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Abstract: Hyperspectral image classification is essential for satellite Internet of Things (IoT) to
build a large scale land-cover surveillance system. After acquiring real-time land-cover information,
the edge of the network transmits all the hyperspectral images by satellites with low-latency and
high-efficiency to the cloud computing center, which are provided by satellite IoT. A gigantic amount
of remote sensing data bring challenges to the storage and processing capacity of traditional satellite
systems. When hyperspectral images are used in annotation of land-cover application, data dimen-
sion reduction for classifier efficiency often leads to the decrease of classifier accuracy, especially
the region to be annotated consists of natural landform and artificial structure. This paper proposes
encoding spectral-spatial features for hyperspectral image classification in the satellite Internet of
Things system to extract features effectively, namely attribute profile stacked autoencoder (AP-SAE).
Firstly, extended morphology attribute profiles EMAP is used to obtain spatial features of different
attribute scales. Secondly, AP-SAE is used to extract spectral features with similar spatial attributes.
In this stage the program can learn feature mappings, on which the pixels from the same land-cover
class are mapped as closely as possible and the pixels from different land-cover categories are sep-
arated by a large margin. Finally, the program trains an effective classifier by using the network
of the AP-SAE. Experimental results on three widely-used hyperspectral image (HSI) datasets and
comprehensive comparisons with existing methods demonstrate that our proposed method can be
used effectively in hyperspectral image classification.

Keywords: hyperspectral image; attribute profile; deep features

1. Introduction

The emergence of Satellite Internet of Things(IoT) system, which means combining
various information sensor equipments with network into a huge network through satellite
communication, has a profound impact on processing. Today, with the emergence of
new acquisition platforms, smaller and more efficient sensors, and edge computing [1],
remote sensing technology is once again on the edge of major technological innovation.
Traditionally, remote sensing was a subject of aerial surveying and mapping, geographic
information systems, and earth observation, but recent developments have shifted it
to the direction of satellite Internet of Things. Ideally, the continuous streaming data
from the interconnected devices on the aggregation platform will paint a vivid picture
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of the world people live in. However, the real world is ever-changing with an enormous
amount of details, but the capacity of the remote sensing system is limited. Facing the
large amount of hyperspectral data and time-consuming data transmission, computing
or caching the data at the edge can effectively reduce the amount of transmission [2],
and the satellite Internet of Things can solve the latency and bandwidth issues in the data
transmission process. The satellite IoT is shown in Figure 1. First, the hyperspectral data
is collected through satellites, and the collected data is processed through multi-access
edge computing, after which the results are sent to ground. Finally, the data is analyzed
through data statistics and post-processing to realize data monitoring. As an aspect of the
application of the research in this paper, the restrictions of on orbit satellite hyperspectral
application can be resolved to a certain extent, and lay a foundation for the subsequent
research on satellite IoT as well as other hyperspectral images applications.

Figure 1. The satellite Internet of Things system.

With a prominent role in hyperspectral image classification, which is the core part
of edge computing process, attribute profile (AP) [3] can use available attributes that can
be calculated based on region to realize multi-scale analysis of images. AP is considered
a multi-scale analysis tool, which can filter the connected components of gray image
rather than single pixel executed by morphological attributes. In addition, in the case of
limited sample numbers, high-quality samples for classifiers can also be generated by AP-
based algorithms. Due to the high dimension of hyperspectral image data, the dimension
reduction process before attribute filtering is common in hyperspectral images, which
often leads to the loss of spectral information. Stacked filtered images are called extended
attribute profiles (EAPs). As shown in [3–5], spatial information of connected region at
different scales can be modeled by APs. Therefore, the multi-level spatial features of images
can be created by applying APs in sequence, which make APs an effective spatial feature
of hyperspectral data. As the [6,7] show, when EAPs combined with original spectral data
is used as the input samples of the network, the extracted features of the network are
better for classification, reflecting the great cooperation potential of combining EAP and
deep learning. Also, seeing that images can be processed based on different attributes and
thresholds which first can be calculated based on the connected components, AP can be
used as a flexible tool. The traditional thresholds are set arbitrarily, but the tuning of the
parameters of the attribute filter is rarely studied. In [8], an automatic feature selection
method is proposed to tune the thresholds of attribute filters. Dalla [9] proves that the
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two attributes (area and standard deviation) using automatic methods are separated from
manual methods. Using the algorithm in this paper, it is simpler to obtain the threshold
when the attribute area is considered.

There are many architectures to perform classification-related tasks, of which Au-
toencoder (AE) [10], as an unsupervised learning model, holds one of the most dominant
positions. Chen et al. [11] introduce autoencoders into HSI data classification. Tradi-
tional research on AE in HSI classification tended to select raw spectral data combined
with image patches as the input of the AE network to learn the spatial-spectral features.
The extraction effect of depth features has a great impact on the classification accuracy [12];
effective feature representation can improve the efficiency of classifier [13]. Lauzon [14]
and Lin [15] proposed that in those image patches the spatial information of the center
pixel is represented by all the pixels in the region. Before getting the image patches, since
the dimension of the raw HSI data is high, techniques reducing this dimensionality can
be beneficial [16]. However, traditional methods of dimension reduction such as Principal
Component Analysis (PCA)[17], Independent Component Analysis (ICA)[18], etc., tend
to cause the loss of spectrum information, further leading to the decline of classification
accuracy. Cavallaro [6] demonstrated that after encoding the raw spectral data, features
can be classified more effectively.

