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Abstract: Repairing point cloud holes has become an important problem in the research of 3D
laser point cloud data, which ensures the integrity and improves the precision of point cloud data.
However, for the point cloud data with non-characteristic holes, the boundary data of point cloud
holes cannot be used for repairing. Therefore, this paper introduces photogrammetry technology
and analyzes the density of the image point cloud data with the highest precision. The 3D laser point
cloud data are first formed into hole data with sharp features. The image data are calculated into six
density image point cloud data. Next, the barycenterization Bursa model is used to fine-register the
two types of data and to delete the overlapping regions. Then, the cross-section is used to evaluate
the precision of the combined point cloud data to get the optimal density. A three-dimensional
model is constructed for this data and the original point cloud data, respectively and the surface area
method and the deviation method are used to compare them. The experimental results show that
the ratio of the areas is less than 0.5%, and the maximum standard deviation is 0.0036 m and the
minimum is 0.0015 m.

Keywords: point cloud hole; photogrammetry; point cloud density; precision assess

1. Introduction

3D laser scanners are widely adopted for the scanning of images. In the process of
capturing the data while scanning, data corresponding to a partial point cloud may be
missed due to the limitations of the instrument and also due to the environment. The point
cloud with a hole cannot truly reflect the shape of the target; thus, it must be repaired.

Researchers have proposed many methods for repairing the point cloud with a hole.
Ju [1] presented a robust method for repairing arbitrary polygon models. The method is
guaranteed to produce a closed surface that partitions the space into disjoint internal and
external volumes. Given any model represented as a polygon soup, an inside/outside
volume using an octree grid is constructed, and the surface by contouring is reconstructed.
Qiu et al. [2] established a triangle patch based on the point cloud around the hole. Subse-
quently, two types of isoparametric curves and their intersections are obtained by parti-
tioned choosing of two arbitrary parameters within the equation of triangle patch, and the
hole data are repaired by selecting the intersection points. This method relies on the ambient
point cloud data and is suitable for curves with relatively small curvature. Bischoff et al. [3]
proposed a repair method based on octree. In this method, the morphological operation is
applied to establish the spatial topological relationship of the original data. The geometrical
relationship and spatial morphology of the point cloud hole are reconstructed based on
the topological relationship to achieve hole repair. Xin et al. [4] recognize the boundary
of the hole based on the nature of the boundary edge of the adjacency triangle. An initial
fill on the hole is accomplished using the wavefront method and the relationship of the
included angle of the triangle vertex. The mesh of the hole is refined based on the curvature
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standard, and finally, an adjustment of geometry on the mesh vertex of the repaired hole
is performed to make a natural transition with the surrounding grid. The experimental
results indicate that this algorithm is simple, stable, and can repair different types of holes.
Quinsat et al. [5] proposed a method to take the a priori knowledge of the numerical model
as the nominal mesh. After identifying the digitized holes and calculating the differences
between the nominal mesh and the point cloud, the nominal mesh is deformed. This defor-
mation is determined by minimizing the deformation energy of the mesh. Centin et al. [6]
proposed a method to repair the hole using Poisson surface reconstruction. An input mesh
M along with its boundaries is given. An implicit function is derived by sampling a set
of directional points from M, which are used to calculate Poisson surface reconstruction.
An improved Delaunay refinement process is then introduced to generate hole patches
with seamless transitions and no self-intersections. The hole patches are finally merged
with the input mesh by robustly matching the input and by completing the boundary rings,
which are stitched together to produce the final output. Li et al. [7] proposed a hole repair
algorithm based on the Poisson equation. The predicted surface is fitted by solving the
Poisson equation, which is triangulated and stitched seamlessly with the original hole.
After that, the direction of the newly formed triangular surface is adjusted according to
the normal vector information of the hole boundary region to achieve the effect of feature
enhancement. Lin et al. [8] presented a novel feature-preserving hole-filling algorithm. The
experimental data are divided into the featured holes and the nonfeatured holes. The spline
guided tensor voting is proposed to restore the feature curves. The plane-guided tensor
voting is proposed to restore the nonfeatured holes. Geng et al. [9] proposed a way to repair
the holes in the terracotta warriors, provided that the missing parts of the model are stored
in a database. The boundary of the hole is identified based on which fragment model with
a roughly equal area is found in the database. Then, under the orthogonal constraint of
double sparse representation, the optimal fragmentation model is predicted according to
the vertex position error and edge smoothing error of triangular mesh. According to the
registration function, the matching degree set of feature point pairs between the repaired
model and the optimal fragmentary model is determined. The second-order umbrella
operator is used to smooth the boundary of the model. Wang et al. [10] proposed a method
based on the GA-BP neural network for the automatic repair of point cloud holes. The
holes are identified and the interpolation points are selected by the method of equal step
growth in the hole tone. Later, the interpolation points are taken as the input data of the
GA-BP neural network model, and the predicted values are calculated to complete the
repair of point cloud data. This method has high automation. Gai et al. [11] proposed a
fitting approach to fill the holes based on structure from motion. After extracting the hole
boundary by the fringe projection with a two-dimensional phase, the registration of the
SFM point cloud and the fringe projection point cloud is carried out, and supplementary
points are extracted. The holes are then filled based on a radial basis function on the
point cloud added with the supplementary points. Zheng et al. [12] proposed a method of
repairing a drill bit surface in the process of laser cladding a robot repairing drill bit. The 3D
model of the worn drill bit is sliced by point cloud and the cubic B spline curve is used to fit
the point cloud model. Finally, this method is used to select the actual machining points of
the manipulator. Fan et al. [13] discussed a robust gap-filling method for extracting power
lines from ground laser scanning data. A hierarchical clustering method is used to repair
the gap based on the neighborhood relationship of the candidate nodes of the powerline.

