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Abstract: The energetic electrons in the Earth’s radiation belt, known as “killer electrons”, are one
of the crucial factors for the safety of geostationary satellites. Geostationary satellites at different
longitudes encounter different energetic electron environments. However, organizations of space
weather prediction usually only display the real-time ≥2 MeV electron fluxes and the predictions of
≥2 MeV electron fluxes or daily fluences within the next 1–3 days by models at one location in GEO
orbit. In this study, the relationship of ≥2 MeV electron fluxes at different longitudes is investigated
based on observations from GOES satellites, and the relevant models are developed. Based on the
observations from GOES-10 and GOES-12 after calibration verification, the ratios of the ≥2 MeV
electron daily fluences at 135◦ W to those at 75◦ W are mainly in the range from 1.0 to 4.0, with
an average of 1.92. The models with various combinations of two or three input parameters are
developed by the fully connected neural network for the relationship between ≥2 MeV electron
fluxes at 135◦ W and 75◦ W in GEO orbit. According to the prediction efficiency (PE), the model
only using log10 (fluxes) and MLT from GOES-10 (135◦ W), whose PE can reach 0.920, has the best
performance to predict ≥2 MeV electron fluxes at the locations of GOES-12 (75◦ W). Its PE is larger
than that (0.882) of the linear model using log10 (fluxes four hours ahead) from GOES-10 (135◦ W).
We also develop models for the relationship between ≥2 MeV electron fluxes at 75◦ W and at variable
longitudes between 95.8◦ W and 114.9◦ W in GEO orbit by the fully connected neural network. The
PE values of these models are larger than 0.90. These models realize the predictions of ≥2 MeV
electron fluxes at arbitrary longitude between 95.8◦ W and 114.9◦ W in GEO orbit.

Keywords: ≥2 MeV electron fluxes; GOES satellites; fully connected neural network; relativistic
electron enhancement event

1. Introduction

Geostationary (GEO) orbit is a circular geosynchronous orbit in the Earth’s equator
with a radius of about 6.6 RE (1 RE = 6371.2 km). It is of great significance in many
fields such as meteorology, communications, broadcasting, and navigation due to the
orbital period of GEO satellites being the same as the rotation period of the Earth and an
instantaneous view coverage of the Earth of about 40% for each GEO satellite [1]. GEO
satellites encounter plenty of energetic electrons, known as “killer electrons”, threatening
the operation of satellites [2,3]. These energetic electrons can penetrate the spacecraft’s
outer surface, bury themselves in dielectric materials such as circuit boards, and result in
the buildup of charge on these materials. When the charge reaches a critical value, a sudden
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electrical discharge will occur and cause damage in the associated or nearby circuitry, which
will lead to temporary or permanent loss of function in the spacecraft [4–8]. The charge–
discharge process caused by energetic electrons, especially ≥2 MeV electrons, is one of
the important factors threatening the safety of GEO satellites. It accounts for about 36% of
all faults of GEO satellites attributed to the natural space environment [9–11]. Wrenn [12]
obtained the result that the higher the >2 MeV electron fluences in GEO orbit, the higher
the probability of the charge–discharge process. When the 2-day >2 MeV electron fluences
are higher than 109 cm−2·sr−1·(2 day)−1, between 108 and 109 cm−2·sr−1·(2 day)−1, or lower
than 108 cm−2·sr−1·(2 day)−1, the satellite abnormality rate is about 31.6%, 10.7%, or 0.3%,
respectively. Therefore, the prediction of ≥2 MeV electron daily fluences has become one
of the indispensable contents of daily space environment forecasting.

Many models for predicting ≥2 MeV electron daily fluences in the next 1–3 days
at one location in GEO orbit have been developed. There are many statistical models,
such as the persistence model, recurrence model, Low-E model [13], combo model [13],
REFM model [14,15], DRX prediction model by Lam [16], Kalman filter (KLM) model by
Rigler et al. [17], probabilistic forecast model by Miyoshi and Kataoka [18,19], geomagnetic
pulsation model by He et al. [20], multivariate autoregressive model by Sakaguch et al. [21],
multivariate regression method by Potapov et al. [22], empirical orthogonal function
model by Li et al. [23], NICT forecast model by Zhong et al. [24], and hourly prediction
model on empirical mode decomposition (EMD) by Qian et al. [25]. In addition, some
statistical models have been developed by the NARMAX (nonlinear autoregressive moving
average with exogenous inputs) algorithm, such as Ukhorskiy et al. [26], Wei et al. [27],
and Boynton et al. [28]. Theoretical models are mainly based on the radial diffusion theory,
such as models developed by Li et al. [29–32].

In the past two decades, machine learning (ML) methods have been growing rapidly
and are widely used in space environment modeling. Fukata et al. [33], Xue and Ye [34],
Ling et al. [35], Guo et al. [36], and Shin et al. [37] developed models by neural networks to
predict ≥2 MeV electron fluences within the next 1–3 days at one location in GEO orbit.
Wang et al. [38] used support vector machine and Wei et al. [39] used a deep learning
method to predict ≥2 MeV electron fluences in the next day. These models require external
parameters as inputs, such as ≥2 MeV electron daily fluences one or a few days ahead, solar
wind parameters (solar wind speed and dynamic pressure, interplanetary magnetic field,
etc.), geomagnetic disturbance indices (ap, Kp, Dst, AE), geomagnetic pulsation indices,
low-energy electron fluxes, and magnetopause subsolar distances.

The prediction efficiencies of these models above are mainly between 0.60 and 0.90 for
predicting the events with ≥2 MeV electron daily fluences exceeding 108 cm−2·sr−1·day−1.
The machine learning models usually have higher prediction efficiency, but it often
takes more time and data for modeling. Most of the models above only used the data
from one geostationary satellite, such as the LOW-E [13], combo [13], radial diffusion
model [29–32], geomagnetic pulsation model by He et al. [20], multivariate autoregres-
sive model by Sakaguch et al. [21], and neural network method by Guo et al. [36]. Some
models used the data from multiple geostationary satellites at different longitudes with-
out data calibrations, such as REFM [14,15]; probabilistic forecast model by Miyoshi
and Kataoka [18,19]; DRX prediction model by Lam [16]; neural network methods by
Fukata et al. [33], Ukhorskiy et al. [26], Wei et al. [27], and Boynton et al. [28]; and support
vector machine method by Wang et al. [38]. Some models utilized multiple geostationary
satellites with different longitudes and calibrated to a common standard. Ling et al. [35]
normalized the data from five satellites to GOES-08, and Wei et al. [39] normalized the data
from four satellites to GOES-11. In fact, they ignored the differences of ≥2 MeV electron
daily fluences from different geostationary satellites at different longitudes.