The classification accuracy can be improved by the pre-training network obtained by
the AE. In addition, the feature of its own dimension reduction coding contributes to reduce
the dimension of hyperspectral images, which can further improve the performance of
hyperspectral image classification. Besides, the selection of the parameters of the attribute
filters is a major issue when the profiles are generated. There are related researches of this
issue that can be found in [6,19], which are time-consuming and difficult to handle. This
paper proposes to choose the strategy of selecting thresholds for attribute filters to construct
area attribute profiles and then encoding APs with autoencoders for HSI classification.
In this method, we focus on the parameter selection of attribute profiles to generate APs
and process of encoding by autoencoder. The spatial-spectral features are extracted by
EAPs, and in combination with the deep features learning by autoencoder, can acquire
more effective features for classification. The innovative framework proposed in this paper
can be introduced to other applications, such as the Internet of Vehicles [20].

Compared with state-of-the-art, the main contribution of this study can be summarized
as follows:

(1) Spatial spectrum feature extraction. The space frequency characteristics of the joint
spectral information and spatial information are used to solve the problems of “same
spectral foreign matter” and “Homo object heterospectral” in hyperspectral data.
The spatial information of hyperspectral data is extracted based on EMAP in this
paper, leading to the full and comprehensive spatial features of hyperspectral im-
ages extraction.

(2) Multi-feature fusion. A multi feature hyperspectral image classification algorithm
based on the fusion of depth feature and spatial spectrum feature is proposed.
The stack autoencoder is selected to extract the depth feature from the training samples.

2. Related Work

The introduction of AP aims to make full use of the spatial information in hyperspec-
tral images, but spatial features have limited ability to represent hyperspectral images,
so it is necessary to select various features fused to improve the classification accuracy of
hyperspectral images, such as AE, the structure adopted by this paper.

2.1. Attribute Profile

In order to alleviate the problems of “same object with different spectrum” and “same
spectrum foreign object” in hyperspectral image classification, and reduce the probabil-
ity of misclassification of edge pixels, spatial features are introduced into hyperspectral
image classification features. In order to make full use of the spatial information in hyper-
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spectral images, AP is used in this paper to extract the spatial information in multi-scale.
The concept of AP is based on morphology profiles (MP), which is constructed based on the
repeated use of openings and closings by reconstruction with a structuring element (SE)[21].
The MP has some limitations because of SE’s properties; to overcome these limitations,
morphological AP has been proposed. AP can analyze many geometric attributes such as
area, standard deviation, and the diagonal of the box bounding the regions, and in this
way various spatial information can be obtained according to different attributes.

More specifically, APs rely on morphological attribute filters (AFs), since an AP is
achieved by using AFs with a set of thresholds [3]. AFs process connected components
either by keeping or merging them. The decision on the AFs to be performed on each region
is given by the result of the threshold that evaluates if a given attribute which is computed
on a connected component is greater/lower than the arbitrary reference value [22]. If the
comparsion result is not verified, then the region is merged to the adjacent region having
a closer gray-level value (either greater or equal to the one of the evaluated region). In
general, features of the connected component on which the AFs are applied are compared
to the given threshold.

The set of thresholds can be set manually or predicted by algorithm. The thresh-
olds are calculated manually based on the statistics and selected in a trial-and-error
way [3,19], while the predicates are calculated automatically according to value of at-
tributes [8]. The classification accuracy obtained from automaic prediction may be slightly
lost, but automatic method was chosen as its universality in satellite applications. The
predicates are set to represent a set of thresholds predicated by values of image attribute in
this paper. More formally, given a set of predicates of length L in order (Pλj ⊆ Pλk , j ≤ k),

Pλ : {Pλi}(i = 1, ..., L, λi = 0, ..., n), let φPλi and γPλi denote the attribute thinning and
thickening operation respectively.

An AP of a gray image is defined as in (1),

AP( f ) = {φPλL ( f ), φ
PλL−1 ( f ), ..., φPλ1 ( f )︸ ︷︷ ︸

thickening profile

, f ,

γPλ1 ( f ), ..., γ
PλL−1 ( f ), γPλL ( f )︸ ︷︷ ︸

thinning profile

}
(1)

where the f represents the original gray image, PλL represents different predicates, φPλL ( f )
represents image after thickening operation with the predicate of PλL , γPλL ( f ) represents
image after thinning operation with the predicate of PλL , respectively. It is possible to
note how the sequence of thinning transformations is taken considering the sequence of
predicates in increasing order, while thickening transformations refer to decreasing order.
That is to say, progressively strict criteria leading to progressively coarse images. When λi

= 0, φPλi ( f ) = γPλi ( f ) = Pλi ( f ) = f .
Figure 2 shows an example of an AP formed by attribute filtering on one of the

principal components (PC) after PCA operation on hyperspectral data. Different images
can be obtained by using different predicates on the original PC. Therefore, an AP is a stack
of thickening and thinning profiles. The original image f can be regarded as the level zero
of both the thickening and thinning profiles. It’s obvious that given the original image f as
input, after the attribute filtering, there are 2L + 1 output images as APs. In order to expand
AP to the hyperspectral image spatial information extraction field, people proposed the
concept of EAP. EAP is extracted on the first m principle components (PCs) transformed
from HSI data. The attribute filtered PCs construct extended APs (EAPs). More formally,
let g indicates m PCs, the process of generating an EAP can be formalized as in (2).
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Figure 2. Using attribute filtering to build AP samples for a single PC.

