
remote sensing  

Article

Automated Storey Separation and Door and Window Extraction
for Building Models from Complete Laser Scans

Kate Pexman 1,*, Derek D. Lichti 1 and Peter Dawson 2

����������
�������

Citation: Pexman, K.; Lichti, D.D.;

Dawson, P. Automated Storey

Separation and Door and Window

Extraction for Building Models from

Complete Laser Scans. Remote Sens.

2021, 13, 3384. https://doi.org/

10.3390/rs13173384

Academic Editor: Francesco Pirotti

Received: 6 July 2021

Accepted: 25 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
ddlichti@ucalgary.ca

2 Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada;
pcdawson@ucalgary.ca

* Correspondence: katherine.pexman@ucalgary.ca

Abstract: Heritage buildings are often lost without being adequately documented. Significant re-
search has gone into automated building modelling from point clouds, challenged by irregularities
in building design and the presence of occlusion-causing clutter and non-Manhattan World features.
Previous work has been largely focused on the extraction and representation of walls, floors, and ceil-
ings from either interior or exterior single storey scans. Significantly less effort has been concentrated
on the automated extraction of smaller features such as windows and doors from complete (interior
and exterior) scans. In addition, the majority of the work done on automated building reconstruction
pertains to the new-build and construction industries, rather than for heritage buildings. This work
presents a novel multi-level storey separation technique as well as a novel door and window detection
strategy within an end-to-end modelling software for the automated creation of 2D floor plans and
3D building models from complete terrestrial laser scans of heritage buildings. The methods are
demonstrated on three heritage sites of varying size and complexity, achieving overall accuracies of
94.74% for multi-level storey separation and 92.75% for the building model creation. Additionally,
the automated door and window detection methodology achieved absolute mean dimensional errors
of 6.3 cm.

Keywords: terrestrial laser scanning; point clouds; building reconstruction; feature extraction;
building information modelling

1. Introduction

Indoor modelling and 3D building reconstruction are important parts of various indus-
tries, including heritage management, construction, smart city modelling, and navigation.
In digital heritage, the advent of laser scanning has dramatically increased the ability to cre-
ate accurate 3D models for the purpose of archiving, public outreach, and creating heritage
building information models (HBIM). However, there is still room for improvement when
it comes to the automated creation of these building models. The representation of doors
and windows adds to the completeness of a 3D building model or 2D floor plan created
from a point cloud. In addition, the presence of multi-level floors and ceilings cannot be
dealt with by existing storey separation algorithms. The goal of this modelling project is
the generation of a complete building model including floors, ceilings, walls, doors, and
windows, along with novel detection methodologies for multi-level storey separation and
door and window detection.

Standard practice for the creation of 2D floor plans or 3D building models from point
clouds involves the manual tracing of distinguishable features in a CAD environment [1].
The point cloud is manipulated, and features such as walls, floors, ceilings, doors, and
windows are manually delineated by tracing along the outlines of the features. These
extracted features are then combined to create a building information model (BIM). This
practice introduces plentiful opportunities for human error and subjectivity. Subjective
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modelling occurs when a modeller’s possession or lack of knowledge affects the outcome of
the modelling process. This can influence the correctness and accuracy of the manually ex-
tracted models. In addition, this manual modelling strategy is tedious and time-consuming
to perform.

There are gaps in the current work on building modelling when it comes to the
automated separation of multi-level storeys from multi-storey buildings. The vast majority
of existing building reconstruction algorithms are designed to work on a single storey, as
this largely simplifies the modelling process. For multi-storey buildings, the individual
storeys must be separated before the modeling can begin. This has been successfully
accomplished through the use of vertical histograms for identifying the planar slabs
representing floors and ceilings within a multi-storey building. However, the presence of
multi-level storeys cannot be dealt with using current storey separation techniques. This
work presents a new method for the automated separation of multi-level building storeys.

Doors and windows are important when it comes to the creation of 2D floor plans
or 3D building models because they can help in applications such as navigation, emer-
gency simulations, and defining the contextual relationships between buildings and their
inhabitants. This last application is important when it comes to the modelling of heritage
buildings, how they have changed through time, and understanding how they were once
used. In some cases, doors and windows are manually added into a model after either a
manual or an automatic extraction of the walls has been completed [2,3]. The automated
methods that currently exist for the extraction of doors and windows often depend on
additional image-based datasets to accompany the point clouds. Existing methods are also
highly regularized and expect to detect doors and windows of predefined dimensions.
This work presents a new, non-regularized method for the automated extraction of doors
and windows from point clouds using only geometric information.

This paper begins with the description of previous work on both storey separation
and door and window extraction from point clouds in Section 2. The methodology of
the novel multi-level storey separation and door and window extraction are presented in
Section 3. The description of the heritage datasets is provided in Section 4, and the results
of the developed methodologies are presented in Section 5. Finally, conclusions are made
regarding the novel methodologies developed in this work in Section 6.