Differences between ≥2 MeV electron daily fluences at different longitudes in GEO
orbit have been investigated by previous studies. Onsager et al. [40] used the data from
GOES-08 and GOES-09 satellites to verify that the differences of ≥2 MeV electron daily
fluences were from their different magnetic latitudes, not from the different calibrations of
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their detectors. Ling et al. [35] noticed that GOES-10 moved from 135◦ W to 60◦ W during
July 2006 and October 2006. This led to the normalization parameters of ≥2 MeV electron
daily fluences between GOES-10 and GOES-12 being time-dependent. Shin et al. [37]
proved that the prediction capability of models is related to the locations of GEO satellites.
Based on the AE8 model and the geomagnetic models, Sun et al. [41] obtained the result that
the maximum and minimum values of ≥2 MeV electron daily fluences for the geostationary
satellites on every day of the year appear near 170◦ W and 70◦ W, respectively, with their
ratios varying from 1.86 to 2.13 in one year.

Therefore, the previous models are only suitable for predicting the ≥2 MeV electron
fluxes or daily fluences at a certain location in the GEO orbit, which is the position of
the satellite for modeling. If these models are used to predict the distribution of ≥2 MeV
electrons at other longitudes, the prediction errors will increase. Additionally, the existing
forecast models are mainly focused on the prediction of ≥2 MeV electron daily fluences,
not for the prediction of ≥2 MeV electron fluxes.

In this paper, we investigate the relationship of ≥2 MeV electron fluxes at different
longitudes in GEO orbit based on observations from GOES satellites and develop models
using the data from one GEO satellite to predict the ≥2 MeV electron fluxes at other
locations in GEO orbit by the fully connected neural network. The paper is structured as
follows. In Section 2.1, the data source and data processing are introduced. The calibration
verifications and the comparisons of ≥2 MeV electron distribution at different longitudes
in GEO orbit are carried out in Section 2.2. In Section 2.3, we evaluate the important
parameters for modeling the relationship of ≥2 MeV electron fluxes at two different
longitudes in GEO orbit by the extreme gradient boosting (XGBoost) method. The fully
connected neural network is introduced in Section 2.4. In Section 3.1, the models with
various combinations of two or three input parameters are developed by the fully connected
neural network for the relationship of ≥2 MeV electron fluxes at two different longitudes
in GEO orbit, the best combination of input parameters for modeling is selected, and the
performance of the best model by the fully connected neural network is compared with that
of the linear model. In Section 3.2, we develop the models by the fully connected neural
network for the relationship between ≥2 MeV electron fluxes at a fixed longitude and at
variable longitudes in GEO orbit in order to realize the prediction of ≥2 MeV electron
fluxes at arbitrary longitude in GEO orbit. The summary and conclusions are given in
Section 4.

2. Materials and Methods
2.1. Data

The data used in this study include ≥2 MeV electron fluxes from GOES satellites,
solar wind parameters, geomagnetic disturbance indices, magnetopause subsolar distances,
the Lm values, and the magnetic local time (MLT) values.

The GOES satellites are a series of geostationary environmental satellites, continuously
monitoring the energetic electron fluxes since 1986, as shown in Figure 1. At every moment,
there are basically at least two GOES satellites in operation. All GOES satellites are
distributed in the region from 135◦ W to 60◦ W, mostly around 135◦ W or 75◦ W. Most
of the GOES satellites obviously adjust their locations during operation. For example,
GOES-10 satellite moved from 135◦ W to 60◦ W between June 2006 and December 2006.
This is helpful for the on-orbit calibration of energetic electron detectors from different
GOES satellites. In this study, we only use the ≥2 MeV electron fluxes with a 1-min
resolution from GOES-10, GOES-11, and GOES-12 satellites and their longitudes with a
1-day resolution. During the operation of these three satellites, the longitudes of GOES-10
are very close to or the same as those of GOES-11 or GOES-12 for a certain period, as shown
in Figure 1. These overlapped data can be utilized for calibration verification of ≥2 MeV
electron fluxes between GOES-10 and GOES-11 or GOES-12 to ensure the consistency of
different satellite observations. The data from GOES-10 and GOES-12 satellites are used to
develop models for the relationship of ≥2 MeV electron fluxes at two different longitudes
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in GEO orbit in Section 3.1. The data from GOES-11 and GOES-12 satellites will be used to
develop models for the relationship between ≥2 MeV electron fluxes at a fixed longitude
and at variable longitudes in Section 3.2. The data of GOES satellites are available from the
National Geophysical Data Center (NGDC) website.

Figure 1. The operation periods in panel (a) and the longitudes in panel (b) of GOES satellites from 1986 to 2020. The data
from different satellites, listed above panel (a), are plotted with different colors.

Solar wind parameters (speed, density, dynamic pressure, the total magnitude of
interplanetary magnetic field (IMF), and IMF Bx, By, and Bz components in the GSM
coordinates) and geomagnetic disturbance indices (Kp, AE, and SYM-H) are used to analyze
their influences on the relationship of ≥2 MeV electron fluxes at different longitudes in GEO
orbit. Solar wind parameters, AE index, and SYM-H index are from OMNI database with a
1-min resolution. Kp index with a 3-h resolution is from OMNI database and is converted
into a 1-min resolution with the same values every three hours. The magnetopause subsolar
distances, R0, are calculated by Lin et al.’s [42] model based on the solar wind data from
OMNI database with a 1-min resolution. The Lm and magnetic local time (MLT) values are
calculated by International Reference Geomagnetic Field (IGRF) + Tsyganenko[1989c] (T89)
models using the international radiation environment modeling software library (IRBEM)
provided by COSPAR. The IGRF [43,44] is the internal geomagnetic field model, and the
T89 model [45] is the external geomagnetic field model. Considering the prediction errors
of the T89 model, we take Kp = 1 for the T89 model and ignore the variations of the external
geomagnetic field. The IRBEM is available at https://sourceforge.net/projects/irbem/,
accessed on 30 June 2021.