EAP(g) = {AP(g1), AP(g2), ..., AP(gm)} (2)

When we use two or more attributes, we can get EMAPs. Assuming that k attributes
are selected, EMAP can be expressed as formula (3).

EMAP(g) = {EAPA1(g), EAP′A2
(g), ..., EAP′Ak

(g)} (3)

where EAPAi is an EAP built with a set of predicates evaluating the attribute Ai and EAP′ =
EAP\{gi}i=1,...,m. In order to avoid redundancy information, the original component {gi}
of EAP is removed.

2.2. Autoencoder and Classifier

There are many methods proposed in remote sensing images classification, but regard-
ing the lack of labeled samples, the supervised methods and semi-supervised methods are
not suitable for hyperspectral images classification. Therefore, the unsupervised methods
are adopted in this paper, among which SAE performs well, which is a deep learning net-
work structure for hyperspectral image classification in common use. The most commonly
reported paradigm for classification of autoencoders consists of unsupervised pre-training,
followed by supervised fine-tune and ends with its’ classification often by logistic classifier
or softmax classifier. The typical autoencoder is a three-layered network, consist of an
input layer, a hidden layer and an output layer, it aims to minimize the reconstruction error
and then learn a network which can learn deep features of the input data. For this reason,
it encodes the input data to get the feature data, next decodes the feature data to obtain
the reconstruction data, then defines the loss function and optimizes the function until the
network training finishes.

The encoding process from the input layer to the hidden layer is a linear combination
with a nonlinear activation function. Similarity, the decoding process from hidden layer to
the output layer is still a linear combination with a nonlinear activation function. Let x, h, z
represent the input data, the output data of encoding, and the output data of decoding,
respectively; these processes can be formalized as shown in (4) and (5) below.

h = f (Whx) + bh (4)

z = f (Wzx) + bz (5)

where Wh and bh are the encoding weight matrix and bias, Wz and bz are the decoding
weight matrix and bias, f (·) indicates the nonlinear activation function. To expand the
unsaturated region of sigmoid activation function, we use the parametric sigmoid which
allows some flexibility in network training in this paper. The parametric sigmoid function
is defined as (6) [23]:

FPSigmoid(x) =
α

1 + e−β(x−γ)
(6)

where x is the input, α, β and γ are the parameters and/or hyper-parameters which have
been kept either trainable or fixed under different setting scenarios. Keeping α equal to
1, FPSigmoid(x) ∈ [0, 1]. The α, β and γ in this paper are hyper-parameters. As a improved
function of Sigmoid, the introduction of parametric sigmoid function makes it easier for the
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model to learn the training dataset irrespective of easy or hard examples. Besides, in order
to simplify the training processing of autoencoder, tied weights strategy is employed.

There are many distance metrics to evaluate the performance of the reconstruction
from z to x, such as mean squared error (MSE) cross entropy. In this paper, MSE is chosen
as cost function. Our goal is to minimize the cost function defined as:

J(W, b) =
1

Ntr

Ntr

∑
i=1
‖x− z‖2 (7)

where Ntr indicates the number of the training samples. Equation (7) can be solved by
minibatch stochastic gradient descent (MSGD) method.

The parameter matrix of the autoencoder has been optimized to minimize reconstruc-
tion errors.There are many distance measurement functions to evaluate the reconstruction
performance of, such as Mean Squared Error (MSE) function. In the autoencoder, MSE is
generally selected as the loss function. The goal of training the autoencoder is to minimize
the loss function defined as Formula (7). N represents the number of input samples.

After pre-training, the output layer of autoencoder will be replaced by a logistic
regression(LR) layer. Since LR works in a supervised manner, the input of the network
should be the input data and its label information, and the label is the output of the network.
In more detail, the sigmoid function is still the activation function in LR layer, h is the
encoding result and the input data of LR layer, the probability of h belongs to cth class can
be defined as:

P(h = c|h, Wh, bh) = so f tmax(Whh + bh) (8)

The output of LR is between [0,1]. And the cost function is:

J(l, h) =
1
N

N

∑
i=1
‖l − h‖2 (9)

where N is the number of input samples and l is the number of true label. Dalla Equation (9)
can also be solved by stochastic gradient descent (MSGD) method.

3. Proposed Method for Spectral-Spatial Features Encoding

Our proposed framework is shown in Figure 3. It contains two learning stages, which
are optimized step by step for different objectives: the former is the training of feature
extractors, and the latter is the joint training for hyperspectral image classifiers. At the
first stage, the program imposes a similarity regularization on each hidden layer of SAE to
learn a discriminative feature space in which homogeneous pixels are mapped closely and
inhomogeneous pixels are mapped further separately. At the second stage, the program
acquires an effective classifier by replacing the reconstruction layer with softmax layer.
The output is class labels of pixels in HSI.