Point cloud density is one of the main factors affecting precision. Guo et al. [14]
pointed out that precision and robustness of feature extraction are greatly influenced by
the point density. Additionally, an alternative way to improve the precision in low density
point clouds is to increase the point density. Mat Zam et al. [15] obtained and registered
the point cloud data of four different resolutions in the landslide area. The higher the
resolution, the higher the density of the point cloud data. The experimental results show
that the precision of ultra-high-resolution point cloud data is the highest, indicating that
the higher the density of point cloud data, the higher the precision. Wang et al. [16]
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studied the optimum point cloud density for different scale DEM products under different
terrain conditions. The experimental results show that when the terrain is undulating, it is
necessary to increase the point cloud density appropriately to improve the precision. Zhang
et al. [17] studied the effect of point cloud density on the precision of single leaf area index
(LAI). With the same voxel size, the inversion value of the leaf area index of single wood
increased with the increase of point cloud density. Du et al. [18] studied the effect of the
density of the point cloud data on earthwork calculations. Su et al. [19] discussed the linear
relationship between bamboo canopy volume and point cloud density. Zhou et al. [20]
obtained the point cloud data of the mining subsidence area and found that higher point
cloud resolution and stable subsidence prediction parameters resulted in a smaller fitting
error and dense point cloud data, which also led to a higher modeling precision.

The state-of-the-art methods available to repair the hole in the point cloud utilize the
spatial geometry relationship between the hole and its surrounding point cloud. However,
for some point cloud data with sharp holes, there is no correlation between the missing
data and the data around the holes, as shown in Figure 1b. The repairing result of using
the curvature of the data around the holes is shown in Figure 1c. This repair method has
low precision. Therefore, photogrammetry technology is introduced to repair the sharp
hole based on image point cloud data. First, the point cloud is partly deleted manually, and
these points are treated as missing point cloud data. Then, the image is resolved into image
point cloud data to register with each other. Finally, due to the difference in the acquisition
methods of these two kinds of data, the data precision is also different. The influence of
density on the repair precision is investigated using image point cloud data for improving
the precision. Optimal density is selected, whose precision results are compared to those
obtained using original point cloud data. This method of repairing point cloud holes is not
affected by the size of the study area, and it is convenient, fast, and has high precision.
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Figure 1. An example of point cloud data with sharp features: (a) The complete point cloud data;
(b) The point cloud data with sharp features; (c) The reparative data using curvature.

The organization of this paper is as follows. Section “Materials and Methods” focuses
on data preparation, from data collection to data processing. Six kinds of data are obtained,
which are the combination of the missing point cloud data (M-point) and the image point
cloud data (I-point) of six different densities. Section “Repair precision assessment on
I-point” presents the selection of the optimal point cloud density (O-i-point) by the method
of cross-section, and its precision is analyzed by the surface area and deviation method.
Section “Discussion” presents the reason for affecting precision and the rationality of data
results. Section “Conclusions” contains the concluding remarks and future work. The data
processing flow chart is shown in Figure 2.
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2. Materials and Methods
2.1. Design of Research Case

The surfaces of most of the buildings are composed of plane, smooth, and non-
smooth curved structures. Therefore, these are the three main objects considered in this
research work.

2.1.1. Plane Surface

The selected data for a plane surface were the intersection part between the horizontal
plane and the vertical plane of the buildings. The research object was a statue shown in
Figure 3. The outlined part in the red rectangular box was considered the research object.
When the instrument was to be set at a low altitude, the sharp holes tended to occur within
the outlined intersection part, leading to an incomplete point cloud.
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Figure 3. The real image of statue.

2.1.2. Curved Surface

For the curved surface, smooth surface and non-smooth surface were chosen. The
selected object was a landscape stone (LS), as shown in Figure 4. The outlined curved
surfaces within the blue rectangular boxes were the smooth surface and the non-smooth
surface, respectively, and were named S-LS and NS-LS.
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2.2. The Laser Point Cloud Data of a 3D Object
2.2.1. Data Collection

A RIEGL-1000 3D laser scanner was used to capture the point cloud data. The scanning
distance was about 5 m with a scanning interval of 0.002 m. After data preprocessing, such
as de-noising, splicing, and compression of the point cloud data, the original point cloud
data (O-point) were obtained. Here are the detailed preprocessing steps.

