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Abstract: It is necessary to understand the relationship between the impervious surface area (ISA)
distribution, variation trends and potential driving forces over Dongying, Shandong Province. We
extracted ISA information from Landsat images with 3–5 year intervals during 1995 to 2018 using
Minimum Noise Fraction (MNF) transform, Pixel Purity Index (PPI), and Linear Spectral Mixture
Analysis (LSMA), followed by the analysis on three driving forces of ISA expansion (physical geogra-
phy, socioeconomic factors, and urban cultural features). Our results show the retrieved ISA thematic
map fit the limited requirement of root mean square error (RMSE). The correct classification accuracy
of ISA is greater than 83.08%. Further, the cross–comparison exhibits the general consistent with
the ISA distribution of the land use classification map published by the National Basic Geographic
Information Center. The gradual increasing trend can be captured on the expansion of ISA from 1995
to 2018. Despite of the central region always shown as the high ISA density, it still keeps increasing
annually and radiating the surrounding region, especially in the southward which has formed into a
new large–scale and high intensity of ISA in 2015–2018. Though the ISA patches scattered in the west
region or along the northern and eastern part of the ocean coastline are still small, the expansion
trend of ISA can be detected. The expansion intensity index (EII) of ISA measuring the situation of
its expansion changes from the lowest value 0.12% between 1995 and 2000 up to the highest 0.73%
between 2000 and 2005. Richly endowed by nature, the city’s natural geographical environment
provides an elevated chance of further urbanization. The rapid increase of regional economy provides
a fundamental driving force for expanding ISAs. The development of urban culture promotes the
sustainable development of ISAs. Our results provide a scientific basis for future urban land use
management, construction planning, and environmental protection in Dongying.

Keywords: impervious surface; mixed pixel; linear spectral mixing analysis; endmember

1. Introduction

Rapid urbanization has led to the replacement of a large amount of natural land (e.g.,
grassland and forest areas) by residential, transportational, industrial, and commercial
land, which is mostly composed of impervious surface areas (ISAs) [1–3]. ISAs are ground
surfaces through which water cannot penetrate, such as surfaces covered by buildings,
hardened pavement, and stadiums [4]. As the impervious surface is closely related to
commercial, industrial, and residential areas, it has been widely applied as an important in-
dicator of land use/land cover transformation from natural features to urban features [5–7].
From an urban hydrology perspective, the increasing coverage of impervious surfaces
increases the speed and volume of urban surface runoff, greatly increasing the pressure on

Remote Sens. 2021, 13, 3666. https://doi.org/10.3390/rs13183666 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6648-8473
https://doi.org/10.3390/rs13183666
https://doi.org/10.3390/rs13183666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183666
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183666?type=check_update&version=1


Remote Sens. 2021, 13, 3666 2 of 22

municipal drainage and flood control [1]. Recently, successive rainstorms in Jiangsu, Henan,
and Shaanxi provinces have caused serious urban ponding, resulting in the trapping of
people and vehicles, damage to roads and houses, and threats to peoples’ lives and property.
Therefore, research on ISA distribution is very important for urban future planning and
management. A study [8] of the relationships among land cover change, population growth,
road density, and the relative change of flooding areas from 2000 to 2017 showed that an
increase in areas with high susceptibility to flooding is related to the regional population
growth rate, with the Pearson correlation coefficient calculated to be 0.496. Additionally,
increased runoff due to urbanization exacerbates nonpoint source pollution discharge in
waterways [9]. This increase in ISAs also weakens the effect of precipitation infiltration,
thus affecting groundwater recharge [10]. Additionally, ISAs absorb large amounts of heat,
and, therefore, their coverage, distribution, and changes have been associated with surface
temperature variations [11,12]. In one study, the impact of urbanization was estimated
by comparing observations in cities with those in surrounding rural areas. The authors
used the difference between the trend in observed surface temperatures and corresponding
trends in the reconstruction of surface temperatures determined through the reanalysis of
global weather over the past 50 years to examine the impact of land use changes on surface
warming. The results suggested that half of the observed decrease in diurnal temperature
range occurred because of urban and other land use changes [13]. Changes in land use and
land cover greatly affect the energy balance and biogeochemical cycles and, thus, affect
land surface properties and the ecosystem environment. A study [14] of 35 years of satellite
data provided a comprehensive record of global land change dynamics from 1982 to 2016,
showing that 60% of land changes are associated with direct human activities and 40%
with indirect drivers such as climate change. Land use change exhibits regional dominance,
including urbanization, tropical deforestation, and farmland intensification. The imper-
vious layer may also have a direct or indirect influence on many environmental factors,
and changes in ISA ratios often directly coincide with urban development and expansion.
Therefore, estimating and monitoring the distribution, development, and change in ISAs in
urban areas have recently gained attention [15–18], particularly in developed countries [19].
The United States Geological Survey (USGS) has included impervious surface data in
the second edition of its National Land Cover Database (NLCD), and, subsequently, has
included impervious layer distribution survey data and research in the NLCD databases
in 2006 and 2011 [20]. The official impervious layer distribution monitoring information
collected by the USGS has provided reliable support for studying urban and regional
development and expansion [21–24]. In particular, these datasets have been instrumental
in characterizing ISA distribution and expansion, thus contributing to the development of
management strategies for urban construction and environmental protection. Therefore,
it is important to map the ISA evolution characteristics and better understand the urban
process to guide the sustainable development of cities.

