Adaptable Convolutional Network for Hyperspectral Image Classification
Abstract
:1. Introduction
1.1. The Rigid Kernel: Limitation of CNNs for Spatial Analysis
1.2. Contributions
- A strategy based on DKs is proposed to train CNNs for HSI data classification tasks in an effective way. Moreover, CNN with DKDC (DKDCNet) has been implemented and tested over two widely-used HSI scenes.
- An experimental section is provided to compare the performance of KDCNet with common DL-based classification models. Conducted experiments demonstrate the DKDCNet can outperform the classification performance achieved by popular DL-based classification models.
2. Methodology
2.1. The Receptive Field
2.2. Adaptable Deep Model with Deformable Kernels and Deformable Convolution
3. Experimental results
3.1. Experimental Environment
3.2. Hyperspectral Datasets
- The University of Pavia (UP, Figure 5) dataset [65] is an HSI scene gathered by the airborne reflective optics system imaging spectrometer (ROSIS-3) over the university campus of Pavia, northern Italy, in July 2002. The scene consists of pixels with 1.3 m of spatial resolution, and 113 spectral bands with a spectral range coverage ranging from 430 to 860 nm. The ground truth contains a total of 42,776 labeled samples grouped into nine different land-cover classes, covering different urban elements, including asphalt, meadows, gravel, trees, metal sheet, bare soil, bitumen, brick, and shadows.
- The University of Houston (UH, Figure 6) dataset [66] is an HSI scene collected by the lightweight compact airborne spectrographic imager (CASI) over the Houston University area. It consists of pixels with 2.5 m of spatial resolution and 144 channels in the 380 nm to 1050 nm spectral region. The ground truth comprises 15,029 labeled samplescontaining 15 different classes within an urban environment too.
3.3. Experimental Discussion
3.3.1. Experimentation on UP Dataset
3.3.2. Experimentation on UH dataset
4. Conclusions and Future Lines
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
Acronym | Full name |
ANNs | Artificial Neural Networks |
AA | Average Accuracy |
CapsNets | Capsule Networks |
CASI | Compact Airborne Spectrographic Imager |
CNNs | Convolutional Neural Networks |
CONV2D | Convolutional 2D |
DC | Deforming Convolution |
DK | Deforming Kernels |
DL | Deep Learning |
DTs | Decision Trees |
EO | Earth Observation |
ERF | Effective Receptive Field |
FC | Fully Connected |
GPU | Graphics Processing Unit |
HSI | Hyperspectral Image |
K(×100) | Cohen’s Kappa coefficient |
LULC | Land-Use/Land-Cover |
MLP | Multi-Layer Perceptron |
MLR | Multinomial Logistic Regression |
MP | Morphological Profiles |
OA | Overall Accuracy |
pResNet | Pyramidal ResNet |
RaF | Random Forests |
RAM | Random Access Memory |
RF | Receptive Field |
ROSIS-3 | Reflective Optics System Imaging Spectrometer |
RS | Remote Sensing |
RS-HSI | Remote Sensing Hyperspectral Image |
S3EResBoF | Spectral-Spatial Squeeze-and-Excitation Residual Bag-of-Feature |
SVMs | Support Vector Machines |
TRF | Theorical Receptive Field |
UH | University of Houston |
UP | University of Pavia |
VSWIR | Visible-to-Shortwave Infrared |
ResNets | Residual Networks |
References
- Srivastava, P.K.; Malhi, R.K.M.; Pandey, P.C.; Anand, A.; Singh, P.; Pandey, M.K.; Gupta, A. Revisiting hyperspectral remote sensing: Origin, processing, applications and way forward. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–21. [Google Scholar]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Roessner, S.; Segl, K.; Heiden, U.; Kaufmann, H. Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1525–1532. [Google Scholar] [CrossRef]
- Shobiga, R.; Selvakumar, J. Survey on properties and accuracy assessment of climate changes using hyperspectral imaging. In Proceedings of the 2015 Online International Conference on Green Engineering and Technologies (IC-GET), Coimbatore, India, 27 November 2015; pp. 1–6. [Google Scholar]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Yang, G.; Zhu, C.; Huo, L.; Feng, H. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ. 2018, 217, 323–339. [Google Scholar] [CrossRef]
