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Abstract: As the most direct indicator of drought, the dynamic assessment and prediction of actual
evapotranspiration (AET) is crucial to regional water resources management. This research aims to
develop a framework for the regional AET evaluation and prediction based on multiple machine
learning methods and multi-source remote sensing data, which combines Boruta algorithm, Random
Forest (RF), and Support Vector Regression (SVR) models, employing datasets from CRU, GLDAS,
MODIS, GRACE (-FO), and CMIP6, covering meteorological, vegetation, and hydrological vari-
ables. To verify the framework, it is applied to grids of South America (SA) as a case. The results
meticulously demonstrate the tendency of AET and identify the decisive role of T, P, and NDVI on
AET in SA. Regarding the projection, RF has better performance in different input strategies in SA.
According to the accuracy of RF and SVR on the pixel scale, the AET prediction dataset is generated
by integrating the optimal results of the two models. By using multiple parameter inputs and two
models to jointly obtain the optimal output, the results become more reasonable and accurate. The
framework can systematically and comprehensively evaluate and forecast AET; although prediction
products generated in SA cannot calibrate relevant parameters, it provides a quite valuable reference
for regional drought warning and water allocating.

Keywords: actual evapotranspiration; multi-source remote sensing data; boruta algorithm; support
vector regression; random forest; CMIP6

1. Introduction

Since 2020, southwestern California in the United States; Argentina and Brazil in South
America; and many countries in Africa and western Europe have suffered from scarce
rainfall and severe droughts, which has caused widespread concern. Actual evapotranspi-
ration (AET) is a dominant reason for water loss in arid regions. It denotes the water that
evaporates from the soil, vegetations, and water bodies to the atmosphere, driven by solar
radiation and thermal dynamic processes [1–3]. Furthermore, AET is also an important
part of the water cycle and energy exchange [4,5]. It is of great significance to evaluate and
predict AET for drought warnings.

The evapotranspiration process involves water exchange and energy transfer among
soil, water, atmosphere, and vegetation systems, which is difficult to estimate due to
complicated mechanisms and sophisticated factors [6–8]. At present, AET is usually
calculated by the evapotranspiration model based on the water balance method, energy
balance system, and empirical coefficient [9,10]. Tandogdu and Camgoz [11] calculated the
soil transpiration factor based on experimental data and estimated AET in combination
with aerodynamic methods. Jin et al. [9] estimated AET in eight hydrological regions
in Northwest China through Surface Energy Balance Algorithm for Land (SEBAL) [12].
Miao et al. [13] used the water balance equation to calibrate the parameters and combined
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with the Generalized Complementary Principle [14] to estimate the AET in Huaihe River
Basin. Chen and Xu [15] evaluated the performance of seven evapotranspiration models
in the aspect of water balance research. Rana and Kater [16] summarized 10 empirical
methods for measuring and estimating AET. Sarma and Bharadwaj [17] evaluated eight
evapotranspiration models based on crop coefficients and concluded that the Penman-
Monteith [18] and Priestly-Tailor [19] models were more effective. However, these previous
traditional methods mainly used empirical coefficients to explain the complex mechanism
to a certain extent, and field measurement data seemed to have become an indispensable
part [20]. As a result, they can only accurately evaluate the homogeneous area near the
meteorological station, and it is not feasible to measure evapotranspiration in a wide range
of areas in practice and economy [15,21].

Fortunately, the emergence of remote sensing technology has filled the gap in areas
poorly monitored [21]. Moene et al. [22] input satellite data into SEBAL to estimate
the AET in central Bolivia. Similarly, Tim et al. [23] and Tofigh et al. [24] used Landsat
imagery and MODIS imagery combined with weather data to estimate AET through
the SEBAL algorithm, respectively. By using multi-source satellite data to measure the
required surface and meteorological variables, the accuracy and spatial description of
actual evapotranspiration are significantly improved [25]. On top of that, GLDAS combines
satellite and ground observation data to produce a high-precision global AET data set using
land surface models and data assimilation technology, which has become an important data
source for global changes and hydrological cycles [26–28]. Andam et al. [29] applied the
GLDAS AET to the Votla watershed in Africa and found that it was more consistent with the
overall average evapotranspiration produced by various products. Muhammad et al. [30]
evaluated uncertainty of three AET products—GLDAS, GLEAM, MODIS—through an
extended triple collocation approach and found that GLDAS showed the least absolute
uncertainties and highest accuracy in Asia. Muhammad et al. [31] also found that GLDAS
AET shows the best performance among the four AET datasets (MOD16, GLEAM, GLDAS,
and AWRA-L) according to in-situ flux tower measurements in Australia. Although
there is a little uncertainty, the overall accuracy of GLDAS AET is relatively high and
can be used to analyze evolution characteristics [32]. Furthermore, the rise of machine-
learning algorithms allows scholars to avoid the exploration of complex mechanisms and
obtain valuable evaluation results directly through sufficient relevant parameters [33,34].
Filgueiras et al. [35] applied vegetation index and random forest algorithm to effectively
predict Brazil’s water-management parameters. Shrestha and Shukla [36] found that the
accuracy of using support vector machines to predict crop coefficients and AET is 49.3 mm
higher than the FAO-56 method. Regrettably, since a machine learning algorithm is an
arduous task that spends a great deal of time and effort to select optimal parameters, there
are few results concerning the use of multi-source remote sensing data combined with
machine learning algorithms to evaluate AET for the time being.