There is only one hidden layer in AE, while the hyperspectral data in this paper
contains many bands. If AE is chosen to transfer high dimensions data as input through
neurons directly, the difficulty of network training will be increased, making the network
difficult to converge, and reducing the accuracy of feature learning. The stacked autoen-
coder(SAE) increases the number of hidden layers on the basis of AE, whose effect is
equivalent to superposition of several AEs. SAE can fit the nonlinear relationship in the
spectral information of hyperspectral image well, so as to achieve efficient representation
of background image, and the parameters can be self-adaptive by learning the image
information, It is a deep learning network structure commonly used in hyperspectral
image classification.
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Figure 3. Outline of the proposed pixel classification strategy.

The most commonly reported paradigm for classification of autoencoders consists of
unsupervised pre-training, followed by supervised fine-tune and ends with its classification
often by logistic classifier or softmax classifier. The typical autoencoder is a three-layered
network, consist of an input layer, a hidden layer and an output layer, it aims to minimize
the reconstruction error and then learn a network which can learn deep features of the input
data. For this reason, it encodes the input data to get the feature data, next decodes the
feature data to obtain the reconstruction data, then defines the loss function and optimizes
the function until the network training finished. The outline of the proposed classification
strategy is shown in Figure 4.

Figure 4. Illustration of the lth AE training in stage 1. The AP-SAE can be optimized layer-wisely by
minimizing the reconstruction error of AE with similarity regularization.

The principle of AP-SAE proposed is shown as Figure 5. Suppose that the proposed
AP-SAE consists of L stacked AE, and the hidden layer dimension of lth AP-SAE is d(l),
where l = 1, 2, ..., L. Let X̂ = (xi)

N
i=1 ∈ Rd×N denote the training set, where xi ∈ Rd
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is the spectral-spatial feature of the ith training sample and N is the total number of
training samples. So the lth AP-MAE has two parts: one part is an encoder to learn the
feature mapping matrix, another part is a decoder to restore the input of AP-SAE with Sam
constraint. For the lth AP-SAE, let H(l)(xi) be the weights of the hidden layer, I(l)(xi) be
the data fed into the lth AP-SAE which is equivalent to Y(l−1)(xi) (I(l)(xi) = xi when l = 1),
and Y(l)(xi) be the restore of input I(l)(xi). The process is formulated as

H(l)(xi) = f (W(l)
E Y(l−1)(xi ) + biase(l)E ) (10)

Y(l)(xi) = f (W(l)
D Y(l)(xi ) + biase(l)D ) (11)

where W(l)
E ∈ Rd(l)×d(l−1)

is the weights matrix vector and biase(l)E ∈ Rd(l) is the bias vector

of the encoder to be learned in lth AP-SAE. The W(l)
D ∈ Rd(l−1)×d(l) is the weights matrix

vector and biase(l)D ∈ Rd(l−1)
is the bias vector of the decoder to be learned in lth AE. f (·) is

the activation function, which uses parameter sigmoid in this method. Besides, in the case
of difficult in the training of the stacked autoencoder, tied weights strategy is employed.

Figure 5. The principle of AP-SAE.

In varied image classification and annotation applications, there are many index or
criteria to evaluate the performance of the approximation from input of encoder to output
of decoder, such as mean squared error (MSE) or cross-entropy. To achieve fast convergence,
each of the lth AP-SAE sub network is trained by using the following objective function:

J(W(l)
E , biase(l)E , W(l)

D , biase(l)D ) = min(L(I(l), Y(l)) + λΨ(I(l), Y(l))) (12)

where λ is trade off parameters, L(I(l), Y(l) represents the reconstruction error term,
and Ψ(I(l), Y(l) represents the discriminant regularization term.

The first item in (12) is the reconstruction cost between the input data and its corre-
sponding reconstruction data, which is calculated by

L
(

I(l), Y(l)
)
= 1

2

N
∑

i=1

∥∥∥I(l)(xi)−Y(l)(xi)
∥∥∥2

= 1
2

N
∑

i=1

∥∥∥H(l−1)(xi)− f (W(l)
D H(l)(xi) + biase(l)D )

∥∥∥2
(13)
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The second item in (12) is the reconstruction cost between input data and its corre-
sponding reconstructed data, which is calculated by

Ψ
(

I(l), Y(l)
)
= arccos (<I(l)(xi),Y(l)(xi)>

‖I(l)(xi)‖×‖Y(l)(xi)‖)

= arccos


d(l−1)

∑
j=1

I(l)(xi)
j ·Y(l)(xi)

j

[
d(l−1)

∑
j=1

[
I(l)(xi)

j
]2
]1/2

×
[

d(l−1)

∑
j=1

[
Y(l)(xi)

j
]2
]1/2

 (14)

We integrate (13), (14) into (12) to obtain the following objective function of AP-SAE:

J(W(l)
E , biase(l)E , W(l)

D , biase(l)D )

=min


1
2

N
∑

i=1

∥∥∥H(l−1)(xi)− f (W(l)
D H(l)(xi) + biase(l)D )

∥∥∥2
,

+λ arccos(< I(l)(xi), Y(l)(xi) > /
∥∥∥I(l)(xi)

∥∥∥
×
∥∥∥Y(l)(xi)

∥∥∥)


(15)

By optimizing the objective function in (15), a compact and distinctive low dimensional
feature space is obtained to cover the similar spatial context in HSI. The stochastic gradient
descent method is used to resolve the Equation (15).