- Tao, X.; Paoletti, M.E.; Haut, J.M.; Ren, P.; Plaza, J.; Plaza, A. Endmember Estimation with Maximum Distance Analysis. Remote Sens. 2021, 13, 713. [Google Scholar] [CrossRef]
- Tao, X.; Paoletti, M.E.; Haut, J.M.; Hang, L.; Ren, P.; Plaza, J.; Plaza, A. Endmember Estimation from Hyperspectral Images Using Geometric Distances. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Simonetti, E.; Simonetti, D.; Preatoni, D. Phenology-Based Land Cover Classification Using Landsat 8 Time Series; European Commission Joint Research Center: Ispra, Italy, 2014. [Google Scholar]
- Boonprong, S.; Cao, C.; Chen, W.; Ni, X.; Xu, M.; Acharya, B.K. The classification of noise-afflicted remotely sensed data using three machine-learning techniques: Effect of different levels and types of noise on accuracy. ISPRS Int. J. Geo-Inf. 2018, 7, 274. [Google Scholar] [CrossRef] [Green Version]
- Lv, W.; Wang, X. Overview of hyperspectral image classification. J. Sens. 2020, 2020, 4817234. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.; Plaza, J.; Plaza, A. Cloud implementation of the K-means algorithm for hyperspectral image analysis. J. Supercomput. 2017, 73, 514–529. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhang, Y. Classification of hyperspectral image based on deep belief networks. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5132–5136. [Google Scholar]
- Gao, P.; Wang, J.; Zhang, H.; Li, Z. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 462–466. [Google Scholar] [CrossRef]
- Qiu, Q.; Wu, X.; Liu, Z.; Tang, B.; Zhao, Y.; Wu, X.; Zhu, H.; Xin, Y. Survey of supervised classification techniques for hyperspectral images. Sens. Rev. 2017, 37, 371–382. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Han, J.; Yao, X.; Guo, L. Exploring hierarchical convolutional features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6712–6722. [Google Scholar] [CrossRef]
- Wang, G.; Ren, P. Hyperspectral Image Classification with Feature-Oriented Adversarial Active Learning. Remote Sens. 2020, 12, 3879. [Google Scholar] [CrossRef]
- Alcolea, A.; Paoletti, M.E.; Haut, J.M.; Resano, J.; Plaza, A. Inference in supervised spectral classifiers for on-board hyperspectral imaging: An overview. Remote Sens. 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Bruzzone, L.; Chi, M.; Marconcini, M. Semisupervised support vector machines for classification of hyperspectral remote sensing images. In Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; pp. 275–311. [Google Scholar]
- Tan, K.; Li, E.; Du, Q.; Du, P. An efficient semi-supervised classification approach for hyperspectral imagery. ISPRS J. Photogramm. Remote Sens. 2014, 97, 36–45. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Li, J.; Plaza, A. Active learning with convolutional neural networks for hyperspectral image classification using a new bayesian approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6440–6461. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Chen, C.P. Region-kernel-based support vector machines for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4810–4824. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Tao, X.; Miguel, J.P.; Plaza, A. A new GPU implementation of support vector machines for fast hyperspectral image classification. Remote Sens. 2020, 12, 1257. [Google Scholar] [CrossRef] [Green Version]
- Khodadadzadeh, M.; Li, J.; Plaza, A.; Bioucas-Dias, J.M. A subspace-based multinomial logistic regression for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2105–2109. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E. Cloud Implementation of Multinomial Logistic Regression for UAV Hyperspectral Images. IEEE J. Miniaturization Air Space Syst. 2020, 1, 163–171. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B. Cascaded random forest for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1082–1094. [Google Scholar] [CrossRef]