2.2. Calibration Verification and Comparison of ≥2 MeV Electron Distribution at Different
Longitudes in GEO Orbit

In Sun et al. [41], we used AE8 radiation belt model and IGRF+T89 geomagnetic model
to prove that ≥2 MeV electron fluxes at different longitudes in GEO orbit are different not
only in their phases but also in their magnitudes.

https://sourceforge.net/projects/irbem/
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In this study, the data of ≥2 MeV electron fluxes from GOES-10, GOES-11, and GOES-
12 satellites are used to compare their differences, analyze the influence of parameters,
and develop the models. Before these quantitative studies, it is necessary to verify the
calibration consistency of detectors aboard different satellites.

As shown in Figure 1b, GOES-10 moved from 135.1◦ W on 1 June to 59.6◦ W on 12
December 2006, and GOES-11 moved from 113.1◦ W on May 1 to 134.8◦ W on 27 June
2006. GOES-10 has the same location about 75◦ W as GOES-12 on 6 November 2006,
and has the same location about 135◦ W as GOES-11 on 27 June 2006. This makes it
possible for GOES-10 to do cross-calibration with GOES-11 and GOES-12. Due to the
short time or no available data in the same location for both satellites, the data of ≥2 MeV
electron fluxes in October and November 2006 and in July and August 2006, when both
satellites are close to each other, are used for calibration verification between GOES-10 and
GOES-12 and between GOES-10 and GOES-11, respectively. In October and November
2006, the longitudes of GOES-10 are in the range from 96.7◦ W to 62.0◦ W, and GOES-12
is around 75◦ W. In July and August 2006, the longitudes of GOES-10 are in the range
from 115.4◦ W to 134.0◦ W, and GOES-11 is near 135◦ W. The data of ≥2 MeV electron
fluxes during both periods are plotted in Figure 2a,c. Figure 2a shows that the data from
GOES-10 (black dots) and GOES-12 (red dots) overlap each other very well, and Figure 2c
displays the data from GOES-10 (black dots) and GOES-11 (blue dots), which cover each
other very well. In order to further verify the calibration consistency of GOES-10 with
GOES-12 and GOES-11, the data in Figure 2a,c are plotted in the flux–flux coordinates,
as shown in Figure 2b,d, respectively. In Figure 2b,d, each dot indicates the observation
of both satellites at the same time, the red lines are y = x, and the green dashed lines are
the results of linear fitting. The equations of the green dashed lines are log10 (GOES-10
fluxes) = 0.9896 × log10 (GOES-12 fluxes)-0.025 and log10 (GOES-10 fluxes) = 0.9597 × log10
(GOES-11 fluxes) + 0.090. The 1-sigma uncertainty estimates for the fitting coefficients’
values are 0.000794 and 0.00230 for the former equation and 0.000652 and 0.00167 for the
latter equation. As shown in Figure 2b,d, green dashed lines basically cover the red lines of
y = x. Considering the deviation caused by the different locations between GOES-10 and
GOES-11 or GOES-12, it can be considered that the calibrations of ≥2 MeV electron fluxes
among GOES-10, GOES-11, and GOES-12 are consistent.

Figure 2. Calibration verification of ≥2 MeV electron fluxes between GOES-10 and GOES-12 in the left panels in panel (a,b),
and between GOES-10 and GOES-11 in the right panels in panel (c,d).

Figure 3a shows ≥2 MeV electron fluxes in June 2005 from GOES-10 (black dots) at
about 135◦ W and GOES-12 (red dots) at about 75◦ W, and Figure 3e displays ≥2 MeV
electron fluxes in June 2007 from GOES-10 (black dots) at about 60◦ W and GOES-11 (blue
dots) at about 135◦ W. It is obvious that ≥2 MeV electron fluxes at 135◦ W are larger
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than those at 75◦ W or at 60◦ W on the whole, consistent with the results in Figure 9 of
Sun et al. [41]. In order to eliminate the influence of ≥2 MeV electron flux phase differences
at different longitudes, we compared their daily fluences from 2004 to 2009 as shown in
Figure 3b,f, and their longitudes are plotted in Figure 3d,g.

Figure 3. Comparison of ≥2 MeV electron distribution between GOES-10 and GOES-12 in the left panels in panel (a–d),
and between GOES-10 and GOES-11 in the right panels in panel (e–h).

Figure 3c shows that the ratios of ≥2 MeV electron daily fluences at about 135◦ W
to those at about 75◦ W are mainly in the range from 1.0 to 4.0, with an average of 1.92.
The ratios at about 60◦ W to those at 75◦ W are mainly around 1.0, and the ratios are
obviously less than 1.0 due to the anomaly observations from GOES-12. Based the results
from Sun et al. [41], with the assumption that the solar wind and geomagnetic disturbance
conditions are stable and unchanged, the ratios of ≥2 MeV electron daily fluences at 135◦ W
to those at 75◦ W calculated by AE8 model and IGRF + T89 model are in the range from
1.63 to 1.79 in one year, with an average of 1.71. This is close to the result from observations.

Figure 3g shows that the ratios of ≥2 MeV electron daily fluences at about 135◦ W to
those at the longitudes between 95◦ W and 135◦ W are mainly in the range from 1.0 to 4.0,
with an average of 2.28. The ratios at 60◦ W to those at 135◦ W fluctuate around 0.6 from
2007 to 2008, but the ratios are mainly around 1.0 in 2009. The ratios of ≥2 MeV electron
daily fluences around 1.0 are due to the inward shift of outer electron radiation belt. As a
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result, the ≥2 MeV electron fluxes are relatively low, and their variations with the local time
disappear. It is clear that the changes of the solar wind and/or geomagnetic disturbance
conditions will give rise to the changes in the distributions of ≥2 MeV electrons.

2.3. The Evaluation of Important Parameters for Modeling

In order to evaluate the important parameters for modeling the relationship of ≥2 MeV
electron fluxes at different longitudes in GEO orbit, the data from January 2004 to October
2005 are used. In this period, GOES-10 and GOES-12 are at about 135◦ W and about 75◦ W,
respectively. These data are also used to develop models in Section 3.1. The important
parameters are log10 (fluxes) from GOES-10, MLT and Lm of GOES-10 (135◦ W), log10
(fluxes four hours ahead) from GOES-10 (local time difference between GOES-10 and
GOES-12), MLT and Lm of GOES-12 (75◦ W), solar wind parameters (speed V, density
N, and dynamic pressure Pd), the interplanetary magnetic field parameters (Bt, Bx_GSM,
By_GSM, Bz_GSM), the geomagnetic indices (Kp, AE, SYM-H), and magnetopause subsolar
distances (R0). These parameters are evaluated for their importance to the ≥2 MeV electron
fluxes at the location of GOES-12 by the methods of eXtreme Gradient Boosting (XGBoost).
When evaluating and modeling, all data of ≥2 MeV electron fluxes are converted to log10
(≥2 MeV electron fluxes), abbreviated as log10 (fluxes).