As for input variables, previous studies introduced remote sensing products express-
ing vegetation growth and coverage information into the prediction model of AET, which
effectively increased the accuracy of the model [37,38]. This study attempts to add hy-
drological factors closely related to the evaporation process—total water storage and
runoff—so as to further improve the accuracy. About the machine-learning model, random
forest model is not sensitive to missing data, which solves the problem of simulation
and prediction in the case of missing data in a small-scale area [39,40]. Support vector
machine classification is simple and effective and can solve the problem of a nonlinear
relationship with different kernel functions [41]. This study intends to apply these two
methods, compare and evaluate their results, and further try to combine them to produce a
set of optimal AET products.

Hence, this study aims to design a data-driven structure based on multi-source remote
sensing data and machine learning algorithms to systematically evaluate and predict AET.
Specifically, we ask the following research questions:

• How does actual evapotranspiration dynamically evolve?
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• What are the relevant and decisive factors that affect the AET changes?
• What kind of input and which machine learning algorithms can simulate the most

intense future AET?
• How to integrate the results of multiple machine learning algorithms to generate an

optimal set of AET future prediction products?

2. Materials and Methods
2.1. Case Study

In order to apply the framework proposed in this study, we chose South America as
the study area. South America (SA) has a total area of 17.84 million square kilometers, with
the range of 34◦36′W–81◦20′W and 53◦54′S–12◦28′N, making it the fourth largest continent
by land area (Figure 1).

1 

 

 

Figure 1. Geographical location and elevation map of the study area.
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SA has the largest tropical rain forest in the world—the Amazon rainforest, whose
rainfall is the most abundant in the world [42]. However, river records show that the region
experiences an extreme climate event flood or drought every 10 years on average [43].
The typical climate type, tropical rainforest and tropical grassland climate, as well as the
well-known El Niño phenomenon, cause intense hydrological processes in SA [44,45]. The
sufficient evaporation conditions, severe hydrological cycle, and typical climate character-
istics also bring the risk of excessive evapotranspiration. Many scholars have predicted
that droughts will increase in parts of South America in the future [46,47].

2.2. Data
2.2.1. Meteorological Data (Temperature, Precipitation, and Potential Evapotranspiration)

Meteorological data including monthly average gridded daily mean temperature
(T), precipitation (P), and potential evapotranspiration (PET) with a spatial resolution of
0.5 degrees are obtained from the Climate Research Unit (CRU) Version 4.05. Retrieved
from monitoring data from meteorological stations, data developed by CRU is widely used
in the field of climate change [48].

Table 1 summarizes the details of the data used in this study.

Table 1. Summary of the dataset applied in this study.

Variables Abbr. Version Spatial
Resolutions Time Span Data Source (11 July 2021)

Temperature T CRU TS Version
4.05 0.5 degrees 2001–2020 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/

Precipitation P CRU TS Version
4.05 0.5 degrees 2001–2020 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/

Potential
evapotranspiration PET CRU TS Version

4.05 0.5 degrees 2001–2020 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/

Actual
evapotranspiration AET GLDAS Noah2.1 0.25 degrees 2000–2020 https://disc.gsfc.nasa.gov/datasets/

Surface runoff Qs GLDAS Noah2.1 0.25 degrees 2000–2020 https://disc.gsfc.nasa.gov/datasets/
Subface runoff Qsb GLDAS Noah2.1 0.25 degrees 2000–2020 https://disc.gsfc.nasa.gov/datasets/

Snowmelt runoff Qsm GLDAS Noah2.1 0.25 degrees 2000–2020 https://disc.gsfc.nasa.gov/datasets/
Total water

storage changes TWC JPL GRACE(-FO)
RL06 0.5 degrees 2002–2020 https://grace.jpl.nasa.gov/