- Santos, A.B.; de Albuquerque Araújo, A.; Menotti, D. Combining multiple classification methods for hyperspectral data interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1450–1459. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Chutia, D.; Bhattacharyya, D.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral remote sensing classifications: A perspective survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent advances on spectral–spatial hyperspectral image classification: An overview and new guidelines. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1579–1597. [Google Scholar] [CrossRef]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J.A. Multiple kernel learning for hyperspectral image classification: A review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Zhu, Z.; Jia, S.; Zhu, J.; Sun, Y. Discriminative Gabor feature selection for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2012, 10, 29–33. [Google Scholar] [CrossRef]
- Mirzapour, F.; Ghassemian, H. Improving hyperspectral image classification by combining spectral, texture, and shape features. Int. J. Remote Sens. 2015, 36, 1070–1096. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98. [Google Scholar] [CrossRef]
- Liang, H.; Li, Q. Hyperspectral imagery classification using sparse representations of convolutional neural network features. Remote Sens. 2016, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Ding, C.; Li, Y.; Xia, Y.; Wei, W.; Zhang, L.; Zhang, Y. Convolutional neural networks based hyperspectral image classification method with adaptive kernels. Remote Sens. 2017, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A fast dense spectral–spatial convolution network framework for hyperspectral images classification. Remote Sens. 2018, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Haut, J.M.; Bernabé, S.; Paoletti, M.E.; Fernandez-Beltran, R.; Plaza, A.; Plaza, J. Low–high-power consumption architectures for deep-learning models applied to hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 776–780. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recognit. 2017, 63, 371–383. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral image classification using convolutional neural networks and multiple feature learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep&dense convolutional neural network for hyperspectral image classification. Remote Sens. 2018, 10, 1454. [Google Scholar]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.W. Hyperspectral images classification based on dense convolutional networks with spectral-wise attention mechanism. Remote Sens. 2019, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 740–754. [Google Scholar] [CrossRef]
- Kang, X.; Zhuo, B.; Duan, P. Dual-path network-based hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 447–451. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2145–2160. [Google Scholar] [CrossRef]
- Ding, X.; Li, Y.; Yang, J.; Li, H.; Liu, L.; Liu, Y.; Zhang, C. An adaptive capsule network for hyperspectral remote sensing classification. Remote Sens. 2021, 13, 2445. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Hyperspectral image classification using random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1751–1755. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Du, S. Multi-Scale Dense Networks for Hyperspectral Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable convolutional neural networks for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Luo, W.; Li, Y.; Urtasun, R.; Zemel, R. Understanding the effective receptive field in deep convolutional neural networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 4898–4906. [Google Scholar]
- Gao, H.; Zhu, X.; Lin, S.; Dai, J. Deformable Kernels: Adapting Effective Receptive Fields for Object Deformation. arXiv 2019, arXiv:1910.02940. [Google Scholar]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Le, H.; Borji, A. What are the receptive, effective receptive, and projective fields of neurons in convolutional neural networks? arXiv 2017, arXiv:1705.07049. [Google Scholar]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Lehky, S.R.; Sejnowski, T.J. Network model of shape-from-shading: Neural function arises from both receptive and projective fields. Nature 1988, 333, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.; Norris, W.; Sim, J. Computing receptive fields of convolutional neural networks. Distill 2019, 4, e21. [Google Scholar] [CrossRef]
