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Abstract: With the advent of very-high-resolution remote sensing images, semantic change detection
(SCD) based on deep learning has become a research hotspot in recent years. SCD aims to observe
the change in the Earth’s land surface and plays a vital role in monitoring the ecological environment,
land use and land cover. Existing research mainly focus on single-task semantic change detection;
the problem they face is that existing methods are incapable of identifying which change type has
occurred in each multi-temporal image. In addition, few methods use the binary change region to help
train a deep SCD-based network. Hence, we propose a dual-task semantic change detection network
(GCF-SCD-Net) by using the generative change field (GCF) module to locate and segment the change
region; what is more, the proposed network is end-to-end trainable. In the meantime, because of the
influence of the imbalance label, we propose a separable loss function to alleviate the over-fitting
problem. Extensive experiments are conducted in this work to validate the performance of our
method. Finally, our work achieves a 69.9% mIoU and 17.9 Sek on the SECOND dataset. Compared
with traditional networks, GCF-SCD-Net achieves the best results and promising performances.

Keywords: very-high-resolution remote sensing images; semantic change detection; generative
change field; separable loss

1. Introduction

Change detection (CD) plays an important role in land-use planning, population
estimation, natural disasters and city management [1–3]. Change detection is a technique
for obtaining change regions of interest using remote sensing images in different time
periods. There are more than thirty years of studies related to change detection [1], and
many state-of-the-art techniques [4–17] have been proposed to automatically identify
changes in a region in remote sensing images. However, most of these change detection
methods [12–17] are binary change detection (BCD), which overlooks the pixel’s categories
that are usually necessary for practical application.

Semantic change detection (SCD) can detect the change regions and identify the
semantic labels simultaneously. However, SCD-based datasets that are openly available
are still limited [18]. Hence, to validate the proposed methods, a large-scale semantic
change detection dataset (HRSCD) was built by Daudt et al. [18], and a sequential training
framework for semantic change detection was proposed. Based on semantic change
detection, Mou et al. [19] proposed a recurrent convolutional neural network (ReCNN)
network, and two data sets were built to validate their work, but the proposed datasets
are not publicly available. Although, existing methods can achieve the semantic change
detection with promising results, their studies face the problems of locating and identifying
the area of change [20]. Consequently, Yang et al. [20] proposed an asymmetric Siamese
network (ASN) for dual-task semantic change detection, and a large-scale semantic change
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detection dataset was built, named SECOND, to detect change regions between the same
land-cover types.

Different from binary labels, semantic change labels contain multiple categories, and
each period image corresponds to a semantic change label. However, existing change detec-
tion methods usually can only realize binary change detection (such as References [12–18])
or single task semantic change detection [19]. The SECOND dataset contains a pair of
semantic change labels corresponding to two periods’ images. Consequently, conventional
methods, such as FC-EF [15], FC-conc [15] and FC-diff [15], do not work well.

With the development of remote sensing and machine learning technology [21,22],
change detection has achieved great progress. Change detection generally falls into two
categories, one is binary change detection and the other is semantic change detection.
Binary change detection mainly focuses on change regions yet overlook categories of pixels.
Different from binary change detection, semantic change detection not only achieves the
change regions detection, but also identifies the categories of each pixel of change regions.

In recent years, a lot of studies mainly pay attention to binary change detection [12,23–27];
most of the works focus on detecting change regions, labeling them with “0” and “1”, where
“0” is no change and “1” represents a change region. Consequently, the binary change map
can be obtained through extracting difference features from image pairs. The main purpose
of change detection in remote sensing images is to obtain the change information from the
bitemporal images; the change regions usually are highly important to analyze land-use and
land-cover change. However, binary change detection usually fails to identify the ground
truth of each pixel in change regions. Consequently, semantic change detection (SCD)-based
methods have been developed for achieving semantic segmentation based on a change region.
However, we found that the existing works have two shortcomings, as follows:

(1) Based on the above, since the existing methods are single-task-oriented change de-
tection frameworks, they are inappropriate to achieve dual-task semantic change detection.

(2) Although, dual-task-based semantic change detection has been developed, its
generality is not strong, and thus the model has space for improvement.

