Accuracy of Global Ionosphere Maps in Relation to Their Time Interval
Abstract
:1. Introduction
2. Materials and Methods
- Year 2014, representing high solar activity period (F10.7 index ranged from 89 to 253 sfu);
- Year 2018, representing low solar activity period (F10.7 index ranged from 65 to 85 sfu);
- the first case study during geomagnetic storm on 19 February 2014 (max Kp = 6+);
- the second case study during the St. Patrick’s Day geomagnetic storm on 17 March 2015 (max Kp = 8−).
3. Results
3.1. Low Solar Activity
3.2. High Solar Activity
3.3. Geomagnetic Storms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnston, G.; Riddell, A.; Hausler, G. The international GNSS service. In Springer Handbook of Global Navigation Satellite Systems; Springer: Cham, Switzerland, 2017; pp. 967–982. [Google Scholar]
- Zhao, J.; Hernández-Pajares, M.; Li, Z.; Wang, N.; Yuan, H. Integrity Investigation of Global Ionospheric TEC Maps for High-Precision Positioning. J. Geod. 2021, 95, 1–15. [Google Scholar] [CrossRef]
- Grejner-Brzezinska, D.A.; Kashani, I.; Wielgosz, P.; Smith, D.A.; Spencer, P.S.; Robertson, D.S.; Mader, G.L. Efficiency and Reliability of Ambiguity Resolution in Network-Based Real-Time Kinematic GPS. J. Surv. Eng. 2007, 133, 56–65. [Google Scholar] [CrossRef]
- Ciećko, A.; Grunwald, G. Klobuchar, NeQuick G, and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events. Appl. Sci. 2020, 10, 1553. [Google Scholar] [CrossRef] [Green Version]
- Ghoddousi-Fard, R.; Lahaye, F. Evaluation of Single Frequency GPS Precise Point Positioning Assisted with External Ionosphere Sources. Adv. Space Res. 2016, 57, 2154–2166. [Google Scholar] [CrossRef]
- Azpilicueta, F.; Nava, B. A Different View of the Ionospheric Winter Anomaly. Adv. Space Res. 2021, 67, 150–162. [Google Scholar] [CrossRef]
- Ratovsky, K.G.; Klimenko, M.V.; Yasyukevich, Y.V.; Klimenko, V.V.; Vesnin, A.M. Statistical Analysis and Interpretation of High-, Mid-and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms. Atmosphere 2020, 11, 1308. [Google Scholar] [CrossRef]
- Shah, M.; Inyurt, S.; Ehsan, M.; Ahmed, A.; Shakir, M.; Ullah, S.; Iqbal, M.S. Seismo Ionospheric Anomalies in Turkey Associated with Mw≥ 6.0 Earthquakes Detected by GPS Stations and GIM TEC. Adv. Space Res. 2020, 65, 2540–2550. [Google Scholar] [CrossRef]
- Hernández-Pajares, M.; Roma-Dollase, D.; Krankowski, A.; García-Rigo, A.; Orús-Pérez, R. Methodology and Consistency of Slant and Vertical Assessments for Ionospheric Electron Content Models. J. Geod. 2017, 91, 1405–1414. [Google Scholar] [CrossRef]
- Liu, A.; Wang, N.; Li, Z.; Zhou, K.; Yuan, H. Validation of CAS’s Final Global Ionospheric Maps during Different Geomagnetic Activities from 2015 to 2017. Results Phys. 2018, 10, 481–486. [Google Scholar] [CrossRef]
- Krypiak-Gregorczyk, A. Ionosphere Response to Three Extreme Events Occurring near Spring Equinox in 2012, 2013 and 2015, Observed by Regional GNSS-TEC Model. J. Geod. 2019, 93, 931–951. [Google Scholar] [CrossRef] [Green Version]