Traditionally, supervised and unsupervised classification methods were widely used in
impervious surfaces’ estimation. Although these methods are easy to implement, they only
consider one land type in a pixel and ignore spatial heterogeneity. In fact, there are a large
number of mixed pixels in an image containing more than one type of land. This can lead
to information loss and accuracy reduction when using traditional methods [25]. Therefore,
many approaches have been developed for the mapping of impervious surfaces at the
subpixel level, such as decision tree, regression tree, artificial neural network, and Linear
Spectral Mixture Analysis (LSMA) [11,26,27]. Among these, LSMA is the most widely
used for solving the spectral mixing problem, as it shows better performance than other
methods in many fields, such as land cover classification [28], wetland classification [29],
and urban classification [30]. In addition, numerous studies have been conducted to
improve the performance of Spectral Mixture Analysis (SMA) [31]. Ridd proposed a
Vegetation–Impervious Surface–Soil (VIS) model [32] to enable the extraction of ISAs from
complex urban landscapes. This model eliminates easily distinguishable water features
and uses a linear combination of vegetation, ISAs, and soil to simulate urban land cover.
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Phinn et al. [33] used pixel spectral analysis to estimate ISA distribution. Wu et al. used a
linear spectral mixing model to demonstrate that the ISA can be obtained from the sum
of high and low albedo components [2]. Yuan et al. used ISA data to extract impervious
ground ratios in Minnesota [11]. Moreover, Yang [34] used Landsat images to analyze the
ISA spatial distribution in the Nanjing urban area using three methods: linear spectral
mixed decomposition with limited conditions, negative correlation model of vegetation
cover and ISA, and supervised classification. Importantly, the author demonstrated that
the linear spectral mixed decomposition method had the best performance. Lu and Wu
characterized urban land cover types using Thematic Mapper (TM) images via the linear
combination of four spectral endmembers: high albedo, low albedo, vegetation, and soil.
Next, the distribution of ISA in the Beijing urban area was estimated using a linear spectral
mixture model with limited conditions [35]. Xia used the linear spectral mixing model
to extract the impervious layer ratio of two temporal phases in the downtown area of
Xuzhou, at a subpixel scale, through the decomposition of mixed pixels, and analyzed the
impervious layer information extracted from two temporal hyperspectral remote sensing
images [36].

Although LSMA is widely used for ISAs extraction because of its robust theoretical
basis, high efficiency, and precision, for different regions, the spectral complexity and land
types, and the applicability of LSMA differ. Therefore, we applied LSMA to Dongying City,
which is surrounded by the sea in the east and north and has complex land types. We used
LSMA to extract the ISA of Dongying and generate an ISA distribution map with 30 m
resolution over a long time series from 1995 to 2018 based on Landsat. Landsat’s on orbit
and historical data opening policy provides data conditions for the ISA distribution of long
time series. Obtaining the long-term ISA distribution and summarizing the temporal and
spatial expansion law of the ISA may provide guidance for policymakers and city planners
in sustainable land use and infrastructure planning. However, using LSMA to extract the
ISA does not explain the driving force of ISA expansion [37]. Therefore, we performed
long-term (1995–2018) monitoring of Dongying urbanization, discuss the changing trend in
the ISA, and provide insight into the urbanization process of Dongying. Based on remote
sensing image preprocessing, water mask, Minimum Noise Fraction (MNF) transform,
and Pixel Purity Index (PPI) calculation, LSMA is used to extract the ISA. A qualitative
evaluation method was used to analyze the relationship between the ISA change trend
and three driving forces: physical geography, socioeconomic factors, and urban culture
characteristics, so as to clarify the mechanisms driving ISA changes in Dongying.