Based on the abovementioned problems, our work proposes a novel dual-task seman-
tic change detection Siamese network using the generative change field module to help
the prediction of change regions and segmentation. The proposed network uses a binary
change detection branch to guide the two semantic segmentation networks to predict pixels’
categories. Since the semantic segmentation branch does not have the perception of the
change information before the fusion of the change region information (generative change
field) and semantic information, then only by fusing the change information can the two
semantic segmentation branches realize the prediction of the change region. Therefore, the
proposed network is called the Generative Change Field (GCF)-based dual-task Semantic
Change Detection Network (GCF-SCD-Net), as shown in Figure 1. Although, in previous
work [19], Mou et al. have proposed to use the binary change map to help model training,
the proposed network exploits the convolutional neural network and recurrent neural
network to achieve feature extraction and change detection, and obtains the binary change
maps by using fully connected layers activated by the sigmoid function. Their method
only used the auxiliary loss method to generate a sematic change map. For the SCD task,
change features play an important role in helping the model predict semantic change labels.
They can guide the generative semantic change map module to focus on different regions
between bitemporal images. In addition, change regions can be generated using a change
feature map. Fusing the binary change feature map and semantic change feature map is an
effective method to improve the segmentation results. In this paper, the main contributions
are as follows.
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Figure 1. Architecture of the proposed network.

(1) We propose a novel dual-task semantic change network to identify the change region
in bitemporal images, and it achieves strong results using the SECOND dataset. The proposed
SCD-based model effectively solves the dual-task semantic change detection problem.

(2) To the best of our knowledge, we are the first to exploit the generative change field
method to guide two branch networks to achieve dual-task semantic change detection.

(3) In order to alleviate the influence of an imbalanced label between the change region
and no-change region, we propose a robust separable loss function that enables to improve
the performance of the network.

2. Materials and Methods

To simplify the mathematical modeling, Table 1 depicts the meanings of the abbrevi-
ated letters we used.

Table 1. Descriptions of the abbreviations used.

Number Abbreviation Explanation

1 R Set of spatial domains
2 C Channel
3 H Height
4 W Width
5 Eθ Learning parameters of network
6 Concat/⊕ Feature map concatenation
7 Conv Convolutional layer
8 ReLU Rectified Linear Units
9 BN Batch normalization
10 p Probability of prediction
11 y Ground truth

2.1. Siamese Convolutional Network

Siam-Conv has been widely used to extract feature information in existing works [13,15–18],
which shows the effectiveness of Siam-Conv for change detection. Therefore, we exploited
Siam-Conv to extract the feature information from the image pairs, as shown in Figure 1.

Let I1 and I2 represent an input image pair, Ii ∈ RC×H×W , i ∈ {1, 2}. Let Eθ(·) be
Siam-Conv (as shown the Siam-Conv module in Figure 1) for extracting the feature maps
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from the bitemporal images, and θ the learning parameters of the Siam-Conv. Then, the
feature extraction can be formulated as follows:

fi = Eθ(Ii), i ∈ {1, 2}. (1)

where fi is the feature maps captured from the input image at time Ti, and R
C
8 ×

H
8 ×

W
8 .

In this work, we used seven residual blocks, which are from ResNet34 proposed
by He et al. [28], to extract the shallow features. The details of Siam-Conv are listed in
Table 2. Firstly, we use Layer0 (correspond to “Layer0” in Figure 1) to extract the salient
features and reducing the size of the feature maps, which contains a convolutional layer
(Conv) with a kernel size of 7 × 7, Batch Normalization layer (BN), Rectified Linear Unit
(ReLU) and Maxpooling layer (Maxpool). Next, we used three residual blocks (“Layer1”
in Figure 1) to extract the low-dimension features with a size of 64 × 64, and four residual
blocks (“Layer2” in Figure 1) were used to capture the middle dimension features with a
size of 32 × 32.

Table 2. Configuration of Siam-Conv.