The eXtreme Gradient Boosting (XGBoost), one of the machine learning algorithms
widely used at present, is an implementation of gradient boosted decision trees [46]. It
implements machine learning under the Gradient Boosting framework and performs well
on the classification and regression prediction modeling. Built on the Gradient Boosting
Decision Tree (GBDT) algorithm, XGBoost can superimpose weak learners in series to
synthesize a strong learner [47,48]. XGBoost forms new decision trees continuously to fit the
residuals of the previous predictions so that the residuals between the predicted values and
the true values are continuously reduced, thereby improving the prediction accuracy [46].
Compared with other algorithms, XGBoost has many advantages in feature selection: fast
processing, accepting multiple types of input data, built-in cross-validation, high flexibility,
etc. Therefore, we use XGBoost for selecting the critical parameters for modeling.

Feature importance scores computed by XGBoost can be used for the selection of
critical parameters according to the scores’ ranking. The higher the score, the higher the
importance to the output parameter. Figure 4 shows the ranking of the feature importance
scores of above 17 input parameters. It is shown that the top two are log10 (fluxes) from
GOES-10 and log10 (fluxes four hours ahead) from GOES-10, which are followed by MLT
and Lm of GOES-10, AE, Kp, MLT of GOES-12, and V and Lm of GOES-12, and the rest
are at the bottom of the ranking. The top two parameters not only include the variations
of ≥2 MeV electron fluxes in GEO orbit due to the external parameters (e.g., solar wind
parameters, the geomagnetic indices) but also contain the influence of MLT variations.
The parameters of AE, Kp, and V are very important to the prediction of ≥2 MeV electron
daily fluences [49–53], but they are unable to reflect the MLT influence on ≥2 MeV electron
fluxes. MLT of GOES-10 or GOES-12 ignores the influence of external parameters, so
does Lm of GOES-10 or GOES-12, because the variations of the external geomagnetic field
are ignored when using T89 model. The result of feature importance scores’ ranking is
consistent with the above analysis.

Therefore, log10 (fluxes) from GOES-10 and log10 (fluxes four hours ahead) from
GOES-10 are most important to the prediction of ≥2 MeV electron fluxes at the locations of
GOES-12. The linear correlation coefficients between both parameters and log10 (fluxes)
from GOES-12 are up to 0.903 and 0.924, respectively.

Afterwards, we will try different combinations of the above parameters as input
factors to develop the models predicting ≥2 MeV electron fluxes at different longitudes in
GEO orbit by using fully connected neural networks.



Remote Sens. 2021, 13, 3347 8 of 18

Figure 4. The ranking graph of the feature importance scores of each parameter.

2.4. The Fully Connected Neural Network

The fully connected neural network is a typical multilayered neural network, whose
basic units are neurons. Neurons are outlined in layers, including input layer, hidden
layers, and output layer generally. The input layer is in charge of receiving input data
and the output layer is utilized to obtain neural network output data. The hidden layers
are between the input and output layers, including one or multiple layers. As shown in
Figure 2a of Zhang et al. [54], each layer of the neural network has many neurons, neurons
between layers are all connected, and the neurons in the same layer are not related to each
other. The fully connected neural network has a very strong nonlinear fitting ability. It can
fit any function in theory and requires a lot of data during training [54–56].

In this study, we use the fully connected neural network to develop models by using
the Keras deep learning framework. Keras is a Python-based deep learning library devel-
oped by François Chollet for the ONEIROS project in 2015. With the framework, we can
focus on the adjustment of parameters of the neural network. We built a three-hidden-layer
fully connected neural network. The numbers of neurons in the hidden layer are 128, 128,
and 64, respectively. Each neuron receives inputs from all neurons of the previous layer
and sends its outputs to every neuron in the next layer. Each neuron consists of three parts:
weight, bias, and activation function. The weight and bias, which are obtained during
training, express the linear relationship of data distribution, and the activation function
expresses the nonlinear relationship of data distribution. The commonly used activation
functions are ReLU (Rectified Linear Unit) function [57], sigmoid function, softmax func-
tion, and tanh function. After testing, we finally chose the tanh function. In order to
preserve the uniformity of the dataset, the model normalizes the data before training.
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3. Results and Discussion
3.1. Modeling the Relationship of ≥2 MeV Electron Fluxes at Two Different Longitudes in
GEO Orbit

In this section, the data from January 2004 to October 2005 are used to model the
relationship of ≥2 MeV electron fluxes between 135◦ W and 75◦ W in GEO orbit by the
fully connected neural network with different combinations of input parameters. The input
training data are split into training and validation sets by the ratio of 3:1. The data from
November 2005 to December 2005 as the test set are utilized to evaluate these models,
and the input parameters of the best combination are selected.

3.1.1. The Models with Different Combinations of Input Parameters

In Section 2.3, the parameters to predict the ≥2 MeV electron fluxes, specifically log10
(fluxes), at the locations of GOES-12 (75◦ W) have been ranked according to the feature
importance scores computed by XGBoost. The most important parameter is log10 (fluxes)
from GOES-10 (135◦ W). In the following, the rest of the parameters will be combined
with it to develop models to predict log10 (fluxes) at the locations of GOES-12 (75◦ W)
by the fully connected neural network, and the best combination of input parameters for
modeling will be determined by the model performance.

The model performance is evaluated by the root mean square error (RMSE) and the
prediction efficiency (PE). They are defined as

RMSE =

√
1
n

n

∑
i=1

(pi − mi)2, (1)

PE = 1 − ∑n
i=1(mi − pi)

2

∑n
i=1(mi − m)2 , (2)

where mi and pi are the ith observation and prediction respectively, m is the mean value of
all observation samples, and n is the total number of samples. The smaller the RMSE or
the larger the PE, the better the model. In this study, the mi is the log10 (fluxes) from the A
satellite, and the pi is the log10 (fluxes) at locations of the A satellite predicted by models.

