, R.; Narita, K.; Hagishima, A. A Simple Energy Balance Model for Regular Building Arrays. Boundary Layer Meteorol. 2005, 116, 423–443. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S. Conterminous United States Land Cover Change Patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural Land-Use Change and Its Drivers in Mountain Landscapes: A Case Study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the Spatial Component of Ecological Variation. Ecol. 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Elmes, A.; Rogan, J.; Williams, C.; Ratick, S.; Nowak, D.; Martin, D. Effects of Urban Tree Canopy Loss on Land Surface Temperature Magnitude and Timing. ISPRS J. Photogramm. Remote Sens. 2017, 128, 338–353. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China Cools Local Land Surface Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Liu, H.; Liang, B.; Lu, D. The Spatial Variations of Urban Land Surface Temperatures: Pertinent Factors, Zoning Effect, and Seasonal Variability. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2008, 1, 154–166. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Bou-Zeid, E.; Katul, G.G. Seasonal Hysteresis of Surface Urban Heat Islands. Proc. Natl. Acad. Sci. USA 2020, 117, 7082–7089. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. On the Statistics of Urban Heat Island Intensity. Geophys. Res. Lett. 2013, 40, 5486–5491. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Hao, L.; Sun, G.; Liu, Y.; Zhu, C. Spatiotemporal Trends of Urban Heat Island Effect Along the Urban Development Intensity Gradient in China. Sci. Total Environ. 2016, 544, 617–626. [Google Scholar] [CrossRef]
- Shahidan, M.F.; Jones, P.J.; Gwilliam, J.; Salleh, E. An Evaluation of Outdoor and Building Environment Cooling Achieved through Combination Modification of Trees with Ground Materials. Build. Sci. 2012, 58, 245–257. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of Landscape Composition and Pattern on Land Surface Temperature: An Urban Heat Island Study in the Megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does Spatial Configuration Matter? Understanding the Effects of Land Cover Pattern on Land Surface Temperature in Urban Landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Lau, L.S.K. From the ‘Urban Heat Island’to the ‘Green Island’? A Preliminary Investigation into the Potential of Retrofitting Green Roofs in Mongkok District of Hong Kong. Habitat Int. 2013, 39, 25–35. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Li, J.; Qin, R. Multi-Level Monitoring of Subtle Urban Changes for the Megacities of China Using High-Resolution Multi-View Satellite Imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar] [CrossRef]
- Crawford, B.; Grimmond, S.B.; Gabey, A.; Marconcini, M.; Ward, H.C.; Kent, C.W. Variability of Urban Surface Temperatures and Implications for Aerodynamic Energy Exchange in Unstable Conditions. Q.J.R. Meteorol. Soc. 2018, 144, 1719–1741. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of Landscape Structure on Surface Urban Heat Islands: A Case Study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Eliasson, I. Urban Nocturnal Temperatures, Street Geometry and Land Use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Cai, Y.Y.; Cao, S.S.; Du, M.Y.; Li, S.F.; Chen, S.S. Estimation and analysis of driving factors of total AHF in prefecture-level China. J. Geo-Inf. Sci. 2020, 22, 405–418. (In Chinese) [Google Scholar]
- Yang, X.; Li, Y. Development of a Three-Dimensional Urban Energy Model for Predicting and Understanding Surface Temperature Distribution. Boundary Layer Meteorol. 2013, 149, 303–321. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the Impact of Urban Geometry and Pedestrian Level Greening on Outdoor Thermal Comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the Collection-6 Modis Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
Data | Type | Resolution | Time | Usage |
---|---|---|---|---|
Remote sensing data | LiDAR point cloud | 1.5 m (5.0 ft) | 5/2017 | Land cover mapping and surface roughness retrieval |