Name Types Filters Output Size

Layer0 Conv + BN + ReLU + Maxpool 64 64 × 64 × 64
Layer1 Residual block × 3 64 64 × 64 × 64
Layer2 Residual block × 4 128 128 × 32 × 32

2.2. General Networks for Dual-Task Semantic Change Detection

Traditional change detection methods cannot effectively achieve dual-task semantic
change detection; the main reason is that the general networks are designed based on a
single task, so it is impossible to achieve dual-task change detection. Hence, based on
classical segmentation networks, such as UNet [29] and PSPNet [30], we built two dual-task
semantic change detection networks, as shown in Figure 2.
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2.2.1. UNet-SCD

In the Siam-Conv module, we exploited ResNet34 to extract the feature representation
from the bitemporal images, separately. Let f1 and f2 represent the feature maps captured
from the image pairs at two different times, T1 and T2. Next, the feature pairs were fused
by a concatenation operation, which can be formulated by

f = f1 ⊕ f2, (2)

where f ∈ R
C
32×

H
32×

W
32 . In order to obtain the difference features, we used two convolutional

groups (Conv + BN + ReLU) to refine the difference maps. The convolutional group was
defined as follows:

f̂ = ReLU(BN(Conv( f )) (3)

Then, we used two upsampling branches and a skip connection strategy to guide each
branch to generate the difference maps.

2.2.2. PSPNet-SCD

Different from the UNet-SCD network, the bitemporal images were downsampled
by 1/8 in the Siam-Conv module. Then, we use the concatenation operation to fuse the
bitemporal features. Meanwhile, we use the pyramid pooling module (PPM) [30] to capture
features with different receptive fields. Finally, through reusing the bitemporal features
outputted from the Siam-Conv module, we can achieve the dual-task semantic change
maps. The fusion process can be defined as follows:

D fi = f̂i ⊕ D, i ∈ {1, 2}, (4)

where D means the difference features are taken from PPM, and f̂ represents the bitemporal
feature maps. In order to extract the difference maps from D fi, we use the two convolutional
groups to generate the semantic change maps in the different time periods, separately.

2.3. Generative Change Field Network for Dual-Task Semantic Change Detection

Above, we established two types of dual-task semantic change detection networks.
However, their results obtained on the SECOND dataset are mediocre. Hence, we devel-
oped a method (GCF-SCD-Net) that can achieve strong performance for dual-task SCD in
this work.

We introduce a generative change field (GCF) module that only focuses on change
regions based on difference maps. Since the details of the Siam-Conv module are given in
Table 2, we only present the configuration of the GCF-based dual-task semantic change
detection in Table 3. The process of generating a change field is as follows:

Table 3. Configuration of the generative change field module.

Name Types Output Filters Output Size

Concat Conv + BN + ReLU + Conv 128 × 3, 128 128 × 32 × 32
Layer3 Residual block × 6 256 256× 32 × 32
Layer4 Residual block × 3 512 512 × 32 × 32
PPM Adaptivepool × 4 2560 2560 × 32 × 32
Conv Conv + BN + ReLU 512 512 × 32 × 32

Output3 Conv + BN + ReLU + Conv 512, 2 2 × 32 × 32
Upsample Bilinear interpolation _ 2 × 256 × 256

Seg1 Conv + BN + ReLU + Conv 512, 512 512 × 32 × 32
Output1 Conv + BN + ReLU + Conv 512, 7 7 × 32× 32

Upsample Bilinear interpolation _ 7 × 256 × 256
Seg2 Conv + BN + ReLU + Conv 512, 512 512 × 32 × 32

Output2 Conv + BN + ReLU + Conv 512, 7 7 × 32 × 32
Upsample Bilinear interpolation _ 7 × 256 × 256



Remote Sens. 2021, 13, 3336 6 of 15

Firstly, we can obtain the bitemporal features Eθ(I1) and Eθ(I2). Let Df represents the
fusion features, D f ∈ R3C×H×W , which can be achieved through the concatenation operation

D f = |Eθ(I1)− Eθ(I2)| ⊕ Eθ(I1)⊕ Eθ(I2). (5)

Then, using two Conv modules, we reduced the dimension of D f to obtain f ′,
f ′ ∈ RC×H×W . Next, nine residual blocks were used to obtain the difference maps (cor-
respond to “Layer3” and “Layer4” in Figure 1). To effectively capture the feature rep-
resentation from f ′, we used the PPM strategy, the PPM module shown in Figure 1, to
extract the difference feature maps at different scales. In this work, we used four scales
of the feature maps with bin sizes of 1 × 1, 2 × 2, 3 × 3 and 6 × 6, respectively. Finally, a
convolutional group and output layer were used to generate the binary change maps, ϕ,
which are marked with a green box in Figure 1.

