Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting
Abstract
:1. Introduction
2. Geotectonic Setting of the Study Area
3. Materials and Methods
3.1. InSAR
3.2. Seismic Data
3.3. Tectonic Geomorphology
4. Results
4.1. Present-Day Deformation
4.2. Geophysical and Subsurface Investigation
4.3. Tectonic Geomorphology
5. Discussion
6. Conclusions
- The Karahi Fault is a right-lateral strike-slip fault, confirmed by the ascending and descending path geometry of Sentinel-1 datasets. This conclusion is also supported by the GNSS dataset. This right-lateral movement of the Karahi Fault could potentially be the reason for the clockwise movement.
- An average right-lateral movement of ~15 mm/yr is calculated for Karahi Fault for descending and ~10 mm/yr for ascending track geometries, respectively. Also, the SANJ GNSS station close to the Karahi Fault shows the 20 mm/yr rate of displacement in the southeast direction.
- No displacement is observed on the velocity map for the Harnai Fault and is interpreted as an aseismic.
- The 2D seismic interpretation shows the thrust component of the Harnai Fault. However, the lateral component of motion was not identified on the 2D seismic for both faults.
- Fault A and B observed on the seismic sections might be evidence of the compartmentalization between the Karahi and Harnai faults, and we interpreted this to be best explained by a “bookshelf faulting” model.
- Folds identified both in the subsurface and surface indicate an active uplift on the InSAR dataset.
- Both the calculated geomorphological indices, i.e., HI and Vf indicate relatively high tectonic activity associated with the Karahi Fault and low tectonic activity along the Harnai fault.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jadoon, I.A.K.; Lawrence, R.D.; Lillie, R.J. Seismic data, geometry, evolution, and shortening in the active Sulaiman fold-and-thrust belt of Pakistan, southwest of the Himalayas. Am. Assoc. Pet. Geol. Bull. 1994, 78, 758–774. [Google Scholar]
- Yeats, R.S.; Lawrence, R.D. Tectonics of the Himalayan thrust belt in northern Pakistan. In Marine Geology and Oceanography of the Arabian Sea and Coastal Pakistan; Van Nostrand Reinhold: New York, NY, USA, 1984; pp. 177–198. [Google Scholar]
- Zhang, P.; Shen, Z.-K.; Wang, M.; Gan, W.; Bürgmann, R.; Molnar, P.; Wang, Q.; Niu, Z.; Sun, J.; Wu, J.; et al. Continuous de-formation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Lave, J.; Avouac, J.P. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. Res. Solid Earth 2000, 105, 5735–5770. [Google Scholar] [CrossRef] [Green Version]
- Burgess, W.P.; Yin, A.; Dubey, C.S.; Shen, Z.-K.; Kelty, T.K. Holocene shortening across the Main Frontal Thrust zone in the eastern Himalaya. Earth Planet. Sci. Lett. 2018, 357, 152–167. [Google Scholar] [CrossRef]
- Malik, J.N.; Nakata, T. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India. Ann. Geophys. 2003, 46, 917–936. [Google Scholar]
- Abir, I.A.; Khan, S.D.; Ghulam, A.; Tariq, S.; Shah, M.T. Active tectonics of western Potwar Plateau-Salt Range, northern Pakistan from InSAR observations and seismic imaging. Remote Sens. Environ. 2015, 168, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Jouanne, F.; Munawar, N.; Mugnier, J.-L.; Ahmed, A.; Alam Awan, A.; Bascou, P.; Vassallo, R. Seismic coupling quantified on inferred decollements beneath the western syntaxis of the Himalaya. Tectonics 2020, 39, 1–20. [Google Scholar] [CrossRef]