After the pre-training, the output layer of the auto encoder will be replaced by the
logistic regression (LR) layer for the purpose of classification. Once all hidden layers of
AP-SAE are pre-trained, the network will converted into the second stage of multi class
classifier training. The method first integrate a C-way softmax classification layer at the top
of the AP-SAE network, and then train the network by minimizing the classification error,
where C is the number of land cover classifications. The softmax classifier is characterized
by
{

W(L+1)
E ∈ RC×d(L)

, biase(L+1)
E ∈ RC

}
.

For a training sample xi, let YL+1(xi) be the output of softmax classifier and YL(xi)
be its input, where YL(xi) is the Lth hidden layer of AP-SAE. The softmax classifier is
formulated as

Y(L+1)(xi) = ϕ
(

W(L+1)
E Y(L)(xi) + biase(L+1)

E

)
(16)

where φ(·) is the softmax activation function. The objective function is the softmax cross-
entropy loss, which is formulated as follows:

J(X, Y) = − 1
N

N

∑
i=1

〈
yi, log

(
Y(L+1)(xi)

)〉
(17)

where Y = {yi}N
i=1 ∈ RC×N is the label set of training set X. yi ∈ RC is the label vector of

the ith training sample xi, in which only one element is 1 and others are zeros.

4. Experiments and Classification Results
4.1. Dataset Description

In this experiment, the performance of the proposed algorithm is evaluated by three
hyperspectral images. The first one is Pavia University (610 × 340 pixels) and it has been
acquired by the ROSIS-03 sensor with 1.3 m spatial resolution over the city of Pavia, Italy.
They possess 115 bands with a spectral coverage ranging from 0.43 µm to 0.86 µm. After the
elimination of 12 noisy bands, 103 bands have been left. here are 9 representative categories.
Figure 6 shows the false-color image and ground-truth map. The Salinas is the second data
set used for HSI classification. It contains 204 spectral bands (removing 20 water absorption
bands). The data set contains 512 × 214 pixels with the spatial resolution of 3.7 m. There
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are 16 representative categories. Figure 7 shows the false-color image and ground-truth
map.The third data set was acquired by the airborne visible/infrared imaging spectrometer.
This data set is obtained from an airplane. The size of the hyperspectral image of each
channel is 145 pixels × 145 pixels, and it has 220 spectral bands in the wavelength range of
0.4 µm–2.5 µm. The spectral bands are removed by removing the water absorption band.
The number is reduced to 200. Figure 8 shows the false-color image and ground-truth map.

Figure 6. University of Pavia: false-color image and ground-truth map.

Figure 7. Salinas: false-color image and ground-truth map.

Figure 8. Indian Pines: false-color image and ground-truth map.

4.2. Parameter Setting

In order to achieve the classification of HSI of n bands, we reduce the spectral dimen-
sion from n to r � n; firstly, there are various dimension reduction techniques can be used,
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in this paper, principal component analysis (PCA) is chosen due to its widespread use with
APs. Secondly, we construct the maxtree for each PCs. Next step is to apply each of r PCs
with attribute filters possessing L thresholds which are listed in Table 1, so that the attribute
profile of length c = (2× L + 1)× r can be obtained. And then the pixels in the APs are
the samples of the rest network.

Parameter of the thresholds is available from Table 1 with area and standard devi-
ation as the attributes. To obtain EMAP features, the principle components containing
approximately 99% of the total variance for dataset should be preserved. Then the whole
data in EMAPs is normalized, and all of the available labeled set is randomly partitioned
into the training set, validation set and test set with a ratio of 5:2:3. As for the number
of neurons of the hidden, there is an experiment to analyze the behavior of network and
obtain this parameter. The number of hidden layers of AP-SAE is set to 2 (i.e., L = 2) for
each data set and each kind of feature. In addition, we set the number of neurons in the
first hidden layer to be about 50% of the dimensions of the original input features. Thus,
the dimensionality of spectral-spatial feature is 171 for University of Pavia, 255 for Salinas
and 285 for Indian Pines, respectively. The number of neurons in the first hidden layer is set
to 100 for University of Pavia , 120 for Salinas and 150 for Indian University. The number of
neurons in the second hidden layer is set varying from the set of {40,60,80,100} for three data
sets.To optimize parameters λ, we set its value varying from the set of {0.001,0.01,0.1}.The
classification results measured in terms of OA by using different neuron nodes in the
second hidden layer and different input features (spectral feature versus spectral-spatial
feature) on three widely-used HSI classification data sets . Finally we obtain the option
parameters as listed in Table 2. These parameters are fixed in the following experiments.

Table 1. Attribute and thresholds.