The aim of the GCF-SCD-Net is to achieve dual-task semantic change detection; thus,
we exploited two branches to generate bitemporal semantic change maps. A “Seg1” module
contains two convolutional layers is used to increase the dimensions of f1 from 128 to 512,
therefore, we can obtain the feature maps f1

′ at time of T1, f1
′ ∈ R512×32×32. After that, we

make use of difference feature maps generated by GCF module to guide branch-1 (top side
of Figure 1) to predict the pixels’ categories of the T1 image (p1). Similarly, the semantic
change map of T2 image (p2) can be obtained in the same way; this is shown on the bottom
of Figure 1.

The final binary change map and semantic change maps are generated by the softmax
activation function, which can be formulated by

B = ψ(ϕ)max, (6)

P1 = ψ(p1)max, (7)

P2 = ψ(p2)max, (8)

where ψ(·) is the softmax function and ψ(·)max represents the maximum index of prediction,
so we have

ψ(p)max= Max
∣∣∣p(x,y)

c

∣∣∣
c∈S

(9)

where p(x,y)
c represents the prediction of a pixel in the x-row and y-column of the c-th

channel. S is the channels, which is equal to the total number of change types and no-
change types. Through the abovementioned strategy, we can obtain the change region
maps and semantic change segmentation maps simultaneously.

2.4. Dual-Task Semantic Change Detection Loss Function

Model training plays an important role in achieving surprising results. A suitable loss
function is good for obtaining better performance and reducing training time. In this article,
a loss function consists of generative change field loss (gcf_loss) and semantic change loss
(sc_loss). The loss function can be written as

Loss = gcf_loss + sc_loss. (10)

2.4.1. WCE_Loss

For our task, cross-entropy loss (CE_loss) is capable of measuring the similarity be-
tween prediction and ground truth, which is an appropriate choice for calculating the loss.
The CE_loss can be formulated as follows:

CE_loss = − 1
N

N

∑
i=1

[yi log pi + (1− yi) log(1− pi)], (11)
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where N is the number of training samples, and yi and pi are the ground truth and prediction
of the i-th samples. However, the distribution of the target class is unbalanced. Hence,
according to the statistics of the pixels for each class, we added a distribution weight
based on the number of each category to the cross-entropy loss function (WCE_loss), so
Equation (11) can be rewritten as

WCE_loss = −w
N

N

∑
i=1

[yi log pi + (1− yi) log(1− pi)], (12)

where w is the weight, w = (w1, w2, . . . , wS).

2.4.2. Separable Loss

Due to the influence of the imbalance label, we propose a separable loss function
that calculates the loss of the no-change regions and change regions, respectively. Let
ϕ(·) indicate the softmax function, where ϕ(p0

i,j) is the prediction of the 0th channel of pi,j

activated by the softmax function, pi,j ∈ RC×H×W . We define the separable loss as follows:

Sep_loss = − 1
N

2

∑
i=1

N

∑
j=1

B̂i,j log(ϕ(p0
i,j))︸ ︷︷ ︸

nochange_loss

+

(− 1
N
)

2

∑
i=1

N

∑
j=1

[y∗i,j log p∗i,j + (1− y∗i,j) log(1− p∗i,j)]︸ ︷︷ ︸
change_loss

, (13)

where B̂ = E− B: E is the matrix with all the elements of one, and B is the ground truth
of the binary change. y∗i,j and p∗i,j are the ground truth and prediction of the j-th sample

at time Ti without the no-change type, p∗i,j ∈ R(S−1)×H×W , y∗i,j ∈ R(S−1)×H×W . We use the
no-change loss to train the network through calculating the loss of the no-change channel.
Meanwhile, change loss that ignores the no-change channel can contribute to the loss
without the influence of the imbalance label between change and no change.

2.4.3. Union Loss

In this work, we make use of the WCE_loss and separable loss to punish the network
based on the generative change field and semantic change prediction during the training
process. Let y and ŷ represent the prediction and ground truth, and b and B are the binary
change prediction and ground truth; then, the loss can be formulated as

Loss = WCE_loss(b, B)︸ ︷︷ ︸
gfc_loss

+ WCE_loss(y, ŷ) + Sep_loss(y, ŷ, B)︸ ︷︷ ︸
sc_loss

(14)

3. Results

In this section, we first introduce the experimental setup in Section 3.1. Next, we describe
the dataset used in this work and the evaluation criteria of the models in Sections 3.2 and 3.3.
Further, in Sections 3.4 and 3.5, we present the experimental results and analysis.