Normalized
Difference

Vegetation Index
NDVI MOD13C2

Version6 0.05 degrees 2000–2020 https://lpdaac.usgs.gov/products/mod13c2v006/

Temperature T CMIP6-NCAR
SSP245 100 km 2020–2090 https://esgf-node.llnl.gov/projects/cmip6/

Precipitation P CMIP6-NCAR
SSP245 100 km 2020–2090 https://esgf-node.llnl.gov/projects/cmip6/

Potential
evapotranspiration PET IPSL-CM6A-LR

SSP245 250 km 2020–2090 https://cmc.ipsl.fr/all-projects/

2.2.2. Hydrological Data (Actual Evapotranspiration, Total Water Storage, and Runoff)

As an important limiting factor and result of AET, the changes of terrestrial water
storage (TWC) data obtained from the Gravity Recovery and Climate Experiment (GRACE)
and its following project GRACE-FO are used to assess AET. Launched in 2002, the GRACE
project transformed the gravity and mass variations to produce TWC data [49]. This study
used the monthly dataset of JPL GRACE(-FO) RL06 mascons with a spatial resolution of
0.5 degrees.

As another important part of the hydrological cycle, the amount and velocity of
runoff also affect the regional water surface evaporation. Integrating satellite- and ground-
observed data, the Global Land Data Assimilation System (GLDAS) aims to simulate
high-resolution global land hydrology and energy flux through global land surface models,
which is highly recognized and widely used in hydrology [26–28]. The actual evapotran-
spiration (AET), surface (Qs), subsurface (Qsb), and snowmelt runoff (Qsm) simulated by

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/ge/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
https://disc.gsfc.nasa.gov/datasets/
https://grace.jpl.nasa.gov/
https://lpdaac.usgs.gov/products/mod13c2v006/
https://esgf-node.llnl.gov/projects/cmip6/
https://esgf-node.llnl.gov/projects/cmip6/
https://cmc.ipsl.fr/all-projects/
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the Noah model with the spatial resolution of 0.25 degrees were employed in this study.
The equation of the total runoff can be expressed as:

R= Qs + Qsb + Qsm (1)

where R represents the total regional runoff.

2.2.3. Vegetation Index (NDVI)

The monthly Normalized Difference Vegetation Index (NDVI) dataset with 0.05 de-
grees spatial resolution was derived from the MODIS. The version is MOD13C2 Version 6.
NDVI dataset developed by MODIS is generally applied in botany and ecology to reflect
the temporal and spatial characteristics and dynamic changes of vegetation [50,51].

2.2.4. Future Climate Scenarios (CMIP6)

The datasets of future climate scenarios derived from the Coupled Model Intercompar-
ison Project (CMIP) were forced into RF and SVR models to predict the future AET in South
America. The recent model outputs from CMIP6 promise to provide the most reliable
future climate predictions due to the massive improvements in the physical chemistry
processes [52–54]. The monthly T and P datasets developed by the Nation Center for
Atmospheric Research (NCAR), and the monthly PET datasets estimated by the Institut
Pierre-Simon Laplace (IPSL), with the resolution of 100 km and 250 km from 2020 to 2090,
respectively, were employed in the study. The Representative Concentration Pathways
4.5 corresponding to the SSP245 was treated as a stabilization pathway in the present study,
representing atmosphere radiation at 4.5 Watts/m2 at the end of 2100 [55].

2.3. Methods
2.3.1. Man-Kendall Test

Recommended by the WMO, the Mann–Kendall (MK) test is widely used as a non-
parametric test of temperature, precipitation, and other factors [56]. The advantage is that
the samples do not need to follow a certain distribution and are not disturbed by small
fluctuations. The MK test can also reveal the trend and mutation of a dataset [57].

A statistical value Z is defined, and the detailed calculation process can be seen in
Liu et al. [58]. Z is an indicator for the severity of the changing trend. The positive
value indicates that the trend is rising, while a negative value indicates that the trend is
falling. If |Z| ≥

∣∣∣Z(1−α)/2

∣∣∣, it means that at an α significance level, the data series changes
significantly.

2.3.2. Boruta Algorithm

Boruta Algorithm is an effective method for optimizing attribute selection, which is
widely used in many research fields [59,60]. By randomly designing shadow features for
all the considered candidate features, it can capture all the relevant features in the dataset
and rank the relative importance of the features [28,61]. The important value of shadow
features determines whether candidate features are further selected. The main calculation
steps are as follows:

1. Copy all features to build random shadow features. Shuffle all the features in the data
randomly and rearrange the order of the features.

2. Input the features and their copies into the random forest classifier to calculate the
Z-scores.

3. Remove features with lower Z-scores than the shadow attributes. The important
variables, whose Z-scores are over the set of shadow features, are verified.