- Marshak, S. Salients, recesses, arcs, Oroclines, and SyntaxesA review of ideas concerning the formation of map-view curves in fold-thrust belts. AAPG Mem. 2004, 82, 131–156. [Google Scholar]
- Kumar, M.; Ravi, D.; Mishra, C.; Singh, B. Lithosphere, crust and basement ridges across Ganga and Indus basins and seismicity along the Himalayan front, India and Western Fold Belt, Pakistan. J. Asian Earth Sci. 2013, 75, 126–140. [Google Scholar] [CrossRef]
- Bilham, R.; Ambraseys, N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr. Sci. 2005, 88, 1658–1663. [Google Scholar]
- Reynolds, K.; Copley, A.; Hussain, E. Evolution and dynamics of a fold-thrust belt: The Sulaiman Range of Pakistan. Geophys. J. Int. 2015, 201, 683–710. [Google Scholar] [CrossRef] [Green Version]
- Szeliga, W.M. Historical and Modern Seismotectonics of the Indian Plate with an Emphasis on Its Western Boundary with the Eurasian Plate. Ph.D. Thesis, Department of Geological Sciences, University of Colorado, Boulder, CO, USA, 2010. [Google Scholar]
- Szeliga, W.; Bilham, R.; Kakar, D.M.; Lodi, S.H. Interseismic strain accumulation along the western boundary of the Indian subcontinent. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Crupa, W.E.; Khan, S.D.; Huang, J.; Khan, A.S.; Kasi, A. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System. J. Asian Earth Sci. 2017, 147, 452–468. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR observations of strain accumulation and fault creep along the Chaman Fault system, Pakistan and Afghanistan. Geophys. Res. Lett. 2016, 43, 8399–8406. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; van Nieuwenhuise, D.; Khan, S.D.; Khan, A.S. Reflection seismic, gravity, magnetic, and InSAR analysis of the Chaman Fault in Pakistan. Arab. J. Geosci. 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Huang, J.; Khan, S.D.; Ghulam, A.; Crupa, W.; Abir, I.A.; Khan, A.S.; Kakar, D.M.; Kasi, A.; Kakar, N. Study of subsidence and earthquake swarms in the western Pakistan. Remote Sens. 2016, 8, 956. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, K.A.; Khan, D.S. Active Tectonics of the Frontal Himalayas: An Example from the Manzai Ranges in the Recess Setting, Western Pakistan. Remote Sens. 2020, 12, 3362. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Qu, C.; Liu, Y.; Han, N. Crustal Deformation of the Altyn Tagh Fault Based on GPS. J. Geophys. Res. Solid Earth 2018, 123, 10309–10322. [Google Scholar] [CrossRef]
- Fielding, E.; Simons, M.; Stephenson, O.; Zhong, M.; Yun, S.H.; Liang, C.; Sangha, S.; Ross, Z.E.; Huang, M.H.; Brooks, B.A. Geodetic Imaging of the Coseismic and Early Postseismic Deformation from the 2019 M w 7.1 and M w 6.4 Ridgecrest Earthquakes in California with SAR. Earth Space Sci. Open Arch. ESSOA 2019. [Google Scholar] [CrossRef]
- Xue, L.; Schwartz, S.; Liu, Z.; Feng, L. Interseismic megathrust coupling beneath the Nicoya Peninsula, Costa Rica, from the joint inversion of InSAR and GPS data. J. Geophys. Res. Solid Earth 2015, 120, 3707–3722. [Google Scholar] [CrossRef] [Green Version]
- Bannert, D.; Cheema, A.; Ahmed, A.; Schäffer, U. The structural development of the western fold thrust belt, Pakistan. Geol. Jahrbuch Reihe 1992, 80, 1–60. [Google Scholar]
- Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C. Multifaulting in a tectonic syntaxis revealed by InSAR: The case of the Ziarat earthquake sequence (Pakistan). J. Geophys. Res. Solid Earth 2014, 119, 5838–5854. [Google Scholar] [CrossRef]