Table 1 lists the values of RMSE and PE of the models developed by the fully connected
neural network with different combinations of two input parameters. The combinations are
sorted by the values of PE. The order of PE values is just opposite to that of RMSE values.
Both indices show that the combination of log10 (fluxes) and MLT from GOES-10 (135◦ W)
has the best performance, PE up to 0.920 and RMSE as low as 0.2140. The combination of
log10 (fluxes) from GOES-10 (135◦ W) and MLT from GOES-12 (75◦ W) obtains the values
of PE and RMSE close to those of the best combination.

The following ranking order is the combination with Lm from GOES-10 (135◦ W) or
GOES-12 (75◦ W) and the external parameters. The results indicate that the parameters
from GOES-10 or GOES-12 satellites—for instance, MLT or Lm from GOES-10 (135◦ W)
or GOES-12 (75◦ W)—are more important than the external parameters, such as solar
wind parameters, geomagnetic disturbance indices, and magnetopause subsolar distances,
to predict log10 (fluxes) at the locations of GOES-12 (75◦ W), because the log10 (fluxes) from
GOES-10 (135◦ W) have included the influences of the external parameters on the ≥2 MeV
electron fluxes in GEO orbit. It also turns out that the model shows better performance
when using log10 (fluxes) from GOES-10 instead of log10 (fluxes four hours ahead) from
GOES-10. The reason is that the phase differences of ≥2 MeV electron fluxes between
GOES-10 (135◦ W) and GOES-12 (75◦ W) have been considered in the training process by
the fully connected neural network, and the variations of ≥2 MeV electron fluxes in GEO
orbit are not only related to the longitudes but also the external parameters, such as the
solar wind or geomagnetic disturbances [49,58–60].
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Table 1. The performances of models with different combinations of two input parameters.

Input Parameters PE RMSE

log10 (GOES-10 fluxes) + MLT (GOES-10) 0.920 0.2140
log10 (GOES-10 fluxes) + MLT (GOES-12) 0.912 0.2249
log10 (GOES-10 fluxes) + Lm (GOES-10) 0.839 0.3042
log10 (GOES-10 fluxes) + Lm (GOES-12) 0.810 0.3303

log10 (GOES-10 fluxes)+log10 (GOES-10 fluxes) 0.805 0.3344
log10 (GOES-10 fluxes) + N 0.799 0.3394

log10 (GOES-10 fluxes) + AE 0.797 0.3408
log10 (GOES-10 fluxes) + log10 (GOES-10 fluxes (four hours ahead)) 0.794 0.3431

log10 (GOES-10 fluxes) + V 0.793 0.3446
log10 (GOES-10 fluxes) + Bz 0.792 0.3455
log10 (GOES-10 fluxes) + Kp 0.785 0.3510
log10 (GOES-10 fluxes) + R0 0.781 0.3542
log10 (GOES-10 fluxes) + By 0.769 0.3641
log10 (GOES-10 fluxes) + Bt 0.754 0.3757
log10 (GOES-10 fluxes) + Pd 0.753 0.3762
log10 (GOES-10 fluxes) + Bx 0.723 0.3984

log10 (GOES-10 flux) + SYM-H 0.707 0.4098

In order to illustrate the effect of two-parameter combinations, we only use log10
(fluxes) from GOES-10 (135◦ W) to develop the model. To keep consistent with the number
of training parameters of other models, the second input parameter is also taken as log10
(fluxes) from GOES-10 (135◦ W). The values of PE and RMSE of this model are 0.805 and
0.3344, respectively. The results are similar to those from the combination of log10 (fluxes)
and log10 (fluxes four hours ahead) from GOES-10 (135◦ W). This also confirms that the
phase differences of ≥2 MeV electron fluxes between GOES-10 (135◦ W) and GOES-12
(75◦ W) have been considered in the training process. Compared with only log10 (fluxes)
from GOES-10 (135◦ W), the combination of log10 (fluxes) and MLT from GOES-10 (135◦ W)
improves the model performance greatly, but the combinations of log10 (fluxes) from
GOES-10 (135◦ W) with other external parameters reduce the model performance.

We also use the different combinations of three input parameters to develop models,
including log10 (fluxes) and MLT from GOES-10 (135◦ W), and the other parameters.
As listed in Table 2, the models with three input parameters reduce the model performance
compared with the model using log10 (fluxes) and MLT from GOES-10 (135◦ W). Therefore,
the best combination of input parameters is log10 (fluxes) and MLT at a fixed longitude in
GEO orbit to predict log10 (fluxes) at the other fixed longitude in GEO orbit by the fully
connected neural network.

If we use log10 (fluxes) and MLT from GOES-12 (75◦ W) to develop the model to
predict log10 (fluxes) at the locations of GOES-10 (135◦ W) by the fully connected neural
network using the same period of the above models, the PE and RMSE values of this model
are 0.927 and 0.2249, respectively.
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Table 2. The performances of models with different combinations of three input parameters.

Input Parameters PE RMSE

log10 (GOES-10 fluxes) + MLT (GOES-10) 0.920 0.2140
log10 (GOES-10 fluxes) + MLT (GOES-10) + MLT (GOES-12) 0.904 0.2348
log10 (GOES-10 fluxes) + MLT (GOES-10) + Lm (GOES-10) 0.899 0.2402

log10 (GOES-10 fluxes) + MLT (GOES-10) + N 0.898 0.2414
log10 (GOES-10 fluxes) + MLT (GOES-10) + Lm (GOES-12) 0.893 0.2476

log10 (GOES-10 fluxes) + MLT (GOES-10) + R0 0.893 0.2478
log10 (GOES-10 fluxes) + MLT (GOES-10) + AE 0.890 0.2509
log10 (GOES-10 fluxes) + MLT (GOES-10) + Kp 0.884 0.2582
log10 (GOES-10 fluxes) + MLT (GOES-10) + V 0.872 0.2709
log10 (GOES-10 fluxes) + MLT (GOES-10) + By 0.868 0.2754
log10 (GOES-10 fluxes) + MLT (GOES-10) + Bz 0.864 0.2797
log10 (GOES-10 fluxes) + MLT (GOES-10) + Bt 0.818 0.3234
log10 (GOES-10 fluxes) + MLT (GOES-10) + Pd 0.806 0.3334
log10 (GOES-10 fluxes) + MLT (GOES-10) + Bx 0.797 0.3408

log10 (GOES-10 fluxes) + MLT (GOES-10) + SYM-H 0.708 0.4093

3.1.2. Comparison with the Statistical Model by Linear Fitting

In Section 2.3, we determined that the linear correlation coefficient between log10
(fluxes) from GOES-10 or log10 (fluxes four hours ahead) from GOES-10 and log10 (fluxes)
from GOES-12 is higher than 0.90. This indicates that the model developed by the linear
fitting will also achieve good performance. Compared with this linear model, how much is
the performance of the best model in Table 1 (called A model) improved?