4. Repeat steps 1–3 until all variables are identified.

In this paper, the package “Boruta” in R software [62,63] was used to filter the most
essential factors of AET. More specific instructions of the Boruta Algorithm can be found in
Kursa and Rudnicki and Qu et al. [61,64].
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2.3.3. Support Vector Regression (SVR)

Support vector machine (SVM) is a powerful method in statistical machine learning [41,65].
As an extension of SVM, a more robust support vector regression (SVR) model has been
successfully employed to the prediction of time series [66,67].

The problem of linear SVR can be formalized as:

max
1
2
‖ω‖2subject to | f (xi)− yi| ≤ ε, i = 1, 2, . . . , N (2)

where xi is the training point in the total sample of size N, and yi is the true value corre-
sponding to xi; while f (xi) is the predictive value and f (x) = ω ∗ x + b, it assumes that
the SVR model can only tolerate deviations that do not exceed ε between f (xi) and yi.
Then, two slack variables ξi, ξ̂i ≥ 0 are introduced for each sample point to make the
constraint become ε + ξi

ξ̂i
, where ξi and ξ̂i represent the degree of unsatisfying constraints,

consequently, the SVR model evolves into:

max 1
2‖ω‖

2 + C
N
∑

i=1

(
ξi + ξ̂i

)
subject to

f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ̂i

ξi, ξ̂i ≥ 0, i = 1, 2, . . . , N (3)

where C is a constantly called box constraint, which represents the penalty for misclassifi-
cation. The Lagrange multiplier αi and α̂i are introduced to transform Equation (3) into a
dual optimization problem. The final classification decision function can be written in the
following dual form:

f (x) =
N

∑
i=1

(α̂i − αi)(x ∗ xi) + b (4)

The dual form of SVR of nonlinear function is:

f (x) =
N

∑
i=1

(α̂i − αi)K(x, xi) + b (5)

where K(x, xi) = φ(x) ∗ φ(xi) is the kernel function. In the current paper, the tool “fitrsvm”
in MATLAB 2020b was applied to perform the SVM in the pixel scale in the world. Besides,
the historical datasets of each pixel were randomly divided into 70% as the training set, and
the rest as the test set. The determination coefficient (R2) was utilized to test the accuracy
of SVR.

R2 = 1− ∑N
i=1(ŷi,test − yi,test)

2

∑N
i=1

(
yi,test − yi,test

)2 (6)

2.3.4. Random Forest (RF)

Random Forest (RF) is a popular machine-learning algorithm that can be used to
construct classification and regression problems [68,69]. It has many advantages, (1) it can
automatically divide features; (2) it is not sensitive to missing data, that is, it can maintain
high accuracy in the case of a large number of missing data; (3) it can effectively avoid
overfitting and has good performance in small-scale data sets [39,40].

More details about random forests can be found in Arlot and Genuer [70]. In this
study, we utilize the “Treebagger” tool in MATLAB 2020b to implement the RF on the pixel
scale and find the optimal node number and leaf number of each pixel.

2.3.5. Research Framework

Figure 2 depicts the framework proposed in this study to evaluate and predict AET us-
ing multi-source remote sensing data. After the data is prepared, the MK test is performed
on the pixel scale to calculate the statistical value Z of the AET and the climate tendency
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rate is calculated through linear regression, and then the calculation results are analyzed
and displayed in space. This is the technological process of the evolution assessment, which
is a common, basic data evaluation and overview process. Furthermore, the temporal
and spatial resolution of meteorological data, vegetation data, and hydrological data are
unified to 0.5-degree spatial resolution. In this study, we adopt the mean pixel aggregation
and resampling method to upscale the image [71], and the “Imresize” tool in MATLAB
2020b combined with Bicubic interpolation method is employed to downscale. Pearson
correlation analysis [28] and Boruta algorithm are used to evaluate the Pearson correlation
coefficient and dominant factor order of AET change. This is the procedure of relevant and
dominant assessment, whose results can make an important reference for the next part in
terms of machine learning classification. Thirdly, combined with the future climate dataset,
different forecast input strategies are divided according to the data characteristics or the
actual situation, and the AET of each input strategy is predicted by RF and SVR on the
pixel scale. To obtain the reliable machine learning model, the training set (the sample size
accounts for 70% of the original) and the testing set (30%) are divided randomly. Further,
we use the ‘fitsvm’ tool in MATLAB R2018b to automatically optimize the hyperparameters
of the support vector machine model and the ‘TreeBagger’ tool in MATLAB R2018b to
determine the optimal number of leaf nodes and learners for the training set. After gaining
the optimal machine learning model, the testing set are used to test the model. Then, by
calculating the model’s determination coefficient R2, average absolute error (MAE), and
root mean square error (RMSE), the simulation accuracy of the two models is compared.
Finally, the prediction result of the model with higher simulation accuracy is selected as
the final prediction result for each grid to generate the joint optimal projection.