- Wielgosz, P.; Milanowska, B.; Krypiak-Gregorczyk, A.; Jarmołowski, W. Validation of GNSS-Derived Global Ionosphere Maps for Different Solar Activity Levels: Case Studies for Years 2014 and 2018. GPS Solut. 2021, 25, 1–15. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Ma, Y.; Zheng, N. Accuracy and Consistency of Different Global Ionospheric Maps Released by IGS Ionosphere Associate Analysis Centers. Adv. Space Res. 2020, 65, 163–174. [Google Scholar] [CrossRef]
- Orús, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Improvement of Global Ionospheric VTEC Maps by Using Kriging Interpolation Technique. J. Atmos. Solar-Terr. Phys. 2005, 67, 1598–1609. [Google Scholar] [CrossRef]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of Seven Different GNSS Global Ionospheric Mapping Techniques during One Solar Cycle. J. Geod. 2018, 92, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Hernández-Pajares, M.; Lyu, H.; Goss, A. Influence of Temporal Resolution on the Performance of Global Ionospheric Maps. J. Geod. 2021, 95, 34. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, N.; Hernandez-Pajares, M.; Huo, X. SHPTS: Towards a New Method for Generating Precise Global Ionospheric TEC Map Based on Spherical Harmonic and Generalized Trigonometric Series Functions. J. Geod. 2015, 89, 331–345. [Google Scholar] [CrossRef]
- Schaer, S. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Springer Science: Cham, Switzerland, 1999. [Google Scholar]
- Ghoddousi-Fard, R.; Héroux, P.; Danskin, D.; Boteler, D. Developing a GPS TEC Mapping Service over Canada. Space Weather 2011, 9, 6. [Google Scholar] [CrossRef]
- Feltens, J.; Angling, M.; Jackson-Booth, N.; Jakowski, N.; Hoque, M.; Hernández-Pajares, M.; Aragón-Àngel, A.; Orús, R.; Zandbergen, R. Comparative Testing of Four Ionospheric Models Driven with GPS Measurements. Radio Sci. 2011, 46, 6. [Google Scholar] [CrossRef] [Green Version]
- Krypiak-Gregorczyk, A.; Wielgosz, P.; Borkowski, A. Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sens. 2017, 9, 1221. [Google Scholar] [CrossRef] [Green Version]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The Ionosphere Map Exchange Format Version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998; Available online: https://bit.ly/3zH1Trd (accessed on 20 July 2021).
- Imel, D.A. Evaluation of the TOPEX/POSEIDON Dual-Frequency Ionosphere Correction. J. Geophys. Res. 1994, 99, 24895–24906. [Google Scholar] [CrossRef]
- Nava, B.; Coisson, P.; Radicella, S.M. A New Version of the NeQuick Ionosphere Electron Density Model. J. Atmos. Solar-Terr. Phys. 2008, 70, 1856–1862. [Google Scholar] [CrossRef]
- Perrone, L.; Franceschi, G.D. Solar, Ionospheric and Geomagnetic Indices. Ann. Geophys. 1998, 41, 5–6. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Hernández-Pajares, M.; Yuan, Y.; Krankowski, A.; Liu, A.; Zha, J.; García-Rigo, A.; Roma-Dollase, D.; Yang, H.; et al. IGS Real-Time Service for Global Ionospheric Total Electron Content Modeling. J. Geod. 2020, 94, 32. [Google Scholar] [CrossRef]