2. Related Work

From an automated modelling perspective, significant work has been done on both
the creation of 2D floor plans and 3D building models from point clouds. The majority
of previous work has focused on the implementation of data-driven methods for the ex-
traction of recognizable features from point clouds [4]. An array of statistical methods
such as the Hough Transform [5,6], RANSAC [1], PCA [7], and region growing [8] have
been used to perform point cloud segmentation for building reconstruction. More com-
monly, a combination of multiple statistical methods are employed to perform point cloud
segmentation [9,10]. Machine learning methods have been employed to segment and
classify building features from a point cloud [11], proving more successful than data-driven
methods in complex environments with high levels of occlusion but with high levels of
computational complexity [12,13].

2.1. Storey Separation

Storey separation involves breaking a large, multi-storey building down into individ-
ual storeys. The vast majority of building reconstruction algorithms have been designed
to work on one storey at a time, so when a complex dataset with more than one storey
needs to be modelled, the individual storeys are split up and each storey is processed by
the algorithm individually.

In previous work, separating multiple storeys from a single building has assumed
that the floor or ceiling can be represented by a single horizontal plane for an entire storey.
It has also been assumed in previous work that the floor and ceiling of each storey are
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perpendicular to the local gravity vector. The most popular method for storey separation
has focused on identifying the peaks and nadir sections in a vertical histogram [14–16].
They assume locations of the histogram peaks represent floor and ceilings of a buildings’
storeys, and the nadir sections represent the space between storeys. However, none of
these existing methods can perform automatic storey separation on multi-level storeys.

In complex buildings, it is possible to have multiple floor or ceiling heights within
the same storey. These design decisions add to the complexity of the storey-separation
process. In some cases where storeys vary in height or where boundaries vary from storey
to storey, the floor and ceiling of adjacent storeys can overlap. Therefore, it cannot be
assumed that all the points belonging to a floor or ceiling slab will fall within the same
vertical histogram bin. This calls for a more localized approach, individually reconstructing
each floor or ceiling slab in an iterative process and checking for coverage achieved by the
slab in relation to the dimensions of the building. Using the boundaries of the building
will help in correctly assigning the points to their respective floor or ceiling slab.

2.2. Door and Window Extraction

The problem of door and window detection has not been explored in as much depth
as other elements of indoor 3D building modeling and has only been examined on a dataset
specific basis. As noted by Babacan et al. [17], door detection has only arisen in very recent
studies. The detection of doors, extremely common indoor building elements, is useful
for understanding the environmental structure in order to perform efficient navigation or
to plan appropriate evacuation routes. In previous work, door and window detection for
indoor scenes captured from point clouds has had two main strategies: based on holes or
based on edges [18]. The first strategy is focused on finding holes within extracted planar
walls, either using point density analysis or ray tracing. The second is based on finding
edges within, most commonly, an image-based dataset and then connecting adjacent edges
using assumptions about the expected size and shape of existing window and door features.
However, holes in the dataset caused by occlusions need to be distinguished from holes
in the dataset caused by open doors or windows. This is a prevalent challenge in the
current state of door and window extraction, especially in as-built indoor modelling such
as heritage modelling, where the presence of clutter and occlusions is much higher than
that in new-build or construction modeling.

The starting point for most window and door extraction techniques is the identification
of holes or gaps within an extracted planar feature, as seen in [8,19]. The developed wall
line tracing algorithm in [8] uses PCA, and the wall opening algorithm uses region growing
to extend the detected features. In [19], the edges of these holes are detected using a least
squares fit to a line, and then segmented and classified into four sets of top, bottom, left,
and right to represent the outlines of door and window features. In [20], a voxel-based
visibility analysis using ray-tracing is performed to recognize openings in planar features.
In [21], a mobile laser scanning (MLS) point cloud is captured from an exterior perspective,
and scanline analysis is used to detect holes within the planes that could be door or window
candidates. These openings are found by recognizing patterns of repeating gaps in the
scanlines and then searching for collinear segments representing the edges of a door or
window feature.

Furthermore, the diagonal representations of an open door in the final point cloud
have been used in previous work, including [17], to help identify doors. The method
presented in [17] investigates the connectivity of the extracted line segments and uses the
anchor position of an open door to help identify one edge of a doorway. Most similar to the
method developed in this work is the computation of wall volumes presented in [19]. In
this method, wall volumes are found by determining a wall’s closest neighbour; however,
wall volumes are not employed when looking for window and door candidates.