Attribute Pavia University Salinas Indian Pines

Area 55,879, 93,720, 131,561, 169,402 24,174, 45,732, 67,290, 88,848 4660, 8743, 12,827, 16,910
Standard Deviation 14, 26, 39, 52 12, 22, 32, 42 10, 20, 31, 41

Table 2. Optimal parameter setting for different datasets.

dataset λ Number of Hidden Layer Neurons AP-SAE Structure

Pavia University 0.1 80 171-100-80-9
Salinas 0.001 80 255-120-80-16

Indian pines 0.001 40 285-150-40-9

4.3. Ablation Studies

The Table 3 shows the comparison results of hyperspectral image classification using
spectral features and spatial spectral features in three datasets. From the comparison results,
for the three datasets used in this paper, the classification accuracy of using spatial features
is higher than that of using spectral features in OA, AA and kappa coefficients. That is to
say, the combination of spatial features and spectral features can effectively improve the
classification accuracy of hyperspectral images and get better classification results.

Table 3. Classification results of spectral and spatial features.

Evaluation Criterion
Pavia University Salinas Indian Pines

Spectral Spatial Spectral Spatial Spectral Spatial

OA 0.88 0.982 0.87 0.95 0.77 0.92

AA 0.83 0.98 0.88 0.95 0.71 0.96

Kappa 0.85 0.98 0.85 0.95 0.74 0.92
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Figures 9–11 show the classification result map of three datasets, including the real
mark map of ground features, the classification result map based on spectral features and
the classification result map based on spatial spectral features.

(a) Real mark map of surface fea-
tures

(b) Spectrum characteristic result
chart

(c) Spatial spectrum characteristic
result graph

Figure 9. Classification results of Pavia University dataset.

(a) Real mark map of surface fea-
tures

(b) Spectrum characteristic result
chart

(c) Spatial spectrum characteristic
result graph

Figure 10. Classification results of Indian Pines dataset.

(a) Real mark map of surface fea-
tures

(b) Spectrum characteristic result
chart

(c) Spatial spectrum characteristic
result graph

Figure 11. Classification results of Salinas dataset.
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In order to evaluate the effect of adding similarity constraints on the classification
results, this paper gives a comparison between SAE network structure without similarity
constraints and AP-SAE network structure with similarity constraints. Table 4 lists the
classification results of this network models under three different datasets under different
numbers of neurons. As the experimental results show, adding similarity constraints has a
significant effect on improving the classification accuracy.

Table 4. Different neuron numbers use AP-SAE model classification results on different data sets.

Evaluation Criterion Neurons Number Pavia University Salinas Indian Pines

OA

40 99.22 98.00 96.45
60 99.11 98.22 94.86
80 99.28 98.32 95.57

100 99.14 98.27 95.17

AA

40 98.91 98.83 96.10
60 98.90 98.88 95.20
80 99.01 98.91 94.65

100 98.79 98.80 93.48

Kappa

40 98.97 97.77 95.83
60 98.82 98.01 93.41
80 99.05 98.13 94.29

100 98.86 98.07 93.81

This paper compares the running efficiency of the classification algorithm framework
based on SAE and AP-SAE, and the required schedule is shown in Table 5.

Table 5. Running Efficiency of AP-SAE Model on Different Datasets.

Dataset
Model Training Duration(s) Model Running Duration(s)

SAM AP-SAM SAM AP-SAM

Pavia University 2979.4 2953.5 3.6 3.7
Salinas 716.3 751.4 2.2 2.3

Indian pines 4485.8 4395.6 5.9 6.1

4.4. Comparison with State of the Arts

In order to quantitatively evaluate the effectiveness of the AP-SAE framework pro-
posed in this paper, a comparison between some of the latest hyperspectral image clas-
sification methods and the method proposed in this paper is essential, with which the
effectiveness of the method proposed in this paper to integrate depth features and spatial
spectrum features can be verified. The latest hyperspectral image classification methods
are Compact and Discriminative Stacked Autoencoder (CDASAE), local binary pattern
(LBP)-ELM, 1-D CNN, SVM-random feature selection (RFS) and CNN-pixel-pair feature
(PPF) methods. Among them, CDASAE [24] adds discriminant condition constraints and
regularized diversity constraints to the SAE structure. LBP-ELM [25] uses LBP to extract
local hyperspectral data features, and uses ELM to classify the extracted features. SVM-
RFS [26] is to use SVM-based system and RFS to achieve hyperspectral image classification.
1-D CNN [27] is to use CNN to directly extract the spectral information of hyperspectral
data to achieve classification. CNN-PPF [28] is to use CNN to learn PPF features of hyper-
spectral images, where PPF features are obtained based on the information of pixels and
their neighboring pixels.

Tables 6–8 record the comparison between the proposed method and the latest hy-
perspectral classification results for the three datasetS. The results in the table illustrate
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that the method proposed in this paper achieves the best results on the three evaluation
criteria of OA, AA and Kappa coefficients, that is to say, the model proposed in this paper
can effectively improve the classification accuracy of hyperspectral images, which further
confirms the effectiveness and superiority of the proposed method.

Table 6. Performance comparion of different thresholds for pavia university.

Evaluation Criterion AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

OA 99.28 97.59 96.48 97.59 91.10 92.27
AA 99.01 97.66 91.81 92.92 93.30 96.98

kappa 99.05 96.86 95.48 96.90 88.53 89.89

Table 7. Performance Comparison of Different Thresholds for Salinas.