2. Materials and Methods
2.1. Study Area

Dongying City is a central city in the Yellow River Delta in Shandong Province, China,
located at 118◦07′ E–119◦10′ E and 36◦55′ N–38◦10′ N, as shown in Figure 1. Dongying
city has a warm, temperate, continental monsoon climate and its terrain slopes from
southwest to northeast along the Yellow River. Dongying city is an important node
of Bohai Rim Economic Zone and an important part of the Shandong Peninsula urban
agglomeration. This city is in a pivotal position connecting the Central Plains Economic
Zone and Northeast Economic Zone, Beijing Tianjin Tangshan Economic Zone and Jiaodong
Peninsula Economic Zone.

By 2019, the city had jurisdiction over three districts and two counties, with a total area
of 8243 km2, a permanent population of 2,179,700, an urban population of 1,509,300, and an
urbanization rate of 69.24% [38]. In August 2019, China Customs magazine sponsored by
the General Administration of Customs of China announced the ranking of “top 100 cities
of China’s foreign trade” in 2018, with Dongying ranking 31st. In July 2020, the National
Patriotic Health Association confirmed Dongying as a national health city in 2019 [39]. In
2020, the GDP of Dongying City was CNY 298.119 billion, an increase of 3.8% from the
previous year [40].
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2.2. Data Collection and Preprocessing

Multitemporal Landsat TM and Landsat Operational Land Imager (OLI) images were
used in the study [41]. The TM images were acquired on 22 February 1995, 4 February 2000,
1 February 2005, and 14 January 2010. OLI images were acquired on 13 February 2015 and
20 January 2018. The 30 m time series Landsat images from Path 121/Row 34 were selected
for this study. The cloud cover of all images was less than 5%, and all images contained
six effective bands, including bands 1–5 and band 7, of the TM data, as well as bands 2–7
of the OLI data. Data preprocessing included image sub-setting, as shown in Figure 1,
radiometric calibration, and atmospheric correction.

Radiometric calibration is a process involving sensor error elimination to accurately
determine the radiation sensor entrance value. A calibration coefficient is used to convert
the gray value of an image or Digital Number (DN) value into a radiation brightness value,
as shown in Equation (1).

Lλ = DN × G + B (1)

where Lλ is the measured spectral radiance, DN is the recorded electrical signal value,
G is the sensor gain, and B is the sensor bias. A radiometric calibration module is then
used to calibrate the clipped image, which can automatically read the information in the
remote sensing image, including the sensor type, imaging time, and solar altitude angle.
The calibration type is radiance and is the data saved in band interleaved by line (BIL)
format, which can be used for atmospheric correction.

The energy captured by Landsat sensors is influenced by the Earth’s atmosphere.
These effects include scattering and absorption due to interactions of electromagnetic radi-
ation with atmospheric particles (i.e., gases, water vapor, and aerosols) [42]. Atmospheric
correction aims to determine the true surface reflectance values by removing atmospheric
effects resulting from the scattering and absorption of electromagnetic radiation by gases
and aerosols when passing through the atmosphere to the satellite sensor [43]. In Landsat
TM and OLI data, the dominant atmospheric effect is scattering, which is additive to the
remotely sensed signals, whereas the multiplicative effect from absorption is often ne-
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glected because the TM and OLI bands are selected to avoid effects due to absorption [44].
Under certain conditions, calibration of image data to radiance units is necessary prior
to classification and change detection using multitemporal images [45]. Considering the
effect of the atmosphere can avoid improper interpretation of images [46].

The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at-
mospheric correction model was used to calibrate the radiometric images. Based on the
solar spectral range (excluding thermal radiation) and flat Lambert body (or approximate
plane Lambert body), the spectral radiance formula of the pixel received by FLAASH at
the sensor is shown in Equation (2).

L =

(
A ∗ ρ

1− ρe ∗ S

)
+

(
B ∗ ρ

1− ρe ∗ S

)
+ (La) (2)

where L is the total radiance received by the pixel at the sensor; ρ is pixel surface reflectivity;
ρe is the average surface reflectance around the pixel; S is the atmospheric spherical albedo;
La is the atmospheric backscattering emissivity (atmospheric radiation); A and B are two
coefficients that depend on atmospheric and geometric conditions.

