Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China
Abstract
:1. Introduction
2. Synoptic Weather Conditions, Data, and Model Setup
2.1. Background
2.2. Data
2.3. Model Setup
3. Results
3.1. LSCP Comparison
3.2. Model Validation
3.3. Impact of LSCPs on Air Temperature
3.4. Impact of LSCPs on Surface Energy Balance
3.5. Impact Comparison of Different LSCPs on Air Temperature
4. Conclusions
- MODIS albedo and LAI, and CLDAS SM can better describe spatial distribution characteristics, and match fine weather forecasts and high-resolution simulations than the default climatology albedo and LAI can. The area-averaged accuracy of CLDAS SM data was higher by 12.36% to 18.09% than that of the ERA SM.
- The control simulation WRF_CTL could capture the spatial distribution of Ta and Tamax, but overestimated the Ta and Tamax with a warming bias of 1.05 and 1.32 °C, respectively. Sensitivity simulation WRF_CHAR improved the simulated Ta and Tamax by 33.08% and 29.24%, respectively.
- Comparing the WRF_CTL simulation, the WRF_CHAR simulation presented an area-averaged SH difference of −9.25 Wm−2, LH difference of −9.25 Wm−2, and Rn difference of 3.57 Wm−2. The updated albedo, LAI, and SM changed the partition of surface energy and then resulted in a change of Ta and Tamax.
- Soil moisture is the main factor to improve warming bias in hot weather in EC based on the scatter diagram and the spatial correlation coefficient of albedo, LAI, and SM10 and Ta.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J.; Hijioka, Y.; Mehrotra, S. Impacts of 1.5 °C of Global Warming on Natural and Human Systems; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Shi, J.; Ding, Y.H.; Cui, L.L. Climatic characteristics of extreme maximum temperature in East China and its causes. Chin. J. Atmos. Sci. 2009, 33, 347–358. [Google Scholar]
- Lin, X.; Guan, Z.Y. Temporal spatial characters and interannual variations of summer high temperature in East China. J. Nanjing Inst. Meteorol. 2008, 31, 1–9. [Google Scholar]
- Zhang, J.; Wu, L. Land-atmosphere coupling amplifies hot extremes over China. Chin. Sci. Bull. 2011, 56, 3328–3332. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Ban-Weiss, G.A. Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. J. Geophys. Res. Atmos. 2016, 121, 1511–1531. [Google Scholar] [CrossRef]
- Xiao, H.; Liu, Y.; Li, L.; Yu, Z.; Zhang, X. Spatial variability of local rural landscape change under rapid urbanization in Eastern China. ISPRS Int. J. Geo-Inf. 2018, 7, 231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote sensing of the urban heat island effect in a highly populated urban agglomeration area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Zhu, W. WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmos. Res. 2014, 138, 364–377. [Google Scholar] [CrossRef]
- Zeng, X.-M.; Wang, B.; Zhang, Y.; Song, S.; Huang, X.; Zheng, Y.; Chen, C.; Wang, G. Sensitivity of high-temperature weather to initial soil moisture: A case study using the WRF model. Atmos. Chem. Phys. Discuss. 2014, 14, 9623–9639. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhu, J.; Guo, Y.; Luo, N.; Fu, Y.; Wang, T. Impact of land surface processes on a record-breaking rainfall event on 6–7 May 2017, in Guangzhou, China. J. Geophys. Res. Atmos. 2021, 126, e2020JD032997. [Google Scholar] [CrossRef]
- Council, N.R.; Committee, C.R. GOALS (Global Ocean-Atmosphere-Land System) for Predicting Seasonal-to-Interannual Climate: A Program of Observation, Modeling, and Analysis; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Dirmeyer, P.A. The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y.; et al. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett. 2018, 13, 044028. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Barlage, M.; Liu, W.; Cheng, G.; Li, X.; Yu, Y.; Ran, Y.; Li, H.; Peng, H.; et al. Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Boussetta, S.; Balsamo, G.; Beljaars, A.; Kral, T.; Jarlan, L. Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model. Int. J. Remote Sens. 2012, 34, 3520–3542. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The importance of land-cover change in simulating future climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Knote, C.; Bonafé, G.; Di Giuseppe, F. Leaf area index specification for use in mesoscale weather prediction systems. Mon. Weather Rev. 2009, 137, 3535–3550. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, F.; Barlage, M.; Ek, M.B.; Niyogi, D. Assessing impacts of integrating MODIS vegetation data in the weather research and forecasting (WRF) model coupled to two different canopy-resistance approaches. J. Appl. Meteorol. Clim. 2014, 53, 1362–1380. [Google Scholar] [CrossRef]