3.1. Implementation Details

To ensure a fair comparison, all experiments were conducted with the same training
strategy, software environment and hardware platform. The details are as follows.

The total number of training epochs is 100 for all experiments. We use the stochastic
gradient descent (SGD) algorithm [31] to train the networks; the momentum is set to 0.9,
with a weight decay of 5 × 10−4. The initial learning rate was 0.005, which dynamically
decreased every 30 epochs by 1/10 during training. The input size of the image pair was
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256 × 256 pixels. Due to the limitation of GPU memory, the batch size was set as 16. All
experiments were implemented in Ubuntu 18.04.1 LTS. Pytorch 1.6 and Python 3.6 were
used to build the CNN-based networks. We implemented all experiments on a DELL
platform, which was built with an Inter Xeon(R) Silver 4210 CPU, RTX 2080Ti 11-GB GPU
and 256-GB of RAM.

3.2. Dataset

Currently, the public semantic change detection datasets are still limited. Most of the
existing public benchmarks [32–35] mainly focus on binary change detection. Mou et al. [19]
built a multi-class change detection benchmark for SCD, while the dataset is a single-task
SCD and is not publicly available.

Hence, we used the dual-task SCD benchmark (SECOND) http://www.captain-
whu.com/PROJECT/SCD/ (accessed on 8 March 2021) proposed by [20] to validate our
methods. The dataset is a dual-task-based semantic change detection dataset. There are
six categories in the SECOND dataset, including non-vegetated ground surface, tree, low
vegetation, water, buildings and playgrounds. It contains 4662 pairs of aerial images, and
each sample has size of 512 × 512, in three bands (red, green and blue).

3.3. Metrics

For change detection, the Over Accuracy (OA) and mean Intersection over Union
(mIoU) are usually utilized for validating the performance of the methods [15,18,19,26,35].
Since the numbers of categories are unevenly distributed, Yang et al. [20] proposed a
Separated Kappa (SeK) coefficient to alleviate the influence of an imbalance label.

In this article, we utilize three types of metrics, namely, OA, mIoU and SeK, to evaluate
the performance of our methods. Then OA is defined as

OA =

S
∑

i=0
pi,i

S
∑

i=0

S
∑

j=0
pi,j

, (15)

where S represents the total number of change categories and no-change type (“I = 0”). pi,i
indicates the total number of pixels correctly predicted by network, and pi,j represents the
total number of pixels that are predicted for i-th change type, but in fact they belong to the
j-th type. mIoU = (IoU1 + IoU2)/2, where IoU1 is used to evaluate the prediction in the
no-change regions, and IoU2 is used for validating the change regions.

IoU1 =
p0,0

S
∑

i=0
pi,0 +

S
∑

j=0
p0,j − p0,0

, (16)

IoU2 =

S
∑

i=1

S
∑

j=1
pi,j

S
∑

i=0

S
∑

j=0
pi,j − p0,0

(17)

The SeK can be formulated as follows:

SeK = ζ · e(IoU2−1), (18)

where ζ is the consistency between the prediction and the ground truth [20].

3.4. Effect of the GCF Module

Firstly, we evaluate the effect of the GCF module for dual-task semantic change
detection on the SECOND dataset. For a fair comparison, all experiments were with the

http://www.captain-whu.com/PROJECT/SCD/
http://www.captain-whu.com/PROJECT/SCD/
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conventional cross-entropy loss function, to contribute to the loss during training process.
As illustrated in Table 4, in terms of the SCD task, the conventional methods, such as FC-EF,
FC-Siam-conv and FC-Siam-diff, cannot achieve competitive results. Compared with the
FC-Siam-diff, the proposed dual-task-based PSPNet-SCD increases the performance of
the semantic change detection considerably by 1.2% of IoU2, 0.8% of mIoU and 1.8 of
SeK, respectively. More surprisingly, the GCF-based network can effectively improve the
IoU2 and SeK by 2.6% and 2.7 compared with FC-Siam-diff, which demonstrates that the
proposed GCF module is effective. We can also see in Table 4 that the GCF-based network
shows higher performance compared with PSPNet-SCD, with the improvements in IoU2
and SeK achieved by GCF-SCD-Net being 1.4% and 0.9, respectively. Therefore, the use of
the GCF module can effectively increase the performance of the models.