In this study, South America is selected as the case study to apply the framework and
determine its advantages and disadvantages.
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  Figure 2. A framework for actual evapotranspiration assessment and projection based on meteoro-
logical, hydrological, and vegetation remote sensing products.
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3. Results
3.1. Assess the Evolution Tendency of AET
3.1.1. Temporal Evolution

The monthly average AET of South America is 87.88 mm; the amplitude of AET
is not large during the year (Figure 3a). From 2002 to 2020, the annual AET in South
America was between 1003.96–1102.78 mm, which generally increased at an average rate of
43.4 mm every 10 years, but the AET dropped sharply in 2020 (Figure 3b). Furthermore, the
statistical value Z from the MK test of annual AET is 3.08, indicating a significant increasing
trend (Z > 1.96, α = 0.05). Table 2 shows the tendency of monthly AET in South America
from 2002 to 2020. The Z value of each month is greater than 0, showing an increasing
trend. Except for August to November, the increasing trend is quite significant.

3 

(a) (b) 

Figure 3. Intra-(a) and interannual (b) variations of AET in South America.Figure 3. Intra-(a) and interannual (b) variations of AET in South America.

Table 2. The statistic value of Z from the MK test and the climate change rate from linear trend regression.

Month Z-Value Climate Change Rate (mm/10a)

January 3.15 5.59
February 3.43 5.31

March 2.38 4.52
April 3.15 4.97
May 2.87 5.61
June 2.59 4.78
July 2.03 3.28

August 1.68 2.72
September 0.28 0.62

October 0.77 0.15
November 1.75 2.61
December 2.03 3.23

3.1.2. Spatial Evolution

The spatial distribution of AET in South America roughly presents a low distribution
on both sides while the high in the middle, and the high-value area (>1000 mm) has a large
range (Figure 4a). In the eastern Cape Branco and the western and southern plateau areas,
the AET is less than 600 mm; especially in the vicinity of the Yuyeyaco Volcano near the
equator, the AET reaches the lowest value of less than 200 mm. In addition, the tendency of
annual AET also presents a similar scene (Figure 4b). In the east and west coasts within the
equator and the Tropic of Cancer, there is a relatively concentrated area of AET exhibiting a
downward trend. It is worth noting that the Z value even exceeds four in the north of the
tropic line, especially the large area in the middle and upper reaches of the Amazon, which
illustrates a significant increase.
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Figure 4. Spatial distribution of multi-year average AET (a) and MK statistic Z (b).

In order to further evaluate the spatial distribution of AET, the map of AET and
its Z value in the four seasons are depicted in Figures 5 and 6, respectively. The spatial
distribution of September to November and December toFebruary is consistent with the
annual AET (Figure 4a). The average AET of the Amazon Plain and the northern regions
were relatively stable, and they were always greater than 300 mm in the four seasons
(Figure 5). Figure 6 illustrated the increasing trend of AET in most parts of South America
(Z > 0), with a decreasing trend only in coastal areas and southern regions in the four
seasons. Remarkably, the range of high-value areas in South America from December
toFebruary and March toMay is relatively large (Figure 5a,d), and the scale of the high
Z value from MK during the two periods is also large (Figure 6a,d), which indicates a
large-scale increasing trend of AET in the middle and upper reaches of the Amazon River
and most parts of Brazil. The relevant government departments need to pay more attention
to the fact that large areas of high AET may cause severe droughts. 

5 

    
(a) (b) (c) (d) 

Figure 5. Spatial distribution map of average AET in four seasons. (a) Mar-May, 

(b) Jun-Aug, (c) Sep-Nov, (d) Dec-Feb. 

  

Figure 5. Spatial distribution map of average AET in four seasons. (a) Mar-May, (b) Jun-Aug, (c) Sep-Nov, (d) Dec-Feb.
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3.2. Assess the Relevant Factors and Determinant Order of AET

Pearson correlation coefficient (P-Coefficient) and Boruta algorithm based on RF were
used to calculate the correlation and determinant order of influencing factors for monthly
AET. Table 3 shows the correlation and determinant order assessment results for the entire
region of South America. The correlation between the six factors and AET is all promotion
(P-coefficient > 0). Among them, the correlations between T, P, NDVI, and AET are more
significant, and the relationship between R and AET is the smallest. The determinant order
obtained by Boruta is almost the same as the size ranking of the P-coefficient, but the two
differ in the decisive order of PET and TWC. Although the P-coefficient of TWC is larger,
the Boruta algorithm shows that the decisive order of PET is higher.