Previous work that has focused on the extraction of windows and/or doors from laser
scan data has used a variety of assumptions. In some cases, such as [15], assumptions are
made about the expected dimensions of doors. Similar to [19], they assume that a door is
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lower than the height of the wall is which it is contained, whereas an opening extends the
entire height of the wall and reaches the ceiling. Assumptions in [20] include Manhattan-
World geometry, access to a priori architectural information concerning the building, and
that the doors and windows are a consistent size throughout the building. In [22], ground
plan contours are extracted using cell decomposition guided by a translational sweep
algorithm. Rules are defined by human knowledge about building features, and doors are
detected by assuming that they will produce gaps within a planar surface at a height of
one meter. A regularized approach is common, as the linear nature of doors and window
features can often be depended on. This is prevalent in the work of [8]. Another common
method of door detection is presented in [23], where knowledge of the scanner’s position
within an indoor environment is required. This method proved successful in determining
windows and doors from a single room; however, it was untested on larger, more complex
datasets with multiple rooms or hallways.

Many strategies employed for door and window extraction have made use of point
cloud data, images and/or color data. In [24], differences in visual brightness, infrared
opaqueness, and point density were used to detect windows from an interior perspective
using both LiDAR and images. This involves the use of a trained classifier to identify
window or glass regions based on the refractivity of their returns. Presented in [25] is a
data-driven method for geometric reconstruction of indoor structural elements using the
point cloud, and a model-driven method for the recognition of closed doors in image data
based on the generalized 2D Hough Transform to detect linear edges. The model-based
approach to door detection proves relatively robust to outliers and occlusion. Similarly,
in [26], the coplanarity of doors and walls is solved by using a colorized approach. This
method uses both the color information along with geometry to detect doors as openings
in voxelized planar walls. Of course, this assumes that the door is of a different color to the
surrounding wall plane.

2.3. Summary

As shown in this section, there are gaps in the current state-of-the-art for storey
separation and door and window detection. For storey segmentation, the improvement
comes from the development of an algorithm that can deal with multi-level storeys and is
not solely dependent on the location of the full bins in the vertical histogram. The door
and window extraction method developed in this work allows for the purely automatic
extraction of door and windows from wall-defined search spaces. This comes from having
complete indoor/outdoor scans of the building, as is the convention in heritage modelling.

3. Methodology

The novel strategies developed in this work for storey segmentation and door and
window detection are contained within the complete end-to-end modelling strategy for
automatically creating 2D floor plans and 3D building models from point clouds. The
complete methodology is presented in Figure 1.

The datasets used to test the developed methods were down sampled to 5 cm. This
was done to make the processing time tractable in an environment such as MATLAB, while
preserving the level of detail required to accurately determine the location of the floors and
ceilings. The impact of the down sampling on the results will be presented in Section 5.

In order to extract the door and window features, planar features must be detected
from the point cloud and used to create the search space. This starts by rotating the point
cloud to align with the cardinal X and Y directions. It is assumed that the Z direction
is parallel to the local gravity vector, ensured by leveling the laser scanner at each scan
location. A 2D PCA-based rotation is used to rotate to data around the Z axis to align
with the cardinal X and Y directions. In this work, it is assumed that the detected building
features are planar and align with the cardinal directions of the dataset.
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3.1. Storey Separation

The storey separation algorithm developed in this work employs a vertical histogram
to identify horizontal planar surfaces. A vertical histogram illustrates the distribution of
points by representing the horizontal structures as bins with large counts, while vertical
structures such as walls are depicted as bins with low counts. In addition, objects such
as furniture can create local maxima in the vertical histogram. Two examples of vertical
histograms of buildings with single level and multi-level storeys are presented in Figure 2.
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multi-level storeys.

Figure 2 shows the difference in vertical histograms between a building with three single-
level storeys (Figure 2a) compared to a building with four multi-level storeys (Figure 2b). It is
evident from Figure 2 that the heights of full bins extracted from a vertical histogram are
not enough to identify multi-level floor and ceiling slabs.

In this method, the histogram bins with the most points are extracted from the vertical
histogram. A bin size of 3 cm is used for the desired level of detail to be realized. This
value was determined through manual experimentation. Smaller bin sizes tended to make
the problem intractable by subdividing the planes unnecessarily, while larger bin values
grouped overlapping ceiling and floor planes together. In addition, non-level floors found
in heritage structures exacerbated the problem. In this work, full bins are defined as those
containing more than three scaled median absolute deviations (MAD) away from the
median. The MAD is a more robust measure of the standard deviation of a series of data
when detecting outliers [27] and can be calculated as follows:

MAD = median(|ai −median(a)|) (1)

where ai is the number of points in the bin i = 1, 2, . . . N total bins and a is an N × 1 vector
containing the number of total points in each bin of the vertical histogram.

These full bins are transformed into binary images, presented in Figure 3, and a con-
nected components procedure is performed. Each full bin “slice” of the vertical histogram
is converted into a binary image. This is done by voxelizing the matrix into a 10 cm× 10 cm grid.
If a grid square is occupied, it is assigned a value of one, and if a grid square is unoccupied,
it is assigned a value of zero. In a binary image, connected components are groups of pixels
whose edges or corners are touching. Connected components are used to determine if
the extracted plane has many connected points, most likely representing a floor or ceiling
slab. This was done to ensure that furniture planes were not included in the floor and
ceiling segments, as it is possible that planar returns from desks or tabletops can create full
histogram bins at neither a floor nor a ceiling level.
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Black represents the portions of the floor and ceiling that were successfully reconstructed, while
white represents the gaps in the floor and ceiling slabs.