1. De-noising on the point cloud

In this paper, the neighborhood average method was used for denoising. The k-D Tree
algorithm [21] was used to establish the relationship between point cloud data. The neigh-
borhood of any point in the point cloud data was then calculated. The average distance
between this point and all point cloud data in k-neighborhood was finally calculated and
compared with the threshold value. If the average distance was greater than the threshold
value, it was considered a noise point and should be deleted; if the average distance was
less than the threshold value, it was considered a non-noise point and should be retained.
This method was implemented in MATLAB 2016 software. This method is suitable for
point cloud data with relatively scattered noise points and has the characteristics of fast op-
erational speed and obvious denoising effect, which is in line with the data characteristics
of this paper.

2. Splicing on the point cloud

Among the three kinds of data, only the statue was scanned in two stations, so point
cloud data need to be spliced.

Point cloud splicing is mainly divided into two steps. First, coarse stitching: at least
four pairs of points were manually selected from the two-point cloud data and completed
initial registration according to the rigid transformation formula. Second, fine registration:
the classical ICP algorithm [22] was used to complete the precise registration of the point
cloud. This method is implemented in Riscan Pro software. The final error was shown to
be 0.0026 m.

3. Compression on the point cloud

In this paper, the minimum distance method [23] was used to compress point cloud
data. The minimum distance method is simple, easy to implement, and fast in operation.
This method is implemented in MATLAB 2016.
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2.2.2. Calculation of Density

The density of a 3D point cloud data is defined as the number of points within a unit
area. The greater the number of points, the higher the density of the point cloud. The
density can also be interpreted as the average distance between a point and other adjacent
points. The shorter this distance, the denser the point cloud. In this paper, these two
methods were used to calculate the density of the point cloud.

Calculation of Density Based on Distance

Based on k-nearest algorithm, m adjacent points qij(j = 1, 2, 3 . . . m) around a point
pi(i = 1, 2, 3 . . . n) were selected successively.

The average distance between every point and adjacent points was calculated accord-
ing to Equation (1) [24]. Then, according to Equation (2), the density of point cloud data
was calculated by averaging the density of all of the points.

di =
1
m

m

∑
j=1

D
(

pi, qij
)

(1)

In Equation (1), pi is the point cloud; qij is the adjacent point of pi; m is the number
of adjacent points; di is the average distance of each point from its adjacent points, which
is the density at this point; and D

(
pi, qij

)
denotes the distance between point pi and its

adjacent points qij.

d =
1
n

n

∑
i=1

di (2)

In Equation (2), d is the average density of all the points.

Calculation of Density Based on the Mesh Grid

Uniform mesh grids are constructed on the point cloud, and the density is interpreted
as the average of the number of points within one mesh grid [24]. The interval of mesh
grids is denoted as d or multiples of d, and the mesh grid is constructed. The number
of solid mesh grids and the number of point clouds within every solid mesh grid were
recorded. The average value was calculated and rounded to obtain the density of the point
cloud.

Based on the above methods, the densities of the O-point were calculated and are
listed in Table 1.

Table 1. The experimental data’s point cloud density.

Classification Density-Based on Distance (m) Density-Based on Mesh Grid (Pieces)

statue 0.0029 48
S-LS 0.0019 219

NS-LS 0.0017 165

2.2.3. Generation of Hole

As per the experimental requirement, some points were manually deleted from the
original data (O-point) to obtain the missing point cloud data (M-point), as shown in Table 2.
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Table 2. Schematic of O-point and M-point.

Classification Statue S-LS NS-LS

O-point
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2.4. Registration of Two Kinds of Data

The coarse registration was accomplished by manual selection of points. To improve
the repair precision, fine registration must be carried out. The Bruse model was one of
the seven parameter coordinate transformations, which is suitable for small angles, and
so coarse registration must be carried out before using it [28]. When it was applied in a
small range, there was a strong correlation between translation parameters and rotation
and scale parameters, which led to an ill-conditioned solution model [29,30]. Moreover,
the rotation center was located at the origin of coordinates, so the point cloud data may not
have been evenly distributed in all quadrants, which would reduce the precision. Based
on these two reasons, the origin of the coordinate system was redefined as the barycentric
position, and the translation parameter was eliminated to improve precision, which is the
barycenterization Bursa model [31].

Therefore, the barycenterization Bursa model was adopted to achieve fine registration
between M-point and the above six different density data.

Finally, the adjacent points of the I-point within the M-point can be found using the
k-nearest algorithm. I-point-1, I-point-1.2, I-point-1.5, I-point-2, I-point-2.5, and I-point-3
can be obtained by deleting the point cloud data within the superposition section, as shown
in Table 3.

Table 3. The registration results of two kinds of data.