- Kunkel, B.; Blechinger, F.; Lutz, R.; Doerffer, R.; van der Piepen, H.; Schroder, M. ROSIS (Reflective Optics System Imaging Spectrometer)—A candidate instrument for polar platform missions. In SPIE 0868 Optoelectronic Technologies for Remote Sensing from Space; Seeley, J., Bowyer, S., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 1988; p. 8. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Plaza, A. Fusion of hyperspectral and LiDAR data using morphological component analysis. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 3575–3578. [Google Scholar] [CrossRef]
- Roy, S.K.; Chatterjee, S.; Bhattacharyya, S.; Chaudhuri, B.B.; Platoš, J. Lightweight spectral-spatial squeeze-and-excitation residual bag-of-features learning for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5277–5290. [Google Scholar] [CrossRef]
ID | Type | Kernel/Neurons | Data Norm. | Act. Funct. | Dropout |
---|---|---|---|---|---|
1 | CONV2D | Yes | ReLU | 5% | |
2 | DKDC | - | - | - | |
- | - | - | |||
Yes | ReLU | 5% | |||
3 | MaxPOOL | - | - | - | |
4 | CONV2D | Yes | ReLU | 5% | |
5 | DKDC | - | - | - | |
- | - | - | |||
Yes | ReLU | 5% | |||
5 | MaxPOOL | - | - | - | |
6 | CONV2D | Yes | ReLU | 5% | |
7 | DKDC | - | - | - | |
- | - | - | |||
Yes | ReLU | 5% | |||
8 | AvgPOOL | - | - | - | |
9 | FC | N | Yes | Softmax | 5% |
Tr = 45 | Tr = 55 | Tr = 65 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | Params. | OA | AA | K(×100) | OA | AA | K(×100) | OA | AA | K(×100) |
CNN | 585K | 95.98(0.50) | 95.95(0.51) | 94.70(0.64) | 96.05(1.04) | 96.58(0.74) | 94.80(1.36) | 96.88(1.03) | 97.31(0.46) | 95.88(1.34) |
pResNet | 3.22M | 95.16(1.67) | 96.03(1.00) | 93.63(2.17) | 95.12(0.67) | 96.33(0.62) | 93.56(0.88) | 97.33(1.03) | 97.97(0.43) | 96.46(1.34) |
S3EResBoF | 200K | 89.72(1.68) | 89.35(1.22) | 86.55(2.13) | 90.92(1.43) | 90.24(1.65) | 88.07(1.84) | 90.28(1.96) | 90.86(1.51) | 87.32(2.46) |
DCNet | 880K | 96.19(1.56) | 97.07(0.75) | 94.99(2.02) | 96.77(0.79) | 97.21(0.46) | 95.74(1.03) | 97.35(0.92) | 97.81(0.56) | 96.49(1.20) |
DHCNet | 1.14M | 94.93(1.78) | 96.67(0.59) | 93.37(2.29) | 96.59(1.19) | 97.61(0.63) | 95.50(1.55) | 97.20(1.02) | 98.04(0.39) | 96.31(1.33) |
DKDCNet | 96.3K | 97.30(0.34) | 97.58(0.29) | 96.42(0.44) | 98.27(0.14) | 98.13(0.16) | 97.70(0.19) | 98.48(0.22) | 98.36(0.19) | 97.97(0.30) |
Tr = 30 | Tr = 40 | Tr = 50 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Method | Params. | OA | AA | K(×100) | OA | AA | K(×100) | OA | AA | K(×100) |
CNN | 585K | 91.53(0.55) | 92.83(0.43) | 90.84(0.60) | 93.98(0.39) | 94.93(0.51) | 93.49(0.43) | 95.04(0.43) | 95.84(0.52) | 94.64(0.46) |
pResNet | 3.22M | 92.57(0.41) | 93.61(0.63) | 91.97(0.44) | 94.09(0.96) | 95.14(0.84) | 93.61(1.04) | 96.06(0.67) | 96.64(0.63) | 95.73(0.73) |
S3EResBoF | 200K | 83.11(1.84) | 85.72(1.54) | 81.74(1.98) | 87.86(1.96) | 89.78(1.66) | 86.87(2.12) | 88.04(1.65) | 89.92(1.50) | 87.07(1.78) |
DCNet | 880K | 93.02(0.74) | 94.21(0.64) | 92.45(0.80) | 94.81(0.36) | 95.72(0.42) | 94.39(0.39) | 96.18(0.63) | 96.83(0.55) | 95.86(0.69) |
DHCNet | 1.14M | 93.59(0.83) | 94.64(0.71) | 93.07(0.90) | 95.20(0.54) | 95.99(0.37) | 94.81(0.58) | 95.83(0.43) | 96.58(0.38) | 95.49(0.47) |
DKDCNet | 97.1K | 95.59(0.26) | 96.19(0.32) | 95.23(0.28) | 95.94(0.39) | 96.47(0.42) | 95.61(0.42) | 97.12(0.23) | 97.64(0.20) | 96.88(0.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, M.E.; Haut, J.M. Adaptable Convolutional Network for Hyperspectral Image Classification. Remote Sens. 2021, 13, 3637. https://doi.org/10.3390/rs13183637
Paoletti ME, Haut JM. Adaptable Convolutional Network for Hyperspectral Image Classification. Remote Sensing. 2021; 13(18):3637. https://doi.org/10.3390/rs13183637
Chicago/Turabian StylePaoletti, Mercedes E., and Juan M. Haut. 2021. "Adaptable Convolutional Network for Hyperspectral Image Classification" Remote Sensing 13, no. 18: 3637. https://doi.org/10.3390/rs13183637
APA StylePaoletti, M. E., & Haut, J. M. (2021). Adaptable Convolutional Network for Hyperspectral Image Classification. Remote Sensing, 13(18), 3637. https://doi.org/10.3390/rs13183637