The points in each full bin are distributed into a 10 cm × 10 cm grid space. This
grid space was chosen based on the average wall thickness exhibited by the point cloud.
The size of the grid was consistent throughout the three datasets tested. An iterative
procedure is then performed to compute the number of grid cells that overlap between
neighbouring full bins. This assumes that a floor or ceiling plane, even if it is not all at
the same level, will possess coverage (occupied grid cells) for the majority of the building
dimensions. The overlap percentage is the number of repeating occupied grid cells between
two neighbouring horizontal planes. In this step, planes are combined until an overlap
percentage above a predetermined threshold is achieved. At this point, a new floor or
ceiling slab is initiated and the process continues until it has assigned all the detected
planes into either a floor or ceiling section. The iterative slab construction is illustrated in
Figure 4, showing the four combined planes that make up a single floor slab for the third
storey of the Old Sun Main Building.

The four sections shown in Figure 4 are merged to form the complete floor slab. Holes
are filled in using the mean height of the surrounding points. Finally, the floor and ceiling
slabs are matched with their respective ceiling or floor based on the dimensions of their
boundaries. Here, the assumption is made that the boundary of the floor and ceiling on
any storey should be the same. If the boundary sizes are different, as seen in Figure 5a,b,
the smaller of the two boundaries is taken and matched onto the respective floor or ceiling
slab. The points existing outside of the red boundary seen in Figure 5a are assumed to
belong to the neighbouring storey and are added to the ceiling slab of the lower storey. In
this way, the new storey separation method can deal with storeys where the floor or ceiling
slab overlaps with the upper or lower floor or ceiling slab of another storey.
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Figure 4. Old Sun Main Building Storey 3: (a) Floor slab constructed from four planar slabs (magenta,
blue, green, and red) extracted from the vertical histogram; (b) The vertical histogram of the floor slab.

Once the floor and ceiling planes have been correctly identified, the point cloud is
split up into single-storey point clouds by finding the points occurring between these
extracted floor and ceiling slabs. To do this, an alpha shape boundary is computed using
the floor and ceiling slabs for each storey, and the entire dataset is searched for points that
are located within the detected floor and ceiling slabs. Once these individual storeys have
been created, the algorithm can continue the point cloud modelling process.
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3.2. Data Cleaning and Feature Isolation

The next step is to remove clutter such as furniture and false returns from the single-
storey point clouds. To achieve this, the voxel size was set to be 10 cm, again based on the
average thickness of the walls observed in the point clouds. Voxels representing vertical
features such as walls should contain more points, whereas voxels representing horizontal
features such as ceilings and floors should contain fewer points, thus representing a
‘thin layer’. These thin layers, voxels with less than 10 points, are removed as they do
not represent building features. The voxel space representation of the data was further
used for removing floating points—voxels that were occupied but were surrounded by
empty voxels.

Curvature and normal direction are used to further isolate the building features. Cur-
vature measures the rate of change of a surface normal and can be computed from the
eigenvalues, λ, extracted from the covariance matrix, as shown in Equation (2) [9]:

Curvature =
λ0

λ0 + λ1 + λ2
(2)

where λ2 > λ1 > λ0. Eigenvalues indicate the variance in the principal directions.
In addition, the direction of the normal, as determined by the direction of the smallest

eigenvector, is used to establish the orientation of the neighbourhood of points within the
dataset. In this case, the curvature and normal direction are computed for a neighbourhood
of points in order to evaluate the planarity and orientation of the neighbourhood of the
seed point. A neighborhood size of 100 points was experimentally determined to give the
best estimates for curvature and normal direction. If the curvature value is low, the point
likely belongs to a planar surface. In addition, if the direction of the normal vector of the
neighbourhood of points is perpendicular to the local gravity vector, then the seed point
likely belongs to a vertical planar segment, such as a wall.
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3.3. Wall Detection

With the building features isolated, the wall detection procedure can begin. The use
of the M-estimator Sample Consensus (MSAC) in this work allows for the detection of
vertical planar structures. MSAC is a modification of the more well-known RANSAC, first
introduced by Fischler and Bolles in 1981 [28] as a parameter estimation method for a
given model with a large number of outliers. In the original formulation of RANSAC, the
consensus set was ranked by its cardinality (the total number of inliers), and the consensus
set with the largest number of inliers was deemed the best CS. However, the dependence
on cardinality can be improved upon through the use of M-estimators [29], which leads to
the RANSAC offshoot used in this work: M-estimator Sample Consensus (MSAC).