Evaluation Criterion AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

OA 98.32 96.07 93.15 89.28 94.80 92.42
AA 98.91 97.56 96.87 94.83 97.73 96.31

kappa 98.13 96.78 92.35 88.13 94.17 91.55

Table 8. Performance Comparison of Different Thresholds for Indian Pines.

Evaluation Criterion AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

OA 96.51 95.81 97.33 89.83 86.44 94.34
AA 96.74 97.38 90.59 93.36 91.58 96.78

kappa 95.90 95.30 85.94 88.65 84.88 93.63

In order to more intuitively show the classification of various methods on different
feature categories, Table 9 shows the value of the classification accuracy of the six methods
compared in this article on the Pavia University dataset. There are six methods compared
in this paper for the Pavia University dataset, which has a total of nine feature categories.
As can be seen in the table, the classification accuracy of the most categories is pretty
high, while the classification effect of the second category (Asphalt), the third category
(Meadows) and the eighth category (Bare soil) perform worse than the other six categories
in most methods listed.

Figure 12 shows the line chart of the classification accuracy of each of the six methods
compared in this paper for the Pavia University dataset. In the Figure 12, the abscissa
represents different feature category numbers. The ordinate represents the classification
accuracy of each category, and the accuracy value is displayed as a percentage. As can
be seen from the histogram, in terms of the classification accuracy of the second category
(Asphalt), the third category (Meadows) and the eighth category(Bare soil), while the other
methods underperform, the method proposed in this paper all achieve the maximum
classification accuracy.
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Table 9. Different methods of various types of accuracy comparison results for the Pavia Univer-
sity dataset.

Datasets AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

1 98.99 99.39 99.39 99.39 99.39 99.39
2 99.60 97.37 90.69 91.10 91.10 95.55
3 97.17 94.94 84.82 86.84 85.63 93.93
4 98.79 98.18 96.36 95.34 96.96 96.76
5 99.39 99.80 99.39 99.60 99.60 99.80
6 99.39 99.39 94.13 94.13 96.15 98.99
7 98.79 96.96 95.75 94.53 93.52 95.95
8 97.17 94.33 82.39 85.63 87.25 93.52
9 99.60 98.79 99.60 99.60 99.40 99.40

Figure 12. Different methods of various types of accuracy comparison results for the Pavia
University dataset.

Table 10 shows the value of the classification accuracy of the six methods compared
in this article on the Salinas dataset. There are six methods compared in this paper for
the Salinas dataset. As can be seen in the table, the classification accuracy of the most
categories is over 95%, but the classification effect of the eighth category (Grapes) and
fifteenth category (Vinyard untrained) is below 85% in most methods listed. Especially,the
vegetation characteristics of Lettuce romaine are obvious, where contains more samples of
Lettuce romaine 5 wk, so the accuracy of the six methods all reach 100.

Figure 13 shows the classification accuracy histogram for the eighth category (Grapes)
and fifteenth category (Vinyard untrained) comparing the effect among the six methods.
In the figure, the abscissa represents different feature category numbers. The ordinate
represents the classification accuracy of each category, which value is displayed as a
percentage. As is shown in the histogram, in the 8th category (Grapes) and the 15th category
(Vinyard untrained) classification accuracy, compared with other models, the classification
accuracy of the proposed AP-SAE model is significantly improved.
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Table 10. Different methods of various types of accuracy comparison results for the Salinas dataset.

Datasets AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

1 100.00 100.00 99.58 99.39 100.00 99.39
2 100.00 100.00 100.00 99.37 100.00 100.00
3 100.00 98.95 99.58 96.65 99.58 99.58
4 99.58 99.79 99.79 99.79 99.58 99.58
5 99.58 98.74 98.11 97.07 98.32 98.95
6 100.00 99.58 99.79 99.58 100.00 99.79
7 100.00 99.58 99.79 99.58 100.00 99.79
8 96.86 93.92 84.91 72.33 88.68 84.07
9 100.00 99.16 99.58 99.60 98.32 100.00

10 98.74 98.74 96.44 91.41 98.74 94.97
11 100.00 98.95 98.74 97.69 99.58 96.86
12 100.00 100.00 100.00 100.00 100.00 100.00
13 98.95 93.29 99.17 98.95 99.58 98.32
14 95.81 95.81 98.95 95.18 98.95 97.90
15 94.34 85.11 76.52 76.94 83.65 72.96
16 99.58 99.58 99.58 99.95 99.37 99.16

Figure 13. Different methods of various types of accuracy comparison results for the Salinas dataset.

Table 11 shows the value of the classification accuracy of the six methods compared
in this article on the Indian Pines dataset. There are nine feature categories of the Indian
Pines dataset are selected to compare the effect of the methods listed. As can be seen in
the table, in the first category(Corn-notill), the second category(Corn-mintill), the sixth
category (Soybean-notill) and the seventh category(Soybean-mintill) the accuracy value of
most methods is below 90%.