Table 4. Comparison with the state-of-the-art methods on the SECOND dataset (% for all except seK).

Methods OA IoU1 IoU2 mIoU SeK Flops Parameter

FC-EF [15] 83.7 84.2 43.0 63.6 8.7 62.9G 17.59M
FC-Siam-conc [15] 84.6 85.0 45.7 65.3 11.4 62.9G 17.59M
FC-Siam-diff [15] 84.5 85.2 46.7 65.9 11.4 24.5G 17.59M

UNet-SCD 83.3 83.5 42.5 63.0 9.2 19.6G 21.87M
PSPNet-SCD 85.0 85.4 47.9 66.7 13.2 56.3G 25.55M

GCF-SCD-Net 85.3 85.9 49.3 67.6 14.1 56.1G 25.57M

3.5. Performance Analysis of Separable Loss

An imbalance label is a severe problem that causes difficulty in network training.
In order to obtain strong results for the SCD task, this article introduce a separable loss
to improve the performance of semantic segmentation in the change region. As shown
in Table 5, it is obvious that the proposed separable loss can alleviate the imbalance
label problem. Networks with separable loss outperform those with WCE_loss, such
as PSPNet-SCD and GCF-SCD-Net achieving improvements in IoU2 by 1.9% and 1.7%,
respectively. The increments in SeK obtained by PSPNet-SCD and GCF-SCD-Net are 1.4
and 1.5. Although the cost of improvement is that OA and IoU1 would be influenced or
even slightly decreased, the segmentation results in the change region are greatly improved.

Table 5. Comparison of the change detection networks with different loss functions (% for all except seK).

Methods
WCE_Loss Focal Loss Separable Loss

OA IoU1 IoU2 mIoU SeK OA IoU1 IoU2 mIoU SeK OA IoU1 IoU2 mIoU SeK

FC-EF [15] 83.0 83.7 44.7 64.2 8.9 82.6 83.2 43.2 63.2 7.9 82.9 83.5 46.3 64.9 9.8
FC-Siam-conc [15] 84.1 84.6 48.2 66.4 12.6 83.3 83.7 46.5 65.1 11.1 84.3 84.8 49 66.9 13.2
FC-Siam-diff [15] 84.2 84.8 48.6 66.7 12.7 83.5 84.1 46.7 65.4 11.0 84.3 84.9 49.5 67.2 13.4

UNet-SCD 83.4 83.5 43.2 63.4 9.8 82.7 82.8 42.2 62.5 8.8 83.3 83.4 44.1 63.8 10.2
PSPNet-SCD 84.8 85.3 50.1 67.7 14.5 84.2 84.7 48.5 66.6 12.9 84.9 85.4 52.0 68.7 15.9

GCF-SCD-Net 85.2 85.8 50.7 68.3 15.0 84.3 84.8 49.7 67.3 13.9 85.3 85.8 52.4 69.1 16.5

Lin et al. [36] proposed a focal loss function to alleviate the influence of sample
imbalance. Consequently, to demonstrate the superiority of the separable loss, we report
the results by using the focal loss in Table 5. Obviously, the proposed loss function performs
with prominent superiority across all evaluation metrics.

The reason for this phenomenon is that separable loss calculates losses for the change
region and the no-change region, separately, which guides the model to pay more attention
to the loss of the change area, and alleviates the problem of over-confidence caused by the
imbalance label. In particular, the improvements in the overall metrics obtained by GCF-
SCD-Net further demonstrate the competitive performance of the proposed GCF module.
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4. Discussion

To validate the performance of GCF-SCD-Net, we list the results obtained by [20] and
our methods in Table 6. The proposed method achieves the best results on the SECOND
dataset, 16.5 in SeK and 69.1% in mIoU. In the testing process, Yang et al. [20] improved the
detection results by flip methods and a multiscale strategy. Since the proposed network did
not use the multiscale strategy to optimize the parameters of the models, we only used the
flip method to validate the performance of the networks. As shown in Table 6, although
ASN-ATL outperforms GCF-SCD-Net slightly in mIoU, the proposed network achieves the
best results in SeK by an improvement of 1.1.

Table 6. Comparison with the state-of-the-art methods (% for all except seK).