Table 3. Assessment of the P-correlation and determinant order of monthly average AET in South America.

T P PET NDVI R TWC

Correlation
coefficient 0.832 0.813 0.587 0.822 0.267 0.638

Boruta-order of
importance First Third Fourth Second Sixth Fifth

Further, the P-coefficient and determinant order between monthly AET and each grid
were evaluated on the pixel scale. Figure 7 shows the spatial distribution of the P-coefficient
between AET and each factor. By comparison, the correlation between hydrological factors
is the weakest, especially it only displays a negative correlation with R in the middle and
upper reaches of the Amazon Plain, which indicates that the rapid runoff here may inhibit
AET (Figure 7e,f). As a result of the AET process, there is a slight positive correlation
between TWC and AET in Central South America. It is unreasonable that TWC increases
along with the raise of AET. The increase in TWC and AET may be more closely related to
other factors such as increased precipitation. In addition, the whole district consistently
exhibits the positive correlation between NDVI and AET (Figure 7d). AET is positively
correlated with T and P in most parts of the region, but abnormally, the negative correlation
about T emerges in the northern plateau of Brazil and the plateau area north of the equator,
while the negative correlation about P occurs in the Amazon plain.
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Figure 8 depicts the map of the decisive factors at each order from Boruta algorithm.
The distribution of the primary determinant and the weakest determinant is relatively uni-
form and concentrated, while the distribution of the second-fifth determinants is relatively
sporadic. With the largest proportion (24.85%) in the first determinant factor (Table 4),
NDVI is mainly distributed in the Brazilian plateau (Figure 8a). In addition, Table 4 shows
that the proportion of PET in the top three order determinants exceeds 20%, which can be
attributed to the fact that PET is a reference used to estimate AET. In addition, Figure 8a
shows that the reference value of PET is relatively significant in the Pampas and Parana
plateau areas south of the Tropic of Capricorn. Notably, the proportion of R also exceeds
20%, and it is the primary determinant in the upper and middle reaches of the Amazon
plain (Figure 8a). Considering the strong negative correlation between R and AET, it
can be speculated that fast and abundant runoff is the main factor inhibiting AET in the
Amazon region.
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Figure 8. Map of determinants for AET at each order from Boruta. (a) First, (b) Second, (c) Third, (d) Fourth, (e) Fifth, and
(f) Sixth.

Table 4. The proportion of the area that is controlled by each factor in the whole of South America at
each order (%).

Order T P PET NDVI R TWC

First 10.34 13.97 23.22 24.85 21.52 6.10
Second 20.02 15.41 21.39 16.61 22.46 4.13
Third 14.69 16.59 21.34 21.49 21.27 4.63

Fourth 12.46 26.98 18.35 13.23 21.22 7.75
Fifth 25.73 17.94 14.25 11.04 12.50 18.53
Sixth 16.76 9.11 1.45 12.78 1.04 58.86

3.3. Projection of AET under Different Input Strategies
3.3.1. Accuracy of the Models under Different Input Strategies

This study divided three prediction input strategies by gradually inputting different
types of variables. The specific details of the input variables for the three input strategies
are shown in Table 5. In the three input strategies, the future AET is simulated by RF and
SVR on the pixel scale in South America. Considering the limitation of computational
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efficiency, the machine learning model is performed at a spatial resolution of 1 degree.
This study ran machine learning models with different input strategies on the grid scale
and calculated their R2. Table 6 shows the proportion of grids that R2 exceeds 0.9, 0.7,
and 0.5, respectively. R2 is a common performance measurement index in the machine
learning model. The closer R2 is to 1, the closer the predicted value and the true value
in the test set sample are, that is, the higher the accuracy and the better performance of
the model [72]. On the whole, the area with R2 > 0.5 accounts for more than 50% of the
total area, indicating that the model can predominantly explain the AET in half of South
America. From the comparison of the three input strategies, by gradually increasing the
input variables, the R2 of the model is continuously improving, especially after considering
the NDVI, the accuracy of the model is significantly improved (Table 6). In each input
strategy, for R2 at the same level, the proportion of the RF model is greater than the SVR
model in three input strategies, which demonstrates that the RF model is suitable for more
regions in South America.

Table 5. Three projection input strategies of AET.