In particular, the phenomenon where the value of accuracy of several experimental
results reaches 100% in Tables 10 and 11, which also appears in some references, such
as [24–28] does not mean that the problem is from the experiment itself. As special
characteristics of several kinds of surface features listed in the Salinas dataset and Indian
Pines dataset, the results reach 100% because of their stable performance in experiments.
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Table 11. Different methods of various types of accuracy comparison results for the Indian
Pines dataset.

Datasets AP-SAE CDA-SAE SVM-RFS 1-D CNN CNN-PPF LBP-ELM

1 93.60 93.39 86.16 88.84 78.72 93.18
2 97.93 96.28 88.43 91.32 85.33 96.90
3 96.90 98.76 96.28 97.73 95.87 98.76
4 98.76 100.00 99.79 100.00 100.00 100.00
5 100.00 100.00 100.00 100.00 99.79 100.00
6 90.29 97.31 90.08 91.74 89.88 96.49
7 97.31 92.36 71.07 78.93 81.61 88.02
8 97.11 99.17 85.74 94.01 95.66 99.17
9 100.00 100.00 98.76 98.97 98.76 100.00

Figure 14 shows the line chart of the classification accuracy of the six methods com-
pared in this article on the first category(Corn-notill), the second category(Corn-mintill),
the sixth category (Soybean-notill) and the seventh category(Soybean-mintill) of the In-
dian Pines dataset. The abscissa in the figure represents the number of different feature
categories. The ordinate represents the classification accuracy of each category, and the ac-
curacy value is displayed as a percentage. As can be seen from the histogram, the AP-SAE
model proposed in this paper in the first category (Corn-notill), the second category (Corn-
mintill), the sixth category (Soybean-notill) and the seventh category (Soybean-mintill) is
inferior to the classification effect of other methods in terms of the classification accuracy.
While the classification accuracy of the AP-SAE model is lower than others in the sixth
category, for the reason that the surface of Soybean-notill or Corn-notill is bare soil, and the
characteristics of surface properties are not obvious. On the contrary, there are texture
features left by human operation on the surface of Soybean-mintill or Corn-mintill area,
which make it easier to extract the corresponding spatial features.

Figure 14. Different methods of various types of accuracy comparison results for the Indian Pines
dataset.

Figures 15–17 show the thematic maps. We produced groundcover maps of entire
image scenes (including unlabeled pixels). However, to facilitate comparison between
methods, with ground truth are shown in these maps. Some areas in the classification
maps produced by the proposed AP-SAE are obviously less noisy than those of SVM, ELM
and CNN-PPF, e.g., the regions of Bare soil in Figure 15.
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(a) image (b) Ground-truth (c) CNN (d) ELM (e) CNN-PPF

(f) AP-SAE

Figure 15. Classification result with nine classes for the University of Pavia data set,as
thematic maps.

(a) image (b) Ground-truth (c) CNN (d) ELM (e) CNN-PPF

(f) AP-SAE

Figure 16. Classification result with 16 classes for the Salinas data set, as thematic maps.
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(a) image (b) Ground-truth (c) CNN (d) ELM (e) CNN-PPF

(f) AP-SAE

Figure 17. Classification result with 9 classes for the Indian Pines data set,as thematic maps.

5. Conclusions

Hyperspectral image classification is of significant value in remote sensing analysis,
including the latest trend of satellite IoT, which can be applied in various scenarios, such
as crop supervision, forest management, urban development and risk management. At the
same time, continuity of the data as well as extrapolation among several scales, temporal,
spatial and spectral, are key components of hyperspectral image classification [29].

Unfortunately, the traditional satellite system is facing the issue of latency and ef-
ficiency caused by gigantic amount of data collected by remote sensors. The remote
sensing data are transmitted back to the ground for processing in traditional satellite
system, the transparent forwarding of data was implemented without any processing on
the satellite. The latency caused by transmission and processing on the ground can be
decreased greatly if on-board computing can be introduced. Besides, with the development
of spacecraft, issues related to performing on-board and automatic data computing and
analysis as well as decision planning and scheduling will figure among the most important
requirements. The method proposed in this paper can be adapted to other hyperspectral
data with similar wavelength range and spectral channel number, so it can be extended to
the satellite IoT application. Also, due to the influence of vegetation spectral similarity and
the loss of spectrum information during the process of dimension reduction, high classifi-
cation accuracy of some geomorphic types is hard to be obtained. This paper proposed
an effective HSI classification model named AP-SAE at the edge of satellite IoT, and the
classification accuracy can be significantly improved by our method without obvious
efficiency degradation.

Experiments are made in this paper to prove the superiority of the method proposed,
but there are also some deficiencies. For example, the determination of the number of
middle layer neurons in AE lacks of generalization ability. At present, the determination
of the number of middle layer neurons of AE is obtained by artificial experiments. It is
still a problem to propose the algorithm framework to determine the neuron format in
mathematics and formula level. In future research, it is worthwhile to try this innovative
framework in various settings to test its applicability such as intelligent transportation
networks [30]. Possibly, datasets with wide variations in volume, velocity, variety and
veracity may lead to different performance of this framework. Moreover, with the upgrade
of sensors, processors and transmitters on satellites, the division of work between the edge
processing and the ground processing should be adjusted intelligently to reach optimal
whole-system performance.
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