Equation (2) can be divided into three parts (with brackets as the dividing line). The
first part is the radiation intensity of solar radiation entering the sensor directly after
entering the earth’s surface through the atmosphere; the second part is radiation entering
the sensor after atmospheric scattering; the third part is the atmospheric backscattering
rate (atmospheric radiation). Central longitude and latitude, sensor type, sensor altitude,
ground elevation, pixel size, and flight date can be obtained from the image header file. The
mid-latitude winter atmospheric mode is selected based on season–latitude information
of the images. The rural aerosol model is selected based on the images feature. The
relevant parameter settings of atmospheric correction are shown in Table 1. The image
after atmospheric correction, take the 2015 OLI image as an example, is shown in Figure 2.

2.3. Mapping Impervious Surface Area (ISA) Distribution

The data used herein includes the Dongying administrative boundaries, Landsat TM
images, and OLI images. Data preprocessing and water masking were performed first.
Next, most of the noise was filtered out through MNF, and the purest pixel in the image
was identified through PPI calculation. Finally, ISAs were extracted via LSMA. According
to the calculation results, the area, expansion ratio, and expansion intensity index (EII)
of ISA in Dongying from 1995 to 2018 were calculated. Then, the qualitative evaluation
method was used to analyze the relationship between ISA change trend and three driving
forces: physical geography, socioeconomic factors, and urban cultural feature, so as to
clarify the driving mechanism of ISA change in Dongying. Figure 3 illustrates a flowchart
of our procedures.

Table 1. Parameter setting of atmospheric correction.

Image Sequence Number 1 2 3 4 5 6

Central Longitude 118◦54′51.75′′

Central Latitude 37◦28′16.25′′

Sensor Type Landsat TM5 Landsat-8 OLI

Sensor Altitude 705 km

Ground Elevation 8.8 m

Pixel Size 30 m

Flight Date 22 February 1995 4 February 2000 1 February 2005 14 January 2010 13 February 2015 20 January 2018

Atmospheric Models Mid-Latitude Winter

Aerosol Model Rural
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2.3.1. Water Mask

First, water bodies should be removed from the images to avoid confusing the classifi-
cation between water bodies and impervious surfaces [47]. Because of its simplicity and
accuracy, the Modified Normalized Difference Water Index (MNDWI) is widely used to
extract water bodies. MNDWI uses a specific band of a remote sensing image for normal-
ized difference processing to highlight water information in the image [48]. The calculation
method is shown in Equation (3). After water body masking treatment, the water area is
eliminated, reducing the influence of the water area on ISA extraction.

MNDWI =
Green−MIR
Green + MIR

(3)

where, MIR is the mid-infrared band (i.e., band 5 in the TM image and band 6 in the OLI
image). Green is the green light band, which corresponds to band 2 in the TM image and
band 3 in the OLI image.

After calculating the MNDWI, the boundary value between water and non-water was
obtained by density segmentation, and the water body was extracted using a threshold.
The image obtained after water body masking, take the 2015 OLI image as an example, is
shown in Figure 4.
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2.3.2. Minimum Noise Fraction (MNF)

The noise of remote sensing images and correlation between spectral bands reduce the
number of data features that can be extracted from the images [49]. To resolve this, MNF
transform can be used for dimension reduction and noise isolation of multispectral data,
and to reduce between-band correlation and the number of subsequent calculations [50].
MNF transform is essentially a double–stacked principal component analysis. MNF trans-
form can separate noise from effective information by arranging components according to
the signal–to–noise ratio. The first transform is based on estimation of the noise covariance
matrix to adjust and separate the data noise. The transform noise data represents the
noncorrelation between bands, which is often referred to as noise whitening. In the second
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transform, standard principal component transform is applied to the noise whitening
data, after which the final eigenvalues and internal dimensions of the related image data
are analyzed.

Using OLI image data from 13 February 2015 as an example, the first three bands
of the MNF transform account for 91.19% of the total remote sensing image information.
Therefore, the first three principal components can be used to represent the basic data
dimensions. Table 2 summarizes the MNF transform results. The eigenvalue after MNF
transform represents the importance of each component, and the eigenvalue of each
component decreases steadily as the number of MNF components increases. Components
with higher eigenvalues can be used to express image information [51].

Table 2. Eigenvalues and specific gravity of each MNF component.