Classification I-Point-1 I-Point-1.2 I-Point-1.5 I-Point-2 I-Point-2.5 I-Point-3

statue
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3.1.1. Quantitative Analysis of Point Cloud Cross-Section of the Statue 
As shown in Table 4, the selected cross-section of the statue can be approximately 

viewed as a combination of two straight lines, i.e., the point cloud data is fitted as a piece-
wise function, indicated in Equation (3). ݂(ݔ) = ൜݇ଵݔ ൅ ܾଵ ݔ ൏ ܽ݇ଶݔ ൅ ܾଶ ݔ ൒ ܽ (3)

In Equation (3), ݇1, ݇2, ܾ1, ܾ2 are fitted coefficients. 
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3. Repair Precision Assessment on I-Point
3.1. Optimal Density Based on the Method of Cross-Section

The method of cross-section selects two arbitrary planes to truncate the original 3D
point cloud data, and the intersection lines and points that are formed are projected onto
a plane for comparison. In most cases, intersection points are more commonly used than
intersection lines [32]. In this paper, two planes were used to truncate the point cloud
data, and the point cloud data between the two planes were projected onto one plane for
comparison. The selected position in which the holes are to be repaired is shown in Table 4.

It is difficult to directly observe the difference between I-point and O-point using
different densities in the selected cross-section. Therefore, in this paper, curve fitting was
performed on the selected cross-section to quantitatively analyze the effect of density to
make an optimal density choice. For convenience, the cross-section data of O-point is
called section-origination (S-origination), and the cross-section data of I-point is called
section-1 (S-1), section-1.2 (S-1.2), section-1.5 (S-1.5), section-2 (S-2), section-2.5 (S-2.5), and
section-3 (S-3).

Table 4. The truncated point cloud data by the method of cross-section.

Classification Statue S-LS NS-LS

The position truncated plane
using the method of

cross-section

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21 
 

 

NS-LS 

      

3. Repair Precision Assessment on I-Point 
3.1. Optimal Density Based on the Method of Cross-Section 

The method of cross-section selects two arbitrary planes to truncate the original 3D 
point cloud data, and the intersection lines and points that are formed are projected onto 
a plane for comparison. In most cases, intersection points are more commonly used than 
intersection lines [32]. In this paper, two planes were used to truncate the point cloud data, 
and the point cloud data between the two planes were projected onto one plane for com-
parison. The selected position in which the holes are to be repaired is shown in Table 4. 

It is difficult to directly observe the difference between I-point and O-point using 
different densities in the selected cross-section. Therefore, in this paper, curve fitting was 
performed on the selected cross-section to quantitatively analyze the effect of density to 
make an optimal density choice. For convenience, the cross-section data of O-point is 
called section-origination (S-origination), and the cross-section data of I-point is called 
section-1 (S-1), section-1.2 (S-1.2), section-1.5 (S-1.5), section-2 (S-2), section-2.5 (S-2.5), and 
section-3 (S-3). 

Table 4. The truncated point cloud data by the method of cross-section. 

Classification Statue S-LS NS-LS 

The position 
truncated plane using 
the method of cross-

section 

   

The truncated display 
of point cloud data 

 

  

3.1.1. Quantitative Analysis of Point Cloud Cross-Section of the Statue 
As shown in Table 4, the selected cross-section of the statue can be approximately 

viewed as a combination of two straight lines, i.e., the point cloud data is fitted as a piece-
wise function, indicated in Equation (3). ݂(ݔ) = ൜݇ଵݔ ൅ ܾଵ ݔ ൏ ܽ݇ଶݔ ൅ ܾଶ ݔ ൒ ܽ (3)

In Equation (3), ݇1, ݇2, ܾ1, ܾ2 are fitted coefficients. 
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parison. The selected position in which the holes are to be repaired is shown in Table 4. 
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different densities in the selected cross-section. Therefore, in this paper, curve fitting was 
performed on the selected cross-section to quantitatively analyze the effect of density to 
make an optimal density choice. For convenience, the cross-section data of O-point is 
called section-origination (S-origination), and the cross-section data of I-point is called 
section-1 (S-1), section-1.2 (S-1.2), section-1.5 (S-1.5), section-2 (S-2), section-2.5 (S-2.5), and 
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Table 4. The truncated point cloud data by the method of cross-section. 

Classification Statue S-LS NS-LS 

The position 
truncated plane using 
the method of cross-

section 

   

The truncated display 
of point cloud data 

 

  

3.1.1. Quantitative Analysis of Point Cloud Cross-Section of the Statue 
As shown in Table 4, the selected cross-section of the statue can be approximately 

viewed as a combination of two straight lines, i.e., the point cloud data is fitted as a piece-
wise function, indicated in Equation (3). ݂(ݔ) = ൜݇ଵݔ ൅ ܾଵ ݔ ൏ ܽ݇ଶݔ ൅ ܾଶ ݔ ൒ ܽ (3)

In Equation (3), ݇1, ݇2, ܾ1, ܾ2 are fitted coefficients. 