We also use the data from January 2004 to October 2005 to develop the linear model.
The fitting results are as follows:

y = 0.8809 ∗ x + 0.056, (3)

where y is the log10 (fluxes) at the locations of GOES-12 (75◦ W), and x is taken as the
log10 (fluxes four hours ahead) from GOES-10 (135◦ W) in order to eliminate the influence
of phase difference between both satellites about ≥2 MeV electron fluxes, as shown in
Figure 5a,b. The values of PE and RMSE of the linear model for the modeling data from
January 2004 to October 2005 are 0.857 and 0.3422, respectively, and they are 0.882 and
0.2598 for the test data from November 2005 to December 2005. PE of the linear model is
between the prediction results of A model and the model only using the input parameter
of the log10 (fluxes) from GOES-10 by the fully connected neural network.

If we use the log10 (fluxes) from GOES-10 (135◦ W) to predict the log10 (fluxes) at the
locations of GOES-12 (75◦ W) by the linear fitting, the values of PE and RMSE are 0.816
and 0.3882 for the modeling data and 0.832 and 0.3105 for the test data. Its performance is
worse than that of the above linear model using the log10 (fluxes four hours ahead) from
GOES-10 (135◦ W) due to the phase difference of ≥2 MeV electron fluxes between GOES-10
and GOES-12. If the phase differences of ≥2 MeV electron fluxes between GOES-10 and
GOES-12 are large enough, even up to 180◦, the performance of the model using the log10
(fluxes) from GOES-10 (135◦ W) will dramatically decrease due to the significant variations
of ≥2 MeV electron fluxes from GOES-10 and GOES-12 with MLT.

Figure 5 shows the comparisons of ≥2 MeV electron fluxes between GOES-10 (135◦ W)
and GOES-12 (75◦ W) observations and between GOES-12 (75◦ W) observations and the
predictions of the linear model or the fully connected neural network model. In Figure 5a–d,
the black dots represent the observations from GOES-12 (75◦ W), and the red dots are the
≥2 MeV electron fluxes from GOES-10 (135◦ W), GOES-10 (135◦ W) four hours ahead,
the predictions of the linear model using log10 (fluxes four hours ahead) from GOES-10
(135◦ W), and the predictions of the A model from the top to bottom panels, respectively.
The data in Figure 5a–d are plotted in the flux–flux coordinates in Figure 5e–h with black



Remote Sens. 2021, 13, 3347 12 of 18

dots on their respective right sides to show the linear relationship of observations or the
model results, and the red dots overlapped by black dots in Figure 5g,h show the linear
relationship between the observations and the model predictions using the modeling data
(from January 2004 to October 2005). The green lines, y = x, indicate that the observations
are completely consistent with the predicted results.

Figure 5. The comparisons of ≥2 MeV electron fluxes between GOES-10 (135◦ W) and GOES-12 (75◦ W) observations in
panel (a,b), and between the observations from GOES-12 (75◦ W) and the predictions of the linear model in panel (c) or the
fully connected neural network model in panel (d).

As shown in Figure 5e,f, when the ≥2 MeV electron fluxes from GOES-10 (135◦ W)
shifted by 4 h are taken as the prediction at locations of GOES-12 (75◦ W), the linear
correlation coefficient (0.9091) between predictions and GOES-12 observations is higher
than that (0.8023) without the time shift. However, when the fluxes are between 102

cm−2·s−1·sr−1 and 103 cm−2·s−1·sr−1, some of the predictions from the time shift deviate
further from the linear fitting results than those without the time shift. These cases occur
when the external parameters cause the sudden variations of ≥2 MeV electron fluxes
in GEO orbit. The method by time shift eliminates the phase differences of ≥2 MeV
electron fluxes between GOES-10 and GOES-12 but causes the external parameters to
correspond to two different satellites at the same time. The disadvantage of the method
by time shift is the same as the linear model. After the linear fitting, the predictions and
the observations are evenly distributed on both sides of the line y = x, especially for the
modeling data, as shown in Figure 5g. By the comparison in Figure 5g,h, the predictions



Remote Sens. 2021, 13, 3347 13 of 18

from A model are generally closer to the observations than those from the linear model,
whether using test data or modeling data. For testing data, the linear model can better
predict the variations of ≥2 MeV electron fluxes than the A model when the fluxes are
less than 102 cm−2·s−1·sr−1, the A model obviously attains better performance when the
fluxes are between 102 cm−2·s−1·sr−1 and 103 cm−2·s−1·sr−1, and the predictions from the
A model are generally a bit more than the observations from GOES-12 (75◦ W) when the
fluxes are more than 103 cm−2·s−1·sr−1. The range of the ≥2 MeV electron fluxes for the test
data is limited, and the prediction efficiency of the A model is only 0.038 higher than that
of the linear model. If we use the modeling data for evaluation, the prediction efficiency of
the A model is improved to 0.921 from 0.857 compared to that of the linear model.

For the predictions for the testing data by the A model in Figure 5h, the absolute
values of log10 (fluxes) relative errors are mainly within 10%, and the relative errors of log10
(daily fluences) are between −5.50% and 8.63%, their absolute values being within 5% for
93.2% of the time. For the predictions for the testing data by the linear model in Figure 5g,
the absolute values of log10 (fluxes) relative errors are mainly within 10%, and the relative
errors of log10 (daily fluences) are between −11.32% and 9.79%, their absolute values being
within 5% for 91.8% of the time. If we take log10 (daily fluences) from GOES-10 as those at
the locations of GOES-12 for the testing data, the relative errors of the log10 (daily fluences)
range from −15.34% to 5.05%, and their absolute values are within 5% for 71.4% of the time.