The instantiation of MSAC used in this work was developed by Marco Zuliani [30] in
MATLAB and modified by the first author of this paper. For the purposes of this work, only
vertical wall segments are desired, so the MSAC algorithm was modified to only accept
consensus sets that form a vertical wall based on the direction of its normal vector. The
MSAC method used to perform the wall detection allows for a noise standard deviation, δ,
to be defined by the user. In this case, δ was defined to be 0.01 m, which tended to give
wall estimates with thicknesses between 0.05–0.15 m, corresponding to the observed wall
thickness and previously defined voxel size.

3.4. Door and Window Extraction

The methodology to detect window and door features utilizes the search space defined
by two walls and finds the points located between them. The search space is defined
between neighbouring planar segments detected from the iterative MSAC procedure. The
nearest neighbouring wall has a normal that points in the same direction as the seed wall.
Each planar segment in the series of potential nearest neighbour candidates is first tested
to see whether it is parallel to the seed segment. Once the parallel planar segments have
been identified, the one nearest the seed segment is chosen as the nearest neighbour. This
process continues until all segments have either been assigned a nearest neighbour segment
or are determined to have no neighbours.

Once the walls have been detected and assigned a nearest neighbour(s), they can be
used as bounding boxes in which to look for window and door features. If it is assumed
that both sides of an interior or an exterior wall are captured, and if a door or window
feature is located within that wall, the points belonging to the door or window will lie
within the space defined by either side of the captured wall. This concept can be visualized
using Figure 6, where the neighbouring walls and the identified points between those walls
are presented.

The door and window candidates are split into clusters based on a histogram of point
density in both the horizontal and vertical directions. Using a manually determined bin size
of 10 cm, consistent with the voxel size used earlier, histograms were computed for each
series of points occurring between two neighbouring wall segments. Points are clustered if
there are empty bins in the histogram occurring between full bins. In this way, the doors
and windows are identified and false candidates are removed. An illustration of these
vertical and horizontal density histograms is shown in Figure 7.

For windows, the minimum dimension is 0.38 m with a minimum area of 0.35 m2. For
doors, the minimum width is 0.80 m and the minimum height is 1.98 m. These dimensional
constraints were obtained from the common door and windows sizes defined by the
National Building Code of Canada [31]. Although new buildings must follow the National
Building Code of Canada in their construction, it must be remembered that many heritage
buildings were constructed before the use of building codes was commonplace. This adds
to the challenge of modelling heritage building features because anomalies can exist where
door or window sizes fall outside of those defined by a modern building code. However,
for the three buildings modelled in this project, the vast majority of the door and window
features fell within these guidelines.
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Finally, the detected walls, door, and windows are represented by their extremities
for translation to the CAD model. For 2D shapes, the minimum and maximum values of
a feature’s X and Y coordinates are stored. For 3D shapes, the minimum and maximum
values of a feature’s X, Y, and Z coordinates are stored. This allows for the representation
of simple planar features in the 2D or 3D CAD model.
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Figure 7. Door and window candidates: (a) extracted points representing two window features, (b) horizontal density
histogram, and (c) vertical density histogram.

3.5. Quality Assessment

The success of the proposed methods was quantified using precision, recall, and accu-
racy measures. The ground truth model construction followed the conventional building
model extraction techniques of tracing over features and recording their dimensions. The
comparison between the truth model and the calculated model can illustrate the successes
and challenges of the developed methods. Previous work, including [32–34], used a truth
model to evaluate the success of their building modelling methodologies. In the work
presented here, the quality of the detected windows and doors will also be evaluated
in detail by comparing the calculated dimensions of the doors and windows to the true
dimensions of the doors and windows, following examples of precision and recall analysis
from [17,24–26].

This truth model was compared to the calculated model and the precision, recal, and
accuracy values were computed as follows.

Precision =
Tp

Tp + Fp
(3)

Recall =
Tp

Tp + Fn
(4)

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(5)

where Tp are true positives (points contained in both the calculated and the truth model),
Fp are false positives (points contained in the calculated model but not in the truth model),
Fn are false negatives (points contained in the truth model but not in the calculated model),
and Tn are true negatives (points contained in neither the calculated model nor the truth
model). If the points within the features modelled by the algorithms are “calculated”,
and the points within the features produced by the truth model are “true”, then precision
represents the calculated walls that are true, while recall represents the number of true
walls that were calculated. Accuracy represents the total number of correctly classified
points over the total number of points in the point cloud. Values close to 1, or close to 100%,
for precision, recall, and accuracy are desirable.

4. Dataset Description

Point cloud datasets from three Canadian heritage sites were used to test the developed
algorithms. This included the Royal Canadian Corps of Signals Transmitter Station (Signal
House) on Qikiqtaruk/Herschel Island, Territorial Park, Yukon; the Jobber’s House in Fish
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Creek Provincial Park, Alberta; and the Old Sun Community College, formerly the Old Sun
Residential School located on Treaty 7 land and belonging to the Siksika Nation, one of the
three nations of the Blackfoot Confederacy. The scans were collected with a combination of
the Z + F IMAGER 5010X, Z + F IMAGER 5016 and the Leica BLK360, and registered using
targeted and cloud-based registration in Z+F Laser Control.