- Boussetta, S.; Balsamo, G.; Dutra, E.; Beljaars, A.; Albergel, C. Analysis of Surface Albedo and Leaf Area Index from Satellite Observations and Their Impact on Numerical Weather Prediction; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2014. [Google Scholar]
- Li, S.; Gao, Y.; Lyu, S.; Liu, Y.; Pan, Y. Response of surface air temperature to the change of leaf area index in the source region of the Yellow River by the WRF model. Theor. Appl. Clim. 2019, 138, 1755–1765. [Google Scholar] [CrossRef]
- Yan, D.; Liu, T.; Dong, W.; Liao, X.; Luo, S.; Wu, K.; Zhu, X.; Zheng, Z.; Wen, X. Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dyn. Atmos. Ocean. 2019, 89, 101127. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, G.; De Maeyer, P.; Cai, P.; Kurban, A. Improved atmospheric modelling of the oasis-desert system in Central Asia using WRF with actual satellite products. Remote Sens. 2017, 9, 1273. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, J.; Li, H.; Meng, X.; Ablikim, A. The impacts of soil moisture initialization on the forecasts of weather research and forecasting model: A case study in Xinjiang, China. Water 2020, 12, 1892. [Google Scholar] [CrossRef]
- Lin, T.-S.; Cheng, F.-Y. Impact of soil moisture initialization and soil texture on simulated land—Atmosphere interaction in Taiwan. J. Hydrometeorol. 2016, 17, 1337–1355. [Google Scholar] [CrossRef]
- Meng, L.; Shen, Y. On the relationship of soil moisture and extreme temperatures in East China. Earth Interact. 2014, 18, 1–20. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Dong, W. Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Koster, R.D.; Sud, Y.; Guo, Z.; Dirmeyer, P.A.; Bonan, G.; Oleson, K.W.; Chan, E.; Verseghy, D.; Cox, P.; Davies, H. GLACE: The global land-atmosphere coupling experiment. Part I: Overview. J. Hydrometeorol. 2006, 7, 590–610. [Google Scholar] [CrossRef]
- Hong, S.; Lakshmi, V.; Small, E.; Chen, F.; Tewari, M.; Manning, K.W. Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, W. Soil moisture influence on summertime surface air temperature over East Asia. Theor. Appl. Clim. 2009, 100, 221–226. [Google Scholar] [CrossRef]
- Dy, C.Y.; Fung, J.C.H. Updated global soil map for the weather research and forecasting model and soil moisture initialization for the Noah land surface model. J. Geophys. Res. Atmos. 2016, 121, 8777–8800. [Google Scholar] [CrossRef]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Ouyang, L.; Wang, Y.; Jiang, Y.; Li, X.; Chen, D.; Prein, A. Added value of kilometer-scale modeling over the third pole region: A CORDEX-CPTP pilot study. Clim. Dyn. 2021, 1–15. [Google Scholar] [CrossRef]
- EnTao, Y. A warmer, wetter and less windy China in the twenty-first century as projected by a nested high-resolution simulation using the weather research and forecasting (WRF) model. Asia-Pac. J. Atmos. Sci. 2018, 55, 53–74. [Google Scholar] [CrossRef]
- Rasmussen, R.; Liu, C.; Ikeda, K.; Gochis, D.; Yates, D.; Chen, F.; Tewari, M.; Barlage, M.; Dudhia, J.; Yu, W.; et al. High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Clim. 2011, 24, 3015–3048. [Google Scholar] [CrossRef] [Green Version]
- Wanders, N.; Van Vliet, M.T.H.; Wada, Y.; Bierkens, M.F.P.; Van Beek, L.P.H. High-resolution global water temperature modeling. Water Resour. Res. 2019, 55, 2760–2778. [Google Scholar] [CrossRef]
- Lin, L.-F.; Ebtehaj, A.M.; Flores, A.N.; Bastola, S.; Bras, R.L. Combined assimilation of satellite precipitation and soil moisture: A case study using TRMM and SMOS. Data. Mon. Weather Rev. 2017, 145, 4997–5014. [Google Scholar] [CrossRef]