Methods
Flip
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mIoU SeK mIoU SeK

FC-EF 64.9 9.8 65.4 10.5
FC-Siam-conc 66.9 13.2 67.4 14.1
FC-Siam-diff 67.2 13.4 67.7 14.2

HRSCD.str1 (reported by [20]) 29.3 4.6 29.8 4.9
HRSCD.str2 (reported by [20]) 59.7 6.3 59.4 6.6
HRSCD.str3 (reported by [20]) 62.3 8.9 62.1 9.2
HRSCD.str4 (reported by [20]) 67.5 13.7 67.9 14.5

ASN [20] 69.0 15.2 69.7 16.2
ASN-ATL [20] 69.1 15.5 70.0 * 16.8
GCF-SCD-Net 69.1 16.5 69.9 17.9

* means to train the model with the multiscale strategy.

Above, the proposed method stably improves the performance of the semantic change
detection, which effectively demonstrates the superiority and robustness of GCF-SCD-Net.

To present the change detection results intuitively, we visualized the segmentation
results to demonstrate the performance of the proposed methods. Figure 3 shows the
change detection results generated by FC-EF, FC-Siam-conv, FC-Siam-diff and the three
types of dual-task semantic change detection networks proposed in this work.

According to semantic segmentation results in Samples A and B, we can note that the
proposed GCF module enables to identify the change region accurately and the no-change
region in complex scenarios. Since “tree” and “low vegetation” have a similar texture and
color, most of the SCD networks have a poor detection performance, but this does not limit
the segmentation results of GCF-SCD-Net, as shown in Sample B. In terms of sample C,
conventional change detection methods cannot identify the pseudochange region well,
but the proposed SCD-based UNet and PSPNet are capable of alleviating this problem,
which demonstrates that existing change detection networks are improper for dual-task
SCD. Generally, the trees on both sides of the road are elongated. According to Sample D,
we note that the proposed GCF module performs well for the stripe scenario. Due to the
small number of samples (such as “Playground”), it is difficult to accurately identify these
change types; our method performs well under the abovementioned conditions.

Figure 4 depicts the visual results of the semantic prediction and binary prediction
based on GCF-SCD-Net, where we can see that the GCF module can extract the change
regions accurately. Consequently, the semantic change detection module can effectively
classify the categories of each pixel based on the change field.
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Figure 3. Comparisons with state-of-the-art methods on the SECOND dataset. c1 and c2 represent image pairs and ground
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(A–E) are the image pairs.
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Figure 4. Semantic change maps and binary change maps generated by GCF-SCD-Net. c1 is an image pair; c2 and c3 are the
semantic label and prediction; images in c4 were obtained by fusing the raw images and semantic prediction masks; c-5,6,7
represent the binary change label, binary change prediction and binary fusion results.
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Above, the visual results fully demonstrate that our method is effective and superior
to the existing methods.

5. Conclusions

In this work, in order to address the problem that existing methods are incapable
of obtaining a significant result for dual-task semantic change detection, we proposed
a generative change field (GCF)-based dual-task semantic change detection network for
remote sensing images. The proposed network consists of a Siamese convolutional neural
network (Siam-Conv) module for extracting the feature representation from the raw image
pairs, a generative change field module for obtaining the binary change map and two
generative semantic change modules for generating the semantic segmentation maps of
the bitemporal images. Moreover, it is an end-to-end SCD network. To alleviate the sample
imbalance problem, we designed a separable loss for better training the deep models.

Extensive experiments were conducted in this work to demonstrate the competitive
performance that can be achieved by GCF-SCD-Net, compared with existing methods as
well as the proposed dual-task SCD networks (UNet-SCD and PSPNet-SCD). What is more,
we validate the effectiveness of the proposed separable loss function; it is worth noting that
the proposed separable loss is a general strategy to alleviate the sample imbalance problem.
Therefore, it can be applied to other benchmark datasets that suffer from label imbalance.

At present, the SECOND dataset is the only public dataset for dual-task semantic
change detection. In the meantime, we note that the proposed network and conventional
networks perform poor regarding edge detection and contour extraction in the intersecting
zone. Consequently, in future work, we intend to build a large-scale, very-high-resolution
benchmark dataset for semantic change detection based on multi-source satellite data. To
achieve better segmentation results, we intend to use the Markov Random Field (MRF) [37]
method as well as boundary loss [38] to optimize the segmentation results.
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