Although the performance of the A model is better than that of the linear model based
on the PE values, the relationship of ≥2 MeV electron fluxes between observations from
GOES-12 and the predictions from the A model for the testing data deviates from the lines
of y = x as shown in Figure 5h. If we use the testing data for modeling, the performance
of the model using the fully connected neural network will be better for the data from
November 2005 to December 2005. In addition, the model developed by the fully connected
neural network is only applicable to the area covered by the modeling data. Outside this
area, the prediction errors may be very large.

3.2. Modeling the Relationship between ≥2 MeV Electron Fluxes at a Fixed Longitude and at
Variable Longitudes in GEO Orbit

The alert of relativistic electron enhancement events in GEO orbit mainly depends on
GOES satellites, which maintain the two-satellite operation. The primary and secondary
satellites are mainly located at 75◦ W and 135◦ W. When the data of the primary satellite
at 75◦ W are unavailable, the data of the secondary satellite will be used for the alert.
In Section 2.2, we have proved that the ≥2 MeV electron daily fluences at 135◦ W and
75◦ W are different. It is not suitable to use the data at different locations for the alert of
relativistic electron enhancements by the same warning standard. This problem can be
solved by the above models in Section 3.1 because they realize the mutual transformation
of ≥2 MeV electron fluxes at 135◦ W and 75◦ W. However, GOES satellites are not always
at 135◦ W and 75◦ W; even the locations of some GOES satellites are constantly changing
during operation, as shown in Figure 1. Therefore, it is necessary to develop the model to
predict the ≥2 MeV electron fluxes at a fixed longitude by the data from any other longitude
in GEO orbit to achieve a unified warning standard for relativistic electron enhancement
events. In addition, it is also important to develop the model to predict the ≥2 MeV electron
fluxes at any longitude by the data from a fixed longitude to improve the effect analysis of
relativistic electron enhancement events on GEO satellites at different longitudes.

According to the data of GOES satellites, their locations are approximately between
135◦ W and 60◦ W and do not cover all longitudes of GEO orbit, so they are unable to
model the relationship between ≥2 MeV electron fluxes at a fixed longitude and at any
longitude in GEO orbit. However, the data of GOES-11 and GOES-12 can be used to
model the relationship between ≥2 MeV electron fluxes at 75◦ W and at 95.8◦ W–114.9◦ W
in GEO orbit, and this will prove that it is feasible to model the relationship between
≥2 MeV electron fluxes at a fixed longitude and at any longitude in GEO orbit if there are
enough data points.
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In 2004 and 2005, GOES-12 satellite is approximately at a fixed 75◦ W, and GOES-11
satellite varies between 95.8◦ W and 114.9◦ W, as shown in Figure 1. For modeling by
the fully connected neural network, the data from GOES-11 and GOES-12 satellites from
January 2004 to October 2005 are taken as a training set, and the data from November
2005 to December 2005 are the test set. We also use the three-hidden-layer fully connected
neural network with the tanh activation function and with 128, 128, and 64 neurons in three
hidden layers, respectively, and split the input training data into training and validation
sets by a ratio of 3:1.

Table 1 shows that the combination of the log10 (fluxes) and the MLT from the A
satellite and the combination of the log10 (fluxes) from A satellite and the MLT from the B
satellite are very important to predict the log10 (fluxes) at the locations of the B satellite.
For modeling the relationship between ≥2 MeV electron fluxes at a fixed longitude and at
variable longitudes in GEO orbit, the relative positions of the A and B satellites are also
very important based on physical analysis. Therefore, the δMLT between the A and B
satellites is also considered in the following modeling.

Table 3 lists the performances of models with the five combinations of training pa-
rameters to predict the log10 (fluxes) at a fixed longitude of GOES-12 by using the data
from GOES-11 with variable longitudes. The PE values of the five models using different
combinations as input parameters for the testing data are all about 0.90. The combination
of the log10 (fluxes) from GOES-11, the MLT of GOES-11, and δMLT between GOES-11 and
GOES-12 achieves the best performance with PE 0.907, but its advantage is not obvious.

Table 3. The performances of models to predict the log10 (≥2 MeV electron fluxes) at a fixed longitude
with different training parameters.

Input Parameters PE RMSE

log10 (GOES-11 fluxes) + MLT (GOES-11) 0.903 0.2312
log10 (GOES-11 fluxes) + MLT (GOES-12) 0.905 0.2293

log10 (GOES-11 fluxes) + MLT (GOES-11) + MLT (GOES-12) 0.902 0.2324
log10 (GOES-11 fluxes) + MLT (GOES-11) + δMLT 0.907 0.2263
log10 (GOES-11 fluxes) + MLT (GOES-12) + δMLT 0.906 0.2277

Table 4 lists the performances of models with the five combinations of training param-
eters to predict the log10 (fluxes) at variable longitudes of GOES-11 by using the data at a
fixed longitude of GOES-12. The PE values of the five models using different combinations
as input parameters for the testing data are all about 0.92. The combination of the log10
(fluxes) from GOES-12, the MLT of GOES-12, and the MLT of GOES-11 achieves the best
performance with PE 0.928, but its advantage is also not obvious.

Table 4. The performances of models to predict the log10 (≥2 MeV electron fluxes) at variable
longitudes with different training parameters.

Input Parameters PE RMSE

log10 (GOES-12 flux) + MLT (GOES-12) 0.922 0.2121
log10 (GOES-12 flux) + MLT (GOES-11) 0.923 0.2111

log10 (GOES-12 flux) + MLT (GOES-12) + MLT (GOES-11) 0.928 0.2034
log10 (GOES-12 flux) + MLT (GOES-12) + δMLT 0.923 0.2108
log10 (GOES-12 flux) + MLT (GOES-11) + δMLT 0.920 0.2191

From the results listed in Tables 3 and 4, both of the best models contain the infor-
mation of the relative positions of GOES-11 and GOES-12 satellites, but the improvement
of PE is only a little. This may be due to the fact that the differences of ≥2 MeV electron
daily fluences at different longitudes between 95.8◦ W and 114.9◦ W in GEO orbit are
not obvious. According to Figure 9 in Sun et al. [41], the ratios of ≥2 MeV electron daily
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fluences at 115◦ W to those at 95◦ W are in the range from 1.22 to 1.26 in one year. Based on
the models in Tables 3 and 4, we realize the predictions of ≥2 MeV electron fluxes at an
arbitrary longitude between 95.8◦ W and 114.9◦ W in GEO orbit through the conversion
with ≥2 MeV electron fluxes at 75◦ W. In addition, the PE values of models in Tables 3
and 4 are all up to 0.90. This supports the feasibility of modeling the relationship between
≥2 MeV electron fluxes at a fixed longitude and at any longitude in GEO orbit if there are
enough data points.