4.1. Signal House, Qikiqtaruk/Herschel Island, Territorial Park

The dataset used for development of the algorithm is the Signal House. Located in
the Canadian Arctic, Qikiqtaruk has been in use by Inuvialuit and Euro-North American
groups for over 800 years. The building was erected by the Royal Canadian Corps of
Signals in 1930 and used as a transmitter station connecting the parts of the Yukon and
the Northwest Territories to southern Canada. Over time, the building has undergone
renovations to accommodate North West Mounted Police as well as Territorial Park staff
and scientists. The building was scanned in the summers of 2018 and 2019 as a part of a
larger scanning project to digitally preserve many of the historic buildings on the island
that are subject to the detrimental effects of climate change, the melting of permafrost, and
rising sea levels. The terrestrial laser scan of the Signal House took approximately four
hours, with a total of 20 scans. An image of the Signal House is included in Figure 8.
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Figure 8. Signal House, Herschel Island—Qikiqtaruk.

This dataset was chosen as it exemplifies the type of wood frame structure commonly
found in heritage buildings across western Canada. The approximate dimensions of the
Signal House are 6.5 m × 8 m × 3 m. It is a simple building, with one storey and four
main rooms. The building has one exterior door, four interior doors, and five windows.
Although the layout of the building is simple, the rooms contained a large amount of
furniture. This helped to illustrate the effectiveness of the door and window extraction
method when subjected to clutter and occlusions.

4.2. Jobber’s House, Fish Creek Provincial Park

The second dataset used to illustrate the suitability of the developed algorithm to
model heritage buildings is the Jobber’s House. Located in Fish Creek Provincial Park just
south of Calgary, Alberta, the house was part of a larger ranch homesteaded in 1902. The
name “Jobber” refers to the head herdsman who was responsible for repairs around the
ranch. The building was scanned in May 2019. The terrestrial laser scan of the Jobber’s
House took approximately eight hours, with a total of 40 scans. An image of the building
captured during the scanning is included in Figure 9.
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Figure 9. Jobber’s House, Fish Creek Provincial Park.

The building contains two storeys and was therefore a useful test of the storey sepa-
ration algorithm developed in this project. The Jobber’s House has windows on all sides,
a front and back door, and a covered front porch. The wood construction and lack of a
foundation make the building particularly susceptible to deterioration and gradual shifting
over time. The approximate dimensions of the Jobber’s House are 7.5 m × 8 m × 7 m. The
dataset has intermediate complexity when compared to Old Sun and the Signal House.
In addition, when the scan was captured, the Jobber’s House had little to no furniture in
many of the rooms, and therefore was able to illustrate the success of the algorithms in a
building with minor clutter and occlusions when compared to the major levels of clutter
present at both the Signal House and Old Sun.

4.3. Old Sun Residential School

The Old Sun Community College, formerly the Old Sun Residential School, was
operated by the Anglican Church as an Indian Residential School from 1929–1971. The
building has three floors and a large basement, totalling approximately 1200 square meters.
This point cloud dataset was collected in August 2020. The terrestrial laser scan of the
Signal House took 9 days, with a total of 300 scans. The captured point cloud is presented
in Figure 10.
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The building was split into three sections to simplify the modelling and the presenta-
tion of results. All sections of Old Sun have storeys with multi-level floors and/or ceilings.
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The main building has a long central hallway flanked by two classrooms on either end.
The classrooms are two steps up (approximately 30 cm) from the hallway, and therefore
have multiple floor and ceiling levels. The approximate dimensions of the Old Sun main
building are 45 m × 20 m, with four storeys, the Old Sun rear building is 22 m × 30 m,
with two storeys, and the Old Sun annex is 9.5 m × 12 m, with three storeys. The height of
the various sections of the building ranges from 3 m to 14 m. These sections are illustrated
in Figure 11.
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5. Results and Discussion

The storey separation algorithm and the door and window detection algorithm were
tested individually and as part of the end-to-end modelling solution. The results of these
tests are presented in the following sections.

5.1. Storey Separation

A cross section of the main building and the annex of the Old Sun School is presented
in Figure 12a, illustrating the multiple heights of the floor and ceiling of the third storey
of the main building, as well as the overlap in heights of the third storey and the fourth
storey of the main building. The significant level of clutter present in the building is also
visible in Figure 12a. The complete vertical histogram for the Old Sun Main Building is
presented in Figure 12b. The vertical histogram for the third storey of the Old Sun Main
Building showing multiple floor and ceiling heights is presented in Figure 12b.
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Figure 12. (a) Cross section of Old Sun Main Building with Storey 3 outlined in green; (b) Vertical histogram for Old Sun
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Some sections of the third storey ceiling and the fourth storey floor are equal, shown
by the extended full bin at the top of Figure 12b. It is necessary to use the boundary
extraction method to match the outline of the ceiling and floor to ensure that every floor
point has a corresponding ceiling point located above it. If it does not, then the point likely
belongs to the lower storey, in this case the storey 3 ceiling. To illustrate the results for the
storey separation procedure of the Old Sun Main Building, the reconstructed floor and
ceiling slabs for storey 3 and storey 4 are presented in Figure 13.
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Figure 13. Results for storey separation of Old Sun; (a) Fourth storey floor; (b) Fourth storey ceiling;
(c) Third storey floor; (d) Third storey ceiling.