GIM ID | Organization | Method | Temporal Resolution [minutes] | ||
---|---|---|---|---|---|
2014 | 2015 | 2018 | |||
CASG | the Chinese Academy of Sciences (Beijing, China) | Spherical harmonics Plus generalized Trigonometric Series [17] | 120 | 120 | 30 |
CODG | the Center for Orbit Determination in Europe (Bern, Switzerland) | Spherical harmonics [18] | 120 | 60 | 60 |
EMRG 1 | the Natural Resources Canada (Ottawa, Canada) | Spherical harmonics [19] | - | 60 | 60 |
UQRG | the Polytechnic University of Catalonia (Barcelona, Spain) | Tomographic with kriging [14] | 15 | 15 | 15 |
GIM ID | Annual RMS (TECU) | RMS Change (%) |
---|---|---|
CASG30 1 | 0.98 | - |
CASG60 | 0.98 | +0.0 |
CASG120 | 1.00 | +2.0 |
CODG60 1 | 0.86 | - |
CODG120 | 0.96 | +11.6 |
EMRG60 1 | 1.19 | - |
EMRG120 | 1.27 | +6.7 |
UQRG15 1 | 0.82 | - |
UQRG60 | 0.83 | +1.2 |
UQRG120 | 0.93 | +13.4 |
GIM ID | Annual STD (TECU) | STD Change (%) |
---|---|---|
CASG30 1 | 2.26 | - |
CASG60 | 2.26 | 0.0 |
CASG120 | 2.25 | −0.4 |
CODG60 1 | 2.22 | - |
CODG120 | 2.23 | +0.5 |
EMRG60 1 | 2.42 | - |
EMRG120 | 2.40 | −0.8 |
UQRG15 1 | 1.92 | - |
UQRG60 | 1.92 | +0.0 |
UQRG120 | 1.95 | +1.6 |
GIM ID | Annual RMS (TECU) | RMS Change (%) |
---|---|---|
UQRG15 1 | 1.56 | - |
UQRG60 | 1.60 | 2.6 |
UQRG120 | 1.89 | 21.2 |
GIM ID | Annual STD (TECU) | STD Change (%) |
---|---|---|
UQRG15 1 | 3.61 | - |
UQRG60 | 3.61 | 0.0 |
UQRG120 | 3.81 | 5.5 |
GIM ID | 19 February 2014 (TECU) | RMS Change (%) | 17 March 2015(TECU) | RMS Change (%) |
---|---|---|---|---|
CODG60 1 | - | - | 2.57 | - |
CODG120 | - | - | 3.01 | 17.1 |
UQRG15 1 | 1.95 | - | 2.09 | - |
UQRG60 | 2.01 | 3.1 | 2.19 | 4.8 |
UQRG120 | 2.39 | 22.6 | 2.70 | 29.2 |
GIM ID | 19 February 2014 (TECU) | STD Change (%) | 17 March 2015(TECU) | STD Change (%) |
---|---|---|---|---|
CODG60 1 | - | - | 6.10 | - |
CODG120 | - | - | 6.47 | 6.1 |
UQRG15 1 | 5.70 | - | 4.32 | - |
UQRG60 | 5.66 | −0.7 | 4.45 | 3.0 |
UQRG120 | 5.81 | 1.9 | 4.69 | 8.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanowska, B.; Wielgosz, P.; Krypiak-Gregorczyk, A.; Jarmołowski, W. Accuracy of Global Ionosphere Maps in Relation to Their Time Interval. Remote Sens. 2021, 13, 3552. https://doi.org/10.3390/rs13183552
Milanowska B, Wielgosz P, Krypiak-Gregorczyk A, Jarmołowski W. Accuracy of Global Ionosphere Maps in Relation to Their Time Interval. Remote Sensing. 2021; 13(18):3552. https://doi.org/10.3390/rs13183552
Chicago/Turabian StyleMilanowska, Beata, Paweł Wielgosz, Anna Krypiak-Gregorczyk, and Wojciech Jarmołowski. 2021. "Accuracy of Global Ionosphere Maps in Relation to Their Time Interval" Remote Sensing 13, no. 18: 3552. https://doi.org/10.3390/rs13183552
APA StyleMilanowska, B., Wielgosz, P., Krypiak-Gregorczyk, A., & Jarmołowski, W. (2021). Accuracy of Global Ionosphere Maps in Relation to Their Time Interval. Remote Sensing, 13(18), 3552. https://doi.org/10.3390/rs13183552