- Quittmeyer, R.C.; Kafka, A.L. Constraints on plate motions in southern Pakistan and the Northern Arabian Sea from the focal mechanisms of small earthquakes. J. Geophys. Res. 1984, 89, 2444–2458. [Google Scholar] [CrossRef]
- Maldonado, F.; Mengal, J.M.; Khan, S.H.; Warwick, P.D. Summary of the Stratigraphy and Structural Elements Related to Plate Convergence of the Quetta-Muslim Bagh-Sibi Region, Balochistan, West-Central Pakistan; US Department of the Interior, US Geological Survey: Liston, VA, USA, 2011. [CrossRef]
- Jadoon, I.A.K.; Ding, L.; Nazir, J.; Idrees, M.; Jadoon, S.R.K. Structural interpretation of frontal folds and hydrocarbon exploration, western sulaiman fold belt, Pakistan. Mar. Pet. Geol. 2020, 117, 104380. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J. Geophys. Res. Solid Earth 2007, 112, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Humayon, M.; Lillie, R.J.; Lawrence, R.D. Structural interpretation of the eastern Sulaiman foldbelt and foredeep, Pakistan. Tectonics 1991, 10, 299–324. [Google Scholar] [CrossRef]
- Banks, C.J.; Warburton, J. Passive-roof’duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J. Struct. Geol. 1986, 8, 229–237. [Google Scholar] [CrossRef]
- Jadoon, S.U.R.K.; Ding, L.; Jadoon, I.A.K.; Baral, U.; Qasim, M.; Idrees, M. Interpretation of the Eastern Sulaiman fold-and-thrust belt, Pakistan: A passive roof duplex. J. Struct. Geol. 2019, 126, 231–244. [Google Scholar] [CrossRef]
- Rucci, A.; Ferretti, A.; Guarnieri, A.M.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Keller, E.A.; Pinter, N. Active Tectonics, Earthquakes, Uplift and Landscape; Prentice Hall: Hoboken, NJ, USA, 2002. [Google Scholar]
- Dikpal, R.L.; Renuka Prasad, T.J.; Satish, K. Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India. Appl. Water Sci. 2017, 7, 4399–4414. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Peña, J.V.; Azañón, J.M.; Booth-Rea, G.; Azor, A.; Delgado, J. Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integral. J. Geophys. Res. Earth Surf. 2009, 114, 1–15. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bull. Geol. Soc. Am. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Bull, W.B. Tectonic Geomorphology of the Mojave Desert: US Geological Survey Contract Report 14-08-001-G-394; Office of Earthquakes, Volcanoes, and Engineering: Menlo Park, CA, USA, 1977; p. 188.
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Silva, P.G.; Goy, J.L.; Zazo, C.; Bardají, T. Faulth-generated mountain fronts in southeast Spain: Geomorphologic assessment of tectonic and seismic activity. Geomorphology 2003, 50, 203–225. [Google Scholar] [CrossRef]
- Abdel-Gawad, M. Wrench movements in the Baluchistan Arc and relation to Himalayan-Indian Ocean Tectonics. Geol. Soc. Am. Bull. 1971, 82, 1235–1250. [Google Scholar] [CrossRef]
- Haq, S.S.B.; Davis, D.M. Oblique convergence and the lobate mountain belts of western Pakistan. Geology 1997, 25, 23–26. [Google Scholar] [CrossRef]
- Teyssier, C.; Tikoff, B.; Markley, M. Oblique plate motion and continental tectonics. Geology 1995, 23, 447–450. [Google Scholar] [CrossRef]
- Fossen, H.; Tikoff, B. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. J. Struct. Geol. 1993, 15, 413–422. [Google Scholar] [CrossRef]
- Mandl, G. Tectonic deformation by rotating parallel faults—The bookshelf mechanism: Tectonophysics, v. 141. Tectonophysics 1987, 141, 277–316. [Google Scholar] [CrossRef]
- De Figueiredo, R.P.; Vargas , E.D.A., Jr.; Moraes, A. Analysis of bookshelf mechanisms using the mechanics of Cosserat generalized continua. J. Struct. Geol. 2004, 26, 1931–1943. [Google Scholar] [CrossRef]