3.1.1. Quantitative Analysis of Point Cloud Cross-Section of the Statue

As shown in Table 4, the selected cross-section of the statue can be approximately
viewed as a combination of two straight lines, i.e., the point cloud data is fitted as a
piecewise function, indicated in Equation (3).

f (x) =
{

k1x + b1 x < a
k2x + b2 x ≥ a

(3)

In Equation (3), k1, k2, b1, b2 are fitted coefficients.
The parameters of the piecewise function obtained by fitting the point cloud data are

shown in Table 5. Figure 6 shows the linear fitted plots of S-origination and S-2.
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3.1.2. Quantitative Analysis of Point Cloud Cross-section of S-LS 
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garded as a combination of several curves. By comparing the fitting precision of degrees 
1–9 of the polynomials, the appropriate degree is selected. The sum of squares due to error 

Figure 6. Linear fitted plots of the cross-section of the statue: (a) Linear fitted plot of S-origination; (b) Linear fitted plot
of S-2.

Table 5. The parameters of fitted piecewise function for the statue.

Fitted Coefficient k1 Fitted Coefficient b1 Fitted Coefficient k2 Fitted Coefficient b2

S-origination 50.0512 15.9863 0.0187 −4.6980
S-1 49.9438 15.9408 0.0308 −4.6936

S-1.2 47.1638 14.7943 0.0352 −4.6919
S-1.5 48.9306 15.5231 0.0367 −4.6913
S-2 45.5217 14.1155 0.0340 −4.6924

S-2.5 46.6630 14.5862 0.0399 −4.6905
S-3 46.8562 14.6660 0.0370 −4.6915

In Figure 5, we select points in the x-axis and calculate the corresponding y coordinates
of the fitted lines. Then, a difference between the calculated y values of various densities
and the y values in the original data are obtained, and an average is calculated. For the
vertical line, a single point is selected on the x-axis, and for the horizontal line, multiple
points taken on the x-axis at regular intervals are selected. The y values obtained from
curve fitting are shown in Table 6. The results shown in Table 6 indicate that the average
difference in data with various densities is small. With the increase in density, the difference
values first decrease and then increase. The minimum difference is achieved for S-1.2.

Table 6. Comparison of data points of statue.

y (m)

x (m)
−0.4142 −0.4130 −0.3980 −0.3830 −0.3680 −0.3530 −0.3380 Difference (mm)

S-origination −4.6878 −4.7057 −4.7054 −4.7051 −4.7048 −4.7046 −4.7043
S-1 −4.6889 −4.7063 −4.7058 −4.7054 −4.7049 −4.7045 −4.7040 −0.3

S-1.2 −4.6871 −4.7064 −4.7059 −4.7053 −4.7048 −4.7043 −4.7038 0.0
S-1.5 −4.6881 −4.7064 −4.7059 −4.7053 −4.7048 −4.7042 −4.7037 −0.1
S-2 −4.6877 −4.7064 −4.7059 −4.7054 −4.7049 −4.7044 −4.7039 −0.1

S-2.5 −4.6884 −4.7069 −4.7063 −4.7057 −4.7051 −4.7045 −4.7039 −0.4
S-3 −4.6883 −4.7068 −4.7063 −4.7057 −4.7051 −4.7046 −4.7040 −0.4

3.1.2. Quantitative Analysis of Point Cloud Cross-Section of S-LS

Table 4 indicates that the selected cross-section of S-LS can be approximately regarded
as a combination of several curves. By comparing the fitting precision of degrees 1–9 of
the polynomials, the appropriate degree is selected. The sum of squares due to error (SSE),
root mean squared error (RMSE), and coefficient of determination (R-square) are selected
to evaluate the precision.

The fitting results are shown in Figure 7, and the precision analysis is shown in Table 7.
Based on the principle of simple calculation and high precision, the polynomial fitting

of degree six is utilized as given by Equation (4).
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f (x) = p1 × x6 + p2 × x5 + p3 × x4 + p4 × x3 + p5 × x2 + p6 × x1 + p7 (4)

In Equation (4), p1~p7 are fitted coefficients.
The parameters of the function obtained by fitting the point cloud data are shown in

Table 8.
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Figure 7. Curve fitting using polynomials of different degrees for the cross-section of S-LS.

Table 7. Precision analysis of the different curve fitting polynomials used for the S-LS cross-section.

Degree of the Polynomial SSE R-Square RMSE

1 0.6232 0.5691 0.0088
2 0.5888 0.5928 0.0085
3 0.4413 0.6948 0.0074
4 0.0903 0.9375 0.0033
5 0.0856 0.9408 0.0033
6 0.0199 0.9862 0.0016
7 0.0151 0.9896 0.0014
8 0.0095 0.9934 0.0011
9 0.0075 0.9948 0.0010

Table 8. The parameters of curve fitted function of S-LS.