In Figure 13, the coverage for the multi-level floor and ceiling slabs of storey 3 and
storey 4 shows almost all sections correctly reconstructed. The two stairwells located at
the bottom of Figure 13a–c are empty because there was no single floor or ceiling plane
to reconstruct. In addition, is can be seen from Figure 13 that the coverage achieved on
the ceiling slabs is better than the coverage achieved on the floor slabs. This is because
furniture sits on the floor and obstructs the scanner from collecting points, especially in
cluttered buildings.

Additional results for the storey separation methodology are presented in Table 1. For
the storey separation method, three sets of floor and ceiling slabs were extracted from the
Jobber’s House, the Old Sun main building, and the Old Sun rear building. These datasets
were chosen because the second storey of the Jobber’s House represented a tilted floor and
ceiling, while both the third storey of the Old Sun main building and the second storey of
the Old Sun rear building represented multi-level floor and ceiling slabs.

Table 1. Storey separation results.

Dataset Sample Size (# Points) Precision Recall Accuracy

Jobber’s House Storey 2 16,491 87.93% 57.94% 94.27%

Old Sun Rear Building Storey 2 54,593 93.42% 90.94% 96.30%

Old Sun Main Building Storey 3 212,517 85.65% 95.80% 93.65%

The algorithm was designed to deal with multi-level floor and ceiling slabs, as seen in
the third storey of the Old Sun main building and the second storey of the Old Sun rear
building. The results in Table 1 show successful results for both the Old Sun storeys, with
accuracy values of 93.65% and 96.30%. Low values for recall were achieved for the second
storey of the Jobber’s House due to the presence of a tilted floor and ceiling plane. The
floor and ceiling of the second storey of the Jobber’s House were tilted by approximately
1.5◦. This caused inaccuracies in the developed floor and ceiling extraction method. This
is a possible scenario, especially in heritage buildings; however, the algorithm was not
designed to deal with tilted floors and ceilings, hence the poor results for recall.

5.2. Door and Window Extraction

Four datasets were chosen for analyzing the performance of door and window extrac-
tion as well as floor plan and building model creation. These four datasets possess varying
characteristics such as size, complexity, level of clutter, and construction method. The
number of doors and windows contained within the truth model compared to the number
of doors and window in the calculated model for each of the four datasets is presented in
Table 2.
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Table 2. Door and window extraction results.

Dataset

Doors Windows
False

DetectionsTruth
Model

Calculated
Model

Truth
Model

Calculated
Model

Signal House 5 5 5 5 0

Jobber’s House Storey 1 6 5 4 4 1

Old Sun Annex Storey 3 5 3 9 8 1

Old Sun Main Building Storey 3 16 2 48 35 8

The performance of the door and window extraction algorithm was better on datasets
with lower complexity, such as the Signal House and the Jobber’s House. In addition, the
algorithm performed well when detecting the windows of the Old Sun Annex, a promising
result given the thickness of the exterior brick walls. The door and window detection
algorithm struggled on the third storey of the Old Sun Main Building. The algorithm
did not successfully detect the doors along the long narrow hallway due to the lack of
consistent planes due to planar surfaces affixed to the wall such as notice boards in the
hallway and smart screens in the classrooms.

The door and window extraction method was further tested on the doors and windows
from the Signal House dataset. The calculated doors and windows were compared to the
true dimensions of the doors and windows measured from the point cloud. The difference
between the width and height of the doors and windows for the calculated model and the
truth model are presented in Table 3.

Table 3. Door and window dimensions for the Signal House.

Feature Width Difference (m) Height Difference (m)

Window 1 0.131 −0.036
Window 2 0.342 −0.069
Window 3 0.030 −0.013
Window 4 0.093 0.056
Window 5 −0.034 0.056

Door 1 0.023 0.044
Door 2 0.024 −0.045
Door 3 0.016 0.018
Door 4 0.029 −0.066

Absolute mean difference: 0.080 0.045

Sub-decimeter results were achieved for the automated extraction of doors and win-
dows. The extracted door dimensions are slightly more accurate than the windows due
to the reduced presence of glass-caused outliers. As seen from the values in Table 3, the
dimensional estimates were commonly larger than the true value, indicating that the
histogram-based clustering method tending to over-estimate the size of a window or door
feature. This comes from the 10cm size of the histogram bin that was used to cluster
the points.