- Zuza, A.V.; Yin, A. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet. Tectonophysics 2016, 677, 227–240. [Google Scholar] [CrossRef] [Green Version]
Product Type | Mode | Pass | Pol. | Inc/Az Angle | Rg × Az Spacing (m) | WL (cm) | Path | Frame No. | Max Bp (%) | Max Bt (days) |
---|---|---|---|---|---|---|---|---|---|---|
S1-A | IW | Ascending /Descending | VH | 38/81 | 3.8 × 13.8 | 5.6 | 144/78 | 193/491 | 45 | 150 |
Classification | Definition | Vf Values |
---|---|---|
Class–1 | Vf ≤ 0.5 | High level tectonic activity |
Class–2 Class–3 | 1 > Vf > 0.5 Vf ≥ 1 | Moderate level tectonic activity Low level tectonic activity |
Segments | Hypsometric Integral (Unit-Less) | HI Classification According to Perez | HI Classification According to El Hamdouni | Vf | Vf Classification |
---|---|---|---|---|---|
Watershed-1 Watershed-2 Watershed-3 Watershed-4 Watershed-5 Watershed-6 Watershed-7 Watershed-8 Watershed-9 Watershed-10 | 0.497 0.420 0.501 0.543 0.514 0.453 0.434 0.428 0.477 0.420 | Mature Basin Mature Basin Young Basin Young Basin Young basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin | Medium Medium High High High Medium Medium Medium Medium Medium | 0.31 0.26 0.34 0.27 0.27 0.21 0.25 0.42 0.12 0.52 | High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity High level tectonic activity Moderate level tectonic activity |
Average | 0.469 | 0.32 |
Segments | Hypsometric Integral (Unit-Less) | HI Classification According to Perez | HI Classification According to El Hamdouni | Vf | Vf Classification |
---|---|---|---|---|---|
Watershed-1 Watershed-2 Watershed-3 Watershed-4 Watershed-5 Watershed-6 Watershed-7 Watershed-8 Watershed-9 Watershed-10 Watershed-11 Watershed-12 Watershed-13 Watershed-14 | 0.469 0.331 0.359 0.316 0.427 0.447 0.383 0.287 0.479 0.374 0.418 0.330 0.405 0.470 | Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin Mature Basin | Medium Low Low Low Medium Medium Low Low Medium Low Medium Low Medium Medium | 0.51 1.15 0.96 1.05 1.21 0.68 0.51 0.82 0.62 0.93 1.24 0.76 0.62 0.62 | Moderate level tectonic activity Low level tectonic activity Moderate level tectonic activity Low level tectonic activity Low level tectonic activity Moderate level tectonic activity Moderate level tectonic activity Moderate level tectonic activity Moderate level tectonic activity Low level tectonic activity High level tectonic activity Moderate level tectonic activity Moderate level tectonic activity Moderate level tectonic activity |
Average | 0.392 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaca, S.O.; Abir, I.A.; Khan, S.D.; Ozsayın, E.; Qureshi, K.A. Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting. Remote Sens. 2021, 13, 3593. https://doi.org/10.3390/rs13183593
Karaca SO, Abir IA, Khan SD, Ozsayın E, Qureshi KA. Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting. Remote Sensing. 2021; 13(18):3593. https://doi.org/10.3390/rs13183593
Chicago/Turabian StyleKaraca, Sukru O., Ismail A. Abir, Shuhab D. Khan, Erman Ozsayın, and Kamil A. Qureshi. 2021. "Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting" Remote Sensing 13, no. 18: 3593. https://doi.org/10.3390/rs13183593
APA StyleKaraca, S. O., Abir, I. A., Khan, S. D., Ozsayın, E., & Qureshi, K. A. (2021). Neotectonics of the Western Suleiman Fold Belt, Pakistan: Evidence for Bookshelf Faulting. Remote Sensing, 13(18), 3593. https://doi.org/10.3390/rs13183593