Fitted
Coefficient

p1

Fitted
Coefficient

p2

Fitted
Coefficient

p3

Fitted
Coefficient

p4

Fitted
Coefficient

p5

Fitted
Coefficient

p6

Fitted
Coefficient

p7

S-origination 17.3606 96.8805 218.3503 253.2991 158.7827 50.8180 −1.8516
S-1 18.7270 103.4032 230.5510 264.5488 164.0353 51.9402 −1.7779

S-1.2 18.7302 103.4309 230.6409 264.6915 164.1535 51.9887 −1.7702
S-1.5 18.9817 104.8192 233.7631 268.3472 166.5003 52.7711 −1.6645
S-2 16.8416 93.1438 207.9368 238.7717 148.0528 46.8403 −2.4315

S-2.5 14.9288 82.6928 184.4851 211.1082 129.9656 40.6306 −3.3048
S-3 14.9171 82.6350 184.3714 210.9968 129.9096 40.6175 −3.3057

Figure 8 Shows the fitted curve of S-origination and S-2.
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fitted curves are calculated as shown in Table 9. The results indicate that the average dif-
ference in data with various densities is small. It can be observed that with the increase in 
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Figure 8. The fitted curves of the cross-section of S-LS: (a) The fitted curve of S-origination; (b) The fitted curve of S-2.

In Figure 4, points on the x-axis are selected at equal intervals and the y values of fitted
curves are calculated as shown in Table 9. The results indicate that the average difference
in data with various densities is small. It can be observed that with the increase in density,
the average difference decreases first, and then it increases. The minimum difference is
achieved for S-2.

Table 9. Comparison of data points of the S-LS.

y (m)

x (m)
−1.3 −1.15 −1 −0.85 −0.7 −0.55 Difference

(mm)

S-origination −8.3545 −8.3477 −8.3557 −8.3424 −8.3166 −8.3273
S-1 −8.3544 −8.3469 −8.3567 −8.3462 −8.3195 −8.3275 −1.0

S-1.2 −8.3544 −8.3469 −8.3568 −8.3462 −8.3195 −8.3276 −1.0
S-1.5 −8.3545 −8.3469 −8.3568 −8.3462 −8.3194 −8.3276 −1.0
S-2 −8.3530 −8.3470 −8.3561 −8.3456 −8.3202 −8.3274 −0.7

S-2.5 −8.3540 −8.3478 −8.3570 −8.3459 −8.3201 −8.3271 −1.1
S-3 −8.3540 −8.3478 −8.3569 −8.3459 −8.3201 −8.3271 −1.1

3.1.3. Quantitative Analysis of Point Cloud Cross-Section of NS-LS

Table 4 indicates the existence of sharp holes in the selected cross-section of NS-LS,
which can also be approximately regarded as a combination of several curves. As in
Section 3.1.2, the curve fitting results using polynomials of different degrees for the cross-
section of NS-LS are shown in Figure 9, and the precision analysis is shown in Table 10.

Table 10. Precision analysis of the different curve fitting polynomials used for the NS-LS cross-section.

Degree of the Polynomial SSE R-Square RMSE

1 16.5800 0.0848 0.0255
2 6.1830 0.6587 0.0156
3 6.1340 0.6614 0.0155
4 3.0960 0.8291 0.0110
5 1.8100 0.9001 0.0084
6 1.7700 0.9023 0.0083
7 0.9385 0.9482 0.0061
8 0.6440 0.9645 0.0050
9 0.6379 0.9648 0.0050
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Figure 9. Curve fitting using polynomials of different degrees for the cross-section of NS-LS.

Based on the principle of simple calculation and high precision, the polynomial fitting
with nine degrees is utilized as given by Equation (5).

f (x) = p1 × x9 + p2 × x8 + p3 × x7 + p4 × x6 + p5 × x5 + p6 × x4 + p7 × x3 + p8 × x2 + p9 × x1 + p10 (5)

In Equation (5), p1~p10 are fitted coefficients.
The parameters of the function obtained by fitting the point cloud data are shown in

Table 11.

Table 11. The parameters of curve fitted function of NS-LS.

Fitted Coefficient
p1

Fitted Coefficient
p2

Fitted Coefficient
p3

Fitted Coefficient
p4

Fitted Coefficient
p5

Fitted Coefficient
p6

Fitted Coefficient
p7

Fitted Coefficient
p8

Fitted Coefficient
p9

Fitted Coefficient
p10

S-origination −8.5265 × 102 −2.8326 × 104 −4.1685 × 105 −3.5655 × 106 −1.9528 × 107