Input
Strategies

Meteorological
Factors Vegetation Index Hydrological

Factors Description

Input
S1

T, P, and PET
From CMIP6 Not input Not input Only Forced by the meteorological

Factors during 2020–2090

Input
S2

T, P, and PET
From CMIP6

Monthly historical
average NDVI Not input The future monthly NDVI roughly

represented by the historical mean value

Input
S3

T, P, and PET
From CMIP6

Monthly historical
average NDVI

Monthly historical
average R and TWC

The future monthly NDVI, R, and TWC
roughly represented by the historical

mean value

Table 6. The proportion of the grids that the R2 exceeds the following value in the whole of South
American (%).

Input Strategies Model R2 > 0.9 R2 > 0.7 R2 > 0.5

Input
S1

RF 4.73 42.09 59.17
SVR 2.52 28.67 45.43

Input
S2

RF 16.95 51.61 64.84
SVR 9.26 42.85 54.95

Input
S3

RF 16.57 53.94 70.70
SVR 10.27 42.79 55.70

Furthermore, Figure 9 depicts the spatial distribution of R2, it can be seen that RF
is more suitable for the entire South American region. With R2 even less than 0.1, the
SVR performs poorly in the Amazon plains and the high plateaus of Brazil. In addition,
regarding the difference between input strategies, compared to S1, the RF model has a
greater improvement in S2 and S3, especially in Brazil. To further test the accuracy of the
model, Figures S1 and S2 (in Supplementary Materials) depict the MAE and RMSE of each
input strategies, which also express the smaller MAE and RMSE, relatively, in S2 and S3. In
addition, the MAE and RMSE of the RF model in the three input strategies are the smallest
(both between 0 and 0.03), and the maximum MAE of S2 is only 0.02. The results of SVR
show that from S1 to S3, as the inputting variables increase, the MAE and RMSE of the
model become smaller and smaller, and the accuracy of the model gradually improves.
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3.3.2. Joint Optimal Prediction of Two Models

Although we concluded that RF is more applicable to the prediction of AET in South
America in the previous section, SVR may perform better in a few individual regions. We
compared the R2 of the two models for each grid for the three input strategies, so as to
evaluate the results of the two models more comprehensively. We chose a model with a
larger R2 to predict AET from 2030 to 2090, and developed a set of optimal AET prediction
products for the three input strategies, with a spatial resolution of 1 degree and a temporal
resolution of monthly scale. The product data format is ‘NetCDF’, which is available in
the Supplementary Materials. Figure 10 expresses the annual AET values for 2030, 2060,
and 2090 calculated by the joint optimal prediction value on a monthly scale. From the
vertical axis in Figure 10, the spatial distribution of the simulation results is roughly the
same in each input strategy, and this distribution would not change over time. All three
input strategies predict unusually severe droughts in the Amazon region and some areas
south of the Tropic of Capricorn from 2030, which implies that the relevant departments
need to take some measures about water resource management to ensure the progress
of agricultural activities in these areas. In the three input strategies, it can be found that
S2 considering climate and vegetation factors can simulate a larger range of intense AET
values (Figure 10).
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Figure 10. The joint optimal prediction of two models under different input strategies.

4. Discussion
4.1. The Framework of Trend Assessment

The trend assessment framework was applied to South America to explore the trend
evolution and distribution of AET, and we found that the evapotranspiration in South
America expressed an upward trend from 2002 to 2020, especially quite significantly in
the area north of the equator, which was consistent with many previous studies [46,73–76].
Yang et al. believed that climate warming led to an increase in the demand for atmospheric
evaporation [73]. Elder et al. further found that the increase of AET in the equatorial
region of South America may be related to the positive phase effect of the multi-decadal
turbulence in the Atlantic Ocean [74]. In addition, we found a sharp drop in AET in
2020 (Figure 3b). Considering that South America experienced severe droughts and rare
precipitation throughout the region, especially Brazil, Argentina, and Chile, in those places
that suffered from a serious shortage of precipitation in 2020, it could be speculated that
insufficient moisture will be the main limiting factor for AET in 2020.
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4.2. The Framework about the Relevant and Dominant Factor Assessment of AET

The relevant and dominant factor assessment system combining P-coefficient and
Boruta algorithm proposed in this study was utilized in South America as a case. It was
found that T, NDVI, and P have a strong leading role in South America. What is more, it is
consistent with existing research results that show T and P as the main driving factors of
evapotranspiration in South America [73,77]. Unexpectedly, as the reference value of AET,
PET was not very closely relevant in South America (P-coefficient only 0.587). This may be
related to the poor adaptability of the PET estimation method in this area. The PET dataset
was from CRU developed by Penman–Monteith formula, however, Martinez and Thepadia
compared various methods of estimating PET and found that Penman–Monteith formula
performed the worst in Florida (a city adjacent to the South America) [78]. Remarkably,
the whole region consistently exhibited a positive correlation between NDVI and AET
(Figure 7d), which resembled the results demonstrated by Ghilain et al. [79] and Costa
et al. [80], in that AET highly depended on vegetation dynamics in South America. In
addition, we found that AET increased in central South America, and TWC increased,
which was illogical because TWC was induced by AET. It implied that the increase in water
volume or the increase in AET may be more closely related to other factors such as the
precipitation. Zhang and Cai also have similar findings [81]. In summary, after inputting
MODIS NDVI and GRACE TWC, the evaluation framework found remarkable results in
South America, which is reasonable and can be reflected by other research findings.