4. Summary and Conclusions

The energetic electrons in the Earth’s radiation belt, known as “killer electrons”, are
one of the crucial factors for the safety of geostationary satellites. Geostationary satellites
at different longitudes encounter different energetic electron environments. Therefore,
the predictions of ≥2 MeV electron fluxes at an arbitrary longitude in GEO orbit are very
important. Based on the data from GOES satellites, we verify the calibration consistency of
≥2 MeV electron fluxes from different GOES satellites, compare the ≥2 MeV electron dis-
tribution at different longitudes in GEO orbit, evaluate the importance of input parameters
for modeling by the extreme gradient boosting, and develop models for the relationship
of ≥2 MeV electron fluxes at two different longitudes and for the relationship between
≥2 MeV electron fluxes at a fixed longitude and at variable longitudes in GEO orbit by the
fully connected neural network. The conclusions are as follows.

According to the data of ≥2 MeV electron fluxes when GOES-10 and GOES-12 (or
GOES-11) satellites are close to each other, we verify the calibration consistency of GOES-10
with GOES-12 and GOES-11 by comparative analysis. Based on the ≥2 MeV electron fluxes
from GOES-12 (75◦ W) and GOES-10 (135◦ W) in 2004 and 2005, we obtain the differences
of ≥2 MeV electron fluxes at 135◦ W and 75◦ W. The ratios of the daily fluences from
GOES-10 (135◦ W) to those from GOES-12 (75◦ W) satellites are mainly in the range from
1.0 to 4.0 during this period, with an average of 1.92.

In order to select the important parameters for modeling the relationship of ≥2 MeV
electron fluxes at different longitudes in GEO orbit, the 17 input parameters, including
the data from GOES-10 (135◦ W), the data from GOES-12 (75◦ W), solar wind parameters,
the interplanetary magnetic field parameters, the geomagnetic indices, and magnetopause
subsolar distances, are evaluated for their importance to the ≥2 MeV electron fluxes of
GOES-12 by the eXtreme Gradient Boosting. According to the feature importance scores’
ranking computed by XGBoost, log10 (fluxes) from GOES-10 and log10 (fluxes four hours
ahead) from GOES-10 are most important to the predictions of ≥2 MeV electron fluxes at
the locations of GOES-12. The linear correlation coefficients between both parameters and
log10 (fluxes) from GOES-12 are up to 0.903 and 0.924, respectively.

After the evaluation of important parameters for modeling, the models with various
combinations of two or three input parameters are developed by the fully connected neural
network for the relationship of ≥2 MeV electron fluxes at two different longitudes in GEO
orbit. According to the root mean square error and the prediction efficiency of models
using the testing data, the combination of log10 (fluxes) and MLT from GOES-10 (135◦ W)
has the best performance to predict the ≥2 MeV electron fluxes, specifically log10 (fluxes),
at the locations of GOES-12 (75◦ W), with a PE up to 0.920 and RMSE as low as 0.2140.
The combination of log10 (fluxes) from GOES-10 (135◦ W) and MLT from GOES-12 (75◦ W)
obtains the values of PE and RMSE close to those of the best combination. The models with
three input parameters, including log10 (fluxes) and MLT from GOES-10 (135◦ W) and the
other parameter, reduce the model performance compared with the model only using log10
(fluxes) and MLT from GOES-10 (135◦ W).

Because the linear correlation coefficient between log10 (fluxes) from GOES-10 (135◦ W)
or log10 (fluxes) from GOES-10 (four hours ahead) and log10 (fluxes) from GOES-12 is very
high, we develop the linear model using log10 (fluxes) from GOES-10 (135◦ W) or log10
(fluxes four hours ahead) from GOES-10 (135◦ W). According to the values of PE for the
testing and modeling data, the linear model using log10 (fluxes four hours ahead) from
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GOES-10 (135◦ W) achieves better performance than that using log10 (fluxes) from GOES-10
(135◦ W), but its PE (0.882 for the testing data, 0.857 for the modeling data) is less than that
(0.920 for the same testing data, 0.921 for the same modeling data) of the model using the
log10 (fluxes) and MLT from GOES-10 (135◦ W) by the fully connected neural network.

The alert of relativistic electron enhancement events in GEO orbit mainly depends on
GOES satellites, which maintain the two-satellite operation. The primary and secondary
satellites are mainly located at 75◦ W and 135◦ W. However, GOES satellites are not always
at 135◦ W or 75◦ W, and even the locations of some GOES satellites are constantly changing
during operation. Therefore, we also develop models for the relationship between the
≥2 MeV electron fluxes at a fixed longitude and at variable longitudes in GEO orbit.
The values of PE of the five models using different combinations as input parameters
to predict the log10 (fluxes) at a fixed longitude (75◦ W) of GOES-12 by using the data
from GOES-11 with variable longitudes (between 95.8◦ W and 114.9◦ W) are all about 0.90.
The model with the input parameters of the log10 (fluxes) from GOES-11, the MLT of GOES-
11, and δMLT between GOES-11 and GOES-12 achieves the best performance. The values
of PE of the five models using different combinations as input parameters to predict the
log10 (fluxes) at variable longitudes (between 95.8◦ W and 114.9◦ W) of GOES-11 by using
the data at a fixed longitude of GOES-12 (75◦ W) are all about 0.92. The model with the
input parameters of the log10 (fluxes) from GOES-12, the MLT of GOES-12, and the MLT of
GOES-11 achieves the best performance. Based on these models, we realize the prediction
of ≥2 MeV electron fluxes at an arbitrary longitude between 95.8◦ W and 114.9◦ W in GEO
orbit through the conversion with ≥2 MeV electron fluxes at 75◦ W.

In the future, if there are enough historical data points of ≥2 MeV electron fluxes
at an arbitrary longitude in GEO orbit, the fully connected neural network can be used
to develop models to predict the ≥2 MeV electron fluxes at an arbitrary longitude in
GEO orbit by the real-time observation of ≥2 MeV electron fluxes from any GEO satellite.
This will improve the effect analysis of relativistic electron enhancement events on GEO
satellites at different longitudes.
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