−7.0996 × 107 −1.7124 × 108 −2.6411 × 108 −2.3617 × 108 −9.3216 × 107

S-1
−8.3842 × 102 −2.7887 × 104 −4.1092 × 105 −3.5198 × 106 −1.9308 × 107

−7.0318 × 107 −1.6994 × 108 −2.6268 × 108 −2.3549 × 108 −9.3219 × 107

S-1.2
−8.4677 × 102 −2.8183 × 104 −4.1558 × 105 −3.5626 × 106 −1.9560 × 107

−7.1308 × 107 −1.7253 × 108 −2.6704 × 108 −2.3976 × 108 −9.5073 × 107

S-1.5
−8.4549 × 102 −2.8146 × 104 −4.1514 × 105 −3.5597 × 106 −1.9550 × 107

−7.1295 × 107 −1.7256 × 108 −2.6719 × 108 −2.4000 × 108 −9.5222 × 107

S-2
−7.9051 × 102 −2.6244 × 104 −3.8591 × 105 −3.2978 × 106 −1.8043 × 107

−6.5516 × 107 −1.5780 × 108 −2.4296 × 108 −2.1683 × 108 −8.5375 × 107

S-2.5
−7.5988 × 102 −2.5183 × 104 −3.6959 × 105 −3.1515 × 106 −1.7200 × 107

−6.2282 × 107 −1.4954 × 108 −2.2939 × 108 −2.0384 × 108 −7.9854 × 107

S-3
−7.5027 × 102 −2.4852 × 104 −3.6452 × 105 −3.1063 × 106 −1.6941 × 107

−6.1294 × 107 −1.4702 × 108 −2.2528 × 108 −1.9993 × 108 −7.8199 × 107

Figure 10 shows the fitted curve of S-origination and S-2.
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In Figure 10, points on the x-axis are selected at equal intervals and the y values of the
fitted curves are calculated as shown in Table 12. The results shown in Table 12 indicate that
the average difference of data with various densities is small, and the minimum difference
is achieved for S-2.

Table 12. Comparison of data points of NS-LS.

y (m)

x (m)
−4.25 −4.1 −3.95 −3.8 −3.65 Difference (mm)

S-origination 8.1422 8.1022 8.0749 8.0394 8.0799
S-1 8.1433 8.1023 8.0748 8.0395 8.0810 0.4

S-1.2 8.1435 8.1025 8.0749 8.0396 8.0810 0.5
S-1.5 8.1432 8.1024 8.0748 8.0396 8.0810 0.4
S-2 8.1428 8.1023 8.0747 8.0396 8.0809 0.3

S-2.5 8.1430 8.1025 8.0748 8.0398 8.0807 0.4
S-3 8.1427 8.1025 8.0748 8.0399 8.0808 0.4

Based on the above analysis, the maximum and minimum average values of every
density are small. The optimal density for the three kinds of data is 1.2 times of M-point
for the statue, 2 times of M-point for S-LS and NS-LS Importantly, the large amount of
point cloud data leads to a slow processing speed, and the large difference in the density
of point cloud data also affects the 3D modeling process. The average difference between
the selected optimal density and S-1.2 data is relatively small with a small amount of
data. Taking all of the above factors into account, the I-point with 1.2 times of M-point is
taken as the optimal image point cloud data (O-i-point). The O-i-point and M-point are
combined to act as the combining point cloud data (C-point), as illustrated in the third
column “I-point-1.2” of Table 3.

3.2. Precision Assessment

The reliability of the proposed method in repairing the point cloud hole using image
data has to be discussed, mainly for the C-point data. The commonly used assessment
methods include surface area method, volume method, deviation evaluation, cross-section
method, etc. For this paper, the experimental data are available for a plane but not for
volume, and so the volume method is not applicable for precision assessment. The surface
area method and deviation method are utilized to perform precision assessment because the
cross-section method has been used to select O-i-point. For the convenience of expression,
the constructed model based on O-point is referred to as the original model (O-model), and
the constructed model based on C-point is referred to as the repair model (R-model), as
shown in Table 13.
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Table 13. Comparison of O-model and R-model.

Classification Statue S-LS NS-LS

O-model
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3.2.1. Surface Area Assessment

The areas of both the O-model and R-model are calculated and compared to make a
judgment on whether the proposed method reduces the detailed surface characteristics of
original complete point cloud data [33]. The area of a triangle can be calculated by Heron’s
formula [32], and is given by Equation (6).

S∆ABC =
√

L · (L − a) · (L − b) · (L − c) (6)

In Equation (6), a, b, c are three side lengths of the triangle, and L denotes half of the
perimeter of the triangle. S∆ABC is the area of the triangle. A, B, C are the three vertices of
a triangle.

In software Geomagic Studio 2013, the surface areas calculated using the two models
are shown in Table 14.

Table 14. The surface area of the model of experimental data.

Model Classification Area (m2) Difference of Area (m2) Area Ratio

statue
O-model 1.0721

0.0082 0.476%R-model 1.0803

S-LS
O-model 2.3564

0.0085 0.361%R-model 2.3649

NS-LS
O-model 2.2167

0.0094 0.424%R-model 2.2261

3.2.2. Deviation Assessment

The deviation method analyzes the spatial difference between the tested model and
reference model by calculating their shortest distance, that is the distance between the
nearest triangular of the two models [34]. In this paper, the test model is the R-model and
the reference model is the O-model. This method is implemented in the software Geomagic
Studio 2013. The results of the deviation analysis for all of the experimental data are shown
in Figure 11. The deviation analysis values are shown in Table 15.
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Figure 11. Deviation analysis results of each experimental data: (a) Deviation analysis of statue; (b) Deviation analysis of
S-LS; (c) Deviation analysis of NS-LS.

Table 15. Deviation analysis values of each experimental data.

Maximum Value (mm) Minimum Value(mm) Average Value(mm)
Standard Deviation

Value (mm)Positive
Deviation

Negative
Deviation

Positive
Deviation

Negative
Deviation

Positive
Deviation

Negative
Deviation

statue 3.7 −3.4 0.1 −0.0 0.6 −1.4 1.5
S-LS 10.0 −10.0 0.2 −0.1 2.2 −1.3 3.1

NS-LS 11.0 −11.0 0.4 −0.2 3.2 −1.1 3.6

In Figure 11, the green color denotes zero deviation, the blue color denotes negative
deviation, and the red color denotes a positive deviation. The darker the color, the higher
the deviation.