- Lin, L.-F.; Pu, Z. Examining the impact of SMAP soil moisture retrievals on short-range weather prediction under weakly and strongly coupled data assimilation with WRF-Noah. Mon. Weather Rev. 2019, 147, 4345–4366. [Google Scholar] [CrossRef]
- Findell, K.L.; Eltahir, E.A. Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeorol. 2003, 4, 552–569. [Google Scholar] [CrossRef]
- Wang, G.; Ye, D.; Zhang, Y.; Huang, D.; Hou, W. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China. Adv. Clim. Chang. Res. 2018, 14, 341. [Google Scholar]
- Csiszar, I.; Gutman, G. Mapping global land surface albedo from NOAA AVHRR. J. Geophys. Res. Space Phys. 1999, 104, 6215–6228. [Google Scholar] [CrossRef]
- Viterbo, P.; Beljaars, A.C.M. An improved land surface parameterization scheme in the ECMWF model and its validation. J. Clim. 1995, 8, 2716–2748. [Google Scholar] [CrossRef] [Green Version]
- Vannan, S.K.S.; Cook, R.B.; Holladay, S.K.; Olsen, L.M.; Dadi, U.; Wilson, B.E. A web-based subsetting service for regional scale MODIS land products. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2009, 2, 319–328. [Google Scholar] [CrossRef]
- Vannan, S.K.S.; Cook, R.B.; Pan, J.Y.; Wilson, B.E. A SOAP web service for accessing MODIS land product subsets. Earth Sci. Inform. 2011, 4, 97–106. [Google Scholar] [CrossRef]
- Lo, J.C.F.; Yang, Z.L.; Pielke Sr, R.A. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Chew, L.W.; Liu, X.; Li, X.-X.; Norford, L.K. Interaction between heat wave and urban heat island: A case study in a tropical coastal city, Singapore. Atmos. Res. 2020, 247, 105134. [Google Scholar] [CrossRef]
- Hwang, M.-K.; Bang, J.-H.; Kim, S.; Kim, Y.-K.; Oh, I. Estimation of thermal comfort felt by human exposed to extreme heat wave in a complex urban area using a WRF-MENEX model. Int. J. Biometeorol. 2019, 63, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Morini, E.; Touchaei, A.G.; Castellani, B.; Rossi, F.; Cotana, F. The impact of Albedo increase to mitigate the urban heat island in Terni (Italy) using the WRF model. Sustainability 2016, 8, 999. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; Li, D.; Bou-Zeid, E. High-resolution simulation of heatwave events in New York City. Theor. Appl. Clim. 2015, 128, 89–102. [Google Scholar] [CrossRef]
- Wu, W.; Lynch, A.H.; Rivers, A. Estimating the uncertainty in a regional climate model related to initial and lateral boundary conditions. J. Clim. 2005, 18, 917–933. [Google Scholar] [CrossRef]
- Tian, Y.; Woodcock, C.; Wang, Y.; Privette, J.L.; Shabanov, N.V.; Zhou, L.; Zhang, Y.; Buermann, W.; Dong, J.; Veikkanen, B.; et al. Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment. Remote Sens. Environ. 2002, 83, 414–430. [Google Scholar] [CrossRef]
- Maggioni, V.; Houser, P.R. Soil moisture data assimilation. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 195–217. [Google Scholar]
WRF_CTL | WRF_CHAR | |
---|---|---|
Albedo | AVHRR climatological monthly albedo with 0.5° resolution | MODIS Collection 6 daily albedo with 1 km resolution |
LAI | MODIS climatological monthly LAI with 0.5° resolution | MODIS Collection 6 4 day LAI with 500 m resolution |
Soil moisture | ERA_Interim reanalysis data with 0.75° resolution | CLDAS daily assimilation data with 0.0625° resolution |
MEAN | STD | BIAS | RMSE | SCC | |||
---|---|---|---|---|---|---|---|
OBS | CTL | OBS | CTL | ||||
Ta | 33.10 | 34.15 | 1.12 | 1.13 | 1.05 | 1.29 | 0.77 |
Tamax | 37.32 | 38.64 | 1.42 | 1.12 | 1.32 | 1.69 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, Y.; Pan, Y.; Li, Z.; Lyu, S. Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China. Remote Sens. 2021, 13, 3409. https://doi.org/10.3390/rs13173409
Li S, Liu Y, Pan Y, Li Z, Lyu S. Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China. Remote Sensing. 2021; 13(17):3409. https://doi.org/10.3390/rs13173409
Chicago/Turabian StyleLi, Suosuo, Yuanpu Liu, Yongjie Pan, Zhe Li, and Shihua Lyu. 2021. "Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China" Remote Sensing 13, no. 17: 3409. https://doi.org/10.3390/rs13173409
APA StyleLi, S., Liu, Y., Pan, Y., Li, Z., & Lyu, S. (2021). Integrating Remote-Sensing and Assimilation Data to Improve Air Temperature on Hot Weather in East China. Remote Sensing, 13(17), 3409. https://doi.org/10.3390/rs13173409