High-resolution orthophoto | 0.3 m (1.0 ft) | 2017 | Land cover mapping | |
Landsat 8 remotely sensed data | Multispectral data: 30 m; TIRS data: 100 m | 03/19/2015 10:39:26; 04/29/2015 10:32:56; 05/22/2015 10:38:55; 06/07/2015 10:39:05; 07/25/2015 10:39:28; 08/26/2015 10:39:39; 10/06/2015 10:33:42; 11/23/2015 10:33:50; 01/23/2015 10:33:38 | LST retrieval | |
Geographical information data | Land-lot data | Vector | 2019 | Image segmentation and label optimization |
Road data | Vector | 2017 | Block data extraction |
Category | Parameter | Abbreviation | Meaning | Reference |
---|---|---|---|---|
3D metric | Mean building height | MBH | Average of building height in a spatial unit (30 m × 30 m) | [39] |
Mean building volume | MBV | Average of building volume in a spatial unit (30 m × 30 m) | [39] | |
Frontal area index | FAI | Frontal area divided by the area of the spatial unit (30 m × 30 m) | [40] | |
Canyon aspect ratio | CAR | Urban canyon height divided by the road width (30 m × 30 m) | [41] | |
Floor area ratio | FAR | Ratio of building’s total floor area to the area in a spatial unit (30 m × 30 m) | [40] | |
Sky view factor | SVF | Sky view factor influenced by buildings (30 m × 30 m) | [38] | |
Mean tree height | MTH | Average of tree height in a spatial unit (30 m × 30 m) | [39] | |
2D metric | Building coverage | BC | Percentage of build area in a spatial unit (30 m × 30 m) | [42] |
Impervious surface coverage at ground-level | ISC_G | Percentage of impervious surface area at ground-level in a spatial unit (30 m × 30 m) | [42] | |
Tree percentage | TP | Percentage of tree area in a spatial unit (30 m × 30 m) | [42] | |
Grass percentage | GP | Percentage of grass area in a spatial unit (30 m × 30 m) | [42] |
Summer Variable Importance (Is) | Winter Variable Importance (Iw) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Man. | Com. | Res. | Park | Total | Man. | Com. | Res. | Park | Total | ||
3D USP | MBH | 0.179 | 0.160 | 0.176 | 0.108 | 0.228 | 0.275 | 0.217 | 0.204 | 0.338 | 0.228 |
MBV | 0.104 | 0.064 | 0.068 | 0.074 | 0.085 | 0.036 | 0.038 | 0.074 | 0.033 | 0.104 | |
FAI | 0.099 | 0.094 | 0.084 | 0.024 | 0.068 | 0.052 | 0.036 | 0.061 | 0.043 | 0.068 | |
CAR | 0.017 | 0.102 | 0.005 | 0.099 | 0.034 | 0.048 | 0.072 | 0.004 | 0.098 | 0.055 | |
FAR | 0.097 | 0.095 | 0.092 | 0.033 | 0.092 | 0.095 | 0.126 | 0.085 | 0.022 | 0.096 | |
SVF | 0.195 | 0.181 | 0.163 | 0.150 | 0.185 | 0.294 | 0.184 | 0.168 | 0.196 | 0.224 | |
MTH | 0.121 | 0.123 | 0.099 | 0.120 | 0.099 | 0.052 | 0.094 | 0.100 | 0.066 | 0.073 | |
2D USP | BC | 0.135 | 0.050 | 0.195 | 0.152 | 0.116 | 0.122 | 0.119 | 0.193 | 0.091 | 0.108 |
ISC | 0.049 | 0.097 | 0.078 | 0.145 | 0.047 | 0.022 | 0.073 | 0.071 | 0.033 | 0.029 | |
TP | 0.002 | 0.034 | 0.035 | 0.029 | 0.039 | 0.001 | 0.036 | 0.025 | 0.015 | 0.005 | |
GP | 0.001 | 0.000 | 0.006 | 0.067 | 0.008 | 0.003 | 0.005 | 0.015 | 0.065 | 0.007 | |
R2 | 0.515 | 0.761 | 0.501 | 0.925 | 0.378 | 0.554 | 0.712 | 0.464 | 0.882 | 0.366 | |
I | Low | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Cao, S.; Du, M.; Hu, D.; Mo, Y.; Liu, M.; Zhao, J.; Cao, Y. How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA. Remote Sens. 2021, 13, 3283. https://doi.org/10.3390/rs13163283
He W, Cao S, Du M, Hu D, Mo Y, Liu M, Zhao J, Cao Y. How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA. Remote Sensing. 2021; 13(16):3283. https://doi.org/10.3390/rs13163283
Chicago/Turabian StyleHe, Wen, Shisong Cao, Mingyi Du, Deyong Hu, You Mo, Manqing Liu, Jianghong Zhao, and Yuee Cao. 2021. "How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA" Remote Sensing 13, no. 16: 3283. https://doi.org/10.3390/rs13163283
APA StyleHe, W., Cao, S., Du, M., Hu, D., Mo, Y., Liu, M., Zhao, J., & Cao, Y. (2021). How Do Two- and Three-Dimensional Urban Structures Impact Seasonal Land Surface Temperatures at Various Spatial Scales? A Case Study for the Northern Part of Brooklyn, New York, USA. Remote Sensing, 13(16), 3283. https://doi.org/10.3390/rs13163283