In Table 15, the standard deviation for the statue is 1.5 mm. In Figure 11a, the vertical
plane is mostly light blue in color, and the horizontal plane is light yellow, almost green,
which indicates a relatively small deviation. The horizontal plane is less deviated than the
vertical plane. It may be because of errors in the acquisition of the image data.

In Table 15, the standard deviation for S-LS is 3.1 mm. In Figure 11b, the deviation is
relatively small because the center of the hole is light in color. The farther to the boundary,
the darker the color, indicating the larger the deviation. Additionally, the left side is positive
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deviation, the right side is negative deviation. This phenomenon may be due to the error
of point cloud registration. Although the point cloud should be as uniform as possible in
manual selection points, human error cannot be avoided.

In Table 15, the standard deviation for NS-LS is 3.6 mm. In Figure 11c, the deviation
is relatively small because the boundary of the hole is a light color, and the deviation is
large because the non-smooth part at the center of the hole is a dark color. Additionally,
the boundary side is positive deviation, the center side is negative deviation. It shows that
the precision of image data is less than that of 3D laser scanning for sharp feature points.

On the whole, the statue has the smallest standard deviation, followed by S-LS and
NS-LS. It shows that the precision of image data is highest for the plane and lowest for the
non-smooth surface.

4. Discussion

In the previous method of repairing sharp holes in 3D point cloud data with image
data, it was not considered whether the density of image data would affect the repair
precision. Through analysis in this paper, it was found that the precision of 1.2 times of the
corresponding M-point was higher. Here are the factors that affect the precision.

1. Precision of point cloud data acquisition

The precision of the point cloud will change with the distance [35]. The farther the
distance is, the smaller the precision is. The Riegl VZ-1000 3D laser scanning imaging
system was adopted in this paper. The scanning precision of the system within 100 m is
5 mm, the scanning distance in this paper is about 5 m, and the precision of point cloud
reaches 5 mm, which meets the requirements of general applications.

2. Precision of image data acquisition

The non-measurement camera used to obtain image data should have a fairly high
resolution. The Photoscan software requires a camera with a minimum of 50,000 pixels.
Nikon D600, with an effective pixel of 24.26 million, was selected in this paper.

3. Resolution precision of image data

The solution of image data was to calculate two-dimensional image data into three-
dimensional point cloud data, and the calculated point cloud data were used for hole repair.
Therefore, the solution precision of image data is directly related to the repair precision.

4. Splicing precision of two kinds of data

The splicing precision of point cloud data and image point cloud data directly affects
repair precision [36]. The splicing precision is generally measured by the average distance
between the nearest points, and the splicing precision in this paper reached the sub-
millimeter level. Compared with the literature, the precision is higher [37].

5. Precision relationship between point cloud data and image point cloud data

According to existing research, the higher the density of the point cloud, the higher
the precision [14–20]. Since the precision of laser point cloud data in this paper was slightly
higher than that of image point cloud data, it is reasonable to conclude that the density of
the optimal image point cloud data is slightly higher than that of the point cloud.

If the position of the target object and the surrounding environment change, the
precision of the two data sources will change. In general, the image data are observed at
close range. It can be considered that the precision of image data is stable, and the precision
of point cloud data will decrease with the increase of the distance between the station
location and the target object. Therefore, with the increase of distance, the precision of
image data remains unchanged, while the precision of point cloud data gradually decreases.
In this way, the precision of the two kinds of point cloud data will gradually approach.
Therefore, the optimal density of the image point cloud data calculated in this paper may
change.

6. Fusion of hole edge data
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The data at both ends of the hole edge position are from two data sources, respectively,
and the precision and density may be different. Therefore, the fusion of edge data will
appear abrupt, which may cause the result of no smooth transition of edge data, thus,
affecting the repair precision [38].

5. Conclusions

In this paper, holes in laser scanner point cloud data were repaired based on pho-
togrammetry technology. The precision of the 3D point cloud was slightly larger than
that of the image data. To improve the precision of repair, several I-points with different
densities were generated and compared to select the optimal density using the cross-section
method. Experimental results indicated that the density of the selected optimal I-point is
1.2 times the corresponding M-point by taking the number of point clouds into account.
The O-i-point and M-point were combined for comparison with the O-point using the
surface area method and the deviation method. The experimental results indicated that the
area ratio was less than 0.5% when the surface area method was used, and the maximum
and minimum standard deviations were, respectively, 0.0036 m and 0.0015 m when the
deviation method was used.

When evaluating the precision, this paper did not evaluate the boundary part after
combining two types of data. It remains to be studied whether the edge part is smooth or
not. Additionally, the scope of experimental data in this paper is small, and whether the
large range of data is suitable for the research results in this paper remains to be studied.
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