4.3. The Framework about the Joint Optimal Projection of AET

It was noteworthy that the three input strategies all predicted abnormally severe
droughts in the Amazon region and parts of the south of the Tropic of Capricorn. The
predicted AET was twice the current amount, and it was even three to four times in
some areas. Although Thaler et al. and Lyra et al. also predicted a similar strong future
evaporation here [82,83], we further clarified the causes of outliers. We doubted the input
data given by CMIP6, because the AET doubled in the S1 only considering meteorological
factors. Figure 11 compared the data from CMIP6 in 2030 with the historical multi-year
average of CRU products. Obviously, the PET data from CMIP6 was flawed in completeness
and magnitude. Nevertheless, even when the input CMIP6 PET had such an abnormal
prediction value, the joint optimal result obtained by the framework proposed in this
study reduced this abnormality. One reason may be the fact that PET ranked fourth in
the decisive order of AET among all input factors (Table 3). Another may be that the
multiple parameters input in this study could enhance the robustness of the model to a
certain extent.

The framework proposed in this study can systematically and comprehensively evalu-
ate the evolution and future trends of AET. This framework had three advantages: (1) It
could comprehensively determine the order and distribution of the relevant and dominant
factors that affected AET changes. (2) The input of multiple parameters also enhanced the
robustness of the model, especially after the input of NDVI, avoiding large deviations in
the outputs caused by a certain abnormal input parameter. (3) It coupled the prediction
results of multiple machine learning models to make the results more reasonable and
accurate. However, this study also had some limitations. On the one hand, this article
only selected two more typical models with high recognition, and more models could be
introduced into the framework in the future. On the other hand, it was found that there is
a magnitude difference between the PET from CMIP6 and the current. However, due to the
scarcity of available substitutes for this data set, we are restricted from further improving
the prediction system. Similar to the function of the CMIP6 datasets, the South American
AET forecast products developed in this case study under the three input strategies cannot
be employed to quantify the other parameters, but they can serve as a valuable reference
for the allocation of inter-regional water resources.
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5. Conclusions

This research proposed an assessment and prediction framework for AET, which
mainly relied on multiple currently popular machine learning models and multi-source
remote sensing data. In order to present the algorithm more clearly, we applied the
framework as a case study in South America and obtained the main conclusions as follows:

• In South America, AET increased significantly at a rate of 43.4 mm/10a recently and
experienced an obvious decline in 2020 due to water shortage. In terms of spatial
distribution, AET values tended to be lower on both sides while higher (>1000 mm) in
the middle. AET in most areas of SA exhibited a significant ascending trend, especially
in the Amazon area.

• With the P-coefficient exceeding 0.8, the correlation between AET and T, P, and
NDVI was closer. The decisive factors obtained by Boruta algorithm were ranked as
T > NDVI > P > PET > TWC > R, and NDVI controlled the largest area range. How-
ever, R was the primary determinant in the upper and middle reaches of the Amazon.
It could be concluded that rapid runoff is the limiting factor for AET here due to the
negative correlation.

• SVR paled in comparison to the RF in South America. By comparing the R2 of
the two models on the pixel scale and selecting the optimal model for simulation,
the joint optimal prediction datasets were obtained. Furthermore, the S2 considering
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meteorological and vegetation data derived from MODIS simulated the most intensive
future evaporation in the three input strategies.

The framework developed in this study performed well in trend assessment and
related determinant factor identification. The method, which combines multiple parameter
inputs and two models to obtain the optimal output, could enhance the robustness of the
model and make it more reasonable and precise. Limited by the lack of substitutes on
the PET prediction dataset from CMIP6, the AET prediction products generated in South
America in this study could not calibrate relevant parameters, but could provide a valuable
reference for regional drought warning and water resources management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13183643/s1, Figure S1. Distribution of the simulation accuracy MAE of two models
under different input strategies. Figure S2. Distribution of the simulation accuracy RMSE of two
models under differ-ent input strategies. The AET prediction products generated in South America
in this study.
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