5.3. 2D Floor Plan and 3D Building Model Creation

The 2D floor plans and 3D building models were calculated following the methodology
described by Figure 1. The calculated model was then compared to a truth model to
quantify the accuracy of the result. The 2D floor plan truth model and calculated model are
presented for the first storey of the Jobber’s House in Figures 14a and 14b, respectively.
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As seen in Figure 14b, the majority of the walls, windows, and doors have been
successfully extracted by the automated method. Furniture located along the left central
wall and the wall separating the kitchen from the rear room at the bottom of Figure 14b
caused the algorithm to miss some wall segments. However, all the doors and windows
were successfully extracted, with only one false detection, likely caused by the presence
of clutter.

The algorithm creates 2D floor plans and 3D building models simultaneously. The
building model created for the Signal House is presented in Figure 15.
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As seen in Figure 15, the vast majority of the walls, as well as the doors and windows,
of the Signal House have been correctly detected by the algorithm. All the windows have
been detected, and four of five doors have been detected, with no false detections. The fifth
door was not detected because it was located within a very small wall segment that the
algorithm was not able to reconstruct.

The 2D floor plans and 3D building models were produced for all storeys of all
buildings; however, only some were compared against a truth model to analyze the
accuracy of the solution for building storeys with varying size, complexity, presence of
clutter, and wall thicknesses. The results for the tested models are presented in Table 4.
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Table 4. 2D floor plan and 3D model creation results.

Dataset Sample Size (# Points) Precision Recall Accuracy

Signal House 82,607 96.70% 96.20% 96.14%
Jobber’s House Storey 1 106,229 92.47% 92.86% 94.05%
Old Sun Annex Storey 3 118,052 92.67% 92.94% 92.72%

Old Sun Main Building Storey 3 605,761 82.64% 86.86% 88.10%

The datasets increase in size and complexity throughout Table 4. Due to its small
size and low complexity, it is expected that the Signal House will have the best results for
precision, recall, and accuracy. The quality measures for the Jobber’s House show a slight
decrease relative to those of the Signal House, but are all still greater than 92%. Similar
results were achieved for the Old Sun Annex. The dimensions of the Old Sun Annex are
only slightly bigger than the Jobber’s House, and the levels of complexity are comparable.
The main difference between these two datasets is the presence of thick exterior walls
from Old Sun’s brick construction. These two datasets were compared to see if the large
difference in thickness between interior walls and exterior walls would have an impact on
the results of the modelling. As seen in Table 3, the results of storey 1 of the Jobber’s House
and storey 3 of the Old Sun Annex are extremely similar. This is a good indicator that the
algorithm can deal with varied wall thickness throughout a building. Finally, storey 3 of
the Old Sun Main Building shows a dramatic increase in size, complexity, and level of
clutter when compared to the other three datasets. As expected, the results have shown a
decrease in quality for precision, recall, and accuracy.

5.4. Down Sampling

Point clouds often contain millions of points, and down sampling of a dataset must be
performed in order to run various building modelling algorithms in order to reduce the
computational load. The down sampling process should not compromise the accuracy of
the building modelling process. Testing was therefore performed to quantify any effects
of down sampling by varying the minimum distance between points and comparing the
respective quality measures. A value of 2.5 cm was chosen as the first down sampling
distance as this was the minimum value required to reduce the point cloud enough to run
through the programming environment. The down sampling distance was then increased
using an increment of the smallest distance. The results of the building model creation
were used to determine the quality measures for each down sampling distance. The effects
of different down sample distances on quality measures of precision, recall, and accuracy
are presented in Figure 16.
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It is clear from Figure 16 that the down sample distance of 5 cm was the best choice
in terms of maximizing quality measures and minimizing processing time. The quality
measures, including recall and accuracy, began to decline when the distance between points
was larger than 5 cm. In addition, the processing time dropped off steeply from 2.5 cm to
5 cm, and then continued to decrease marginally.

6. Conclusions

The methods developed in this work aim to automatically reconstruct basic building
features. The development of a novel strategy for the automated separation of multi-level
storeys and the automated extraction of doors and windows will remove steps from the
modelling process that would typically be performed manually. The automation of these
steps of the building modelling process will eliminate much of the time, cost, and errors
associated with manual modelling. The final models created in this work can be directly
imported into a CAD environment such as Autodesk for further editing and manipulation
depending on the desired application.

The datasets tested in this work were collected from heritage buildings located in
western Canada; however, the algorithm will work on non-heritage buildings. In addition,
the method has been proven successful with varying sizes, varying complexity, the presence
of clutter, and different construction types. The algorithms developed in this work will
reduce the amount of manual modelling that has to be performed in order to transform
point clouds into floor plans and building models.

Future work includes the automated detection of tilted storeys, a possible building
characteristic in heritage buildings, as well as the quantification of clutter levels within
a building. Dealing with the presence of clutter, most often in the form of furniture, will
improve the quality of the extracted results.
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