MNF Eigenvalue Cumulative Percentage

1 209.1497 67.00%
2 57.9419 85.56%
3 17.5451 91.19%
4 14.0268 95.68%
5 8.1962 98.30%
6 5.2913 100.00%

Using TM image data from 22 February 1995 as an example, we compared the signal-to-
noise ratio of each component in the same region of the MNF image, as shown in Figure 5.
Notably, the first three components exhibited less image noise and were generally clearer.
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2.3.3. Pixel Purity Index (PPI)

PPI calculation [52] is a method used to identify the purest spectrum pixel in multi-
spectral or hyperspectral images. PPI treats each pixel as an n–dimensional vector, and all
pixels form a vector space. In this vector space, there must be a basis for all vectors located
on the boundary, and all space vectors can be represented by linear combinations of these
bases. The probability of appearing on the edge of random unit vectors is the largest when
these vectors at the boundary position are projected onto the random unit vectors, which
can be expressed as the purity index. Mixed pixels surrounded by boundary pixels can
be decomposed through linear combinations of pure pixels. After PPI calculation, the DN
value indicates the number of times that the pixel was marked as a pure pixel.

An MNF image was used as an input data for PPI calculation. To meet the endmember
extraction requirements, 10,000 PPI iterations were established. The threshold factor refers
to data bits as an index. For example, if the threshold value is 2, only pixels with a
difference between the DN value and extremum pixel of more than two digits is labeled as
an extremum. The threshold selects pixels at the end of the mapped pixels. The threshold
should optimally be 2–3 fold the noise level [53]. The noise level is considered as the noise
pixel. To distinguish between normal pixels and noise, the median value of adjacent pixels
was calculated. If the values were greater than a certain threshold, the pixels were marked
as noise.

2.3.4. Extract Endmembers

In the process of linear spectral mixing decomposition, the choice of endmembers
directly determines the accuracy of the final mixed pixel decomposition result. The selection
of endmembers depends on the specific characteristics of the study area. Based on the
complex types of ground features and intensive construction land, the high albedo–low
albedo–vegetation–soil mixed pixel decomposition model was selected for ISA extraction
in Dongying. In this model, the high albedo end elements mainly include high light
roof materials, glass, and ceramic tiles with a high reflective effect. Low albedo end
elements mainly include asphalt pavement and carbon steel material. Vegetation end
elements include woodlands, urban inner green lands, and farmland. Soil endmembers
are mainly bare soil. Water bodies do not affect the selection of endmembers as the water
has been masked in the previous step. Four types of ground objects (i.e., high albedo,
low albedo, vegetation, and soil) were selected based on the original image, Google Earth
images, PPI results, and distribution characteristics of four endmembers in the first three
MNF components.

2.3.5. Linear Spectral Mixture Analysis (LSMA)

LSMA assumes that there is no interaction between light endmembers. The mixed
pixel spectrum is regarded as a linear combination of all components of the corresponding
spectral values according to its area proportion [54,55]. Equations (4)–(5) detail the LSMA
mathematical model.

xb =
n

∑
k=1

skakb + eb (4)

n

∑
k=1

sk = 1, 0 ≤ sk ≤ 1 (5)

where xb is the reflectivity of band b; sk is the proportion of the area occupied by k; akb is
the reflectivity of k in band b; b is the number of spectral bands, b = 1, 2 . . . m, m is the
total number of spectral bands in the image; k is the kth end element, k = 1, 2, 3, and 4; n is
the total number of endmembers in the image. Given that xb is known, if akb is obtained
again, it is feasible to solve sk via the least square error method. Therefore, resolving the
endmember spectrum is key to implementing the linear spectral model.
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The correctness of LSMA model can be determined by checking root mean square
error (RMSE) of the residual eb of each band in the image, as shown in Equation (6).

RMSE =

√
∑m

b=1(eb)
2

m
(6)

where eb is the residual; RMSE is the root mean square error.

3. Results
3.1. Impervious Surface Mapping

The linear spectral mixture decomposition maps of land types in Dongying in 1995, 2000,
2005, 2010, 2015, and 2018 were obtained with LSMA based on the collected endmember
model, and then six periods of ISA distribution images were obtained, as shown in Figure 6.
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As shown in Figure 6, ISAs gradually increased from 1995 to 2018. The scope of the
ISA was the smallest in 1995 but it was large in 2015 and 2018. In terms of the regional
distribution, the central region has always been a region with high ISA density, and its ISA
is still increasing year by year and radiating around; ISA expansion is more obvious in the
south, which had formed a new large–scale and highly intensive area in 2015 and 2018.
The ISA values in the west, and in the north and east near the ocean, are relatively low, but
there are also expansion phenomena. ISA can be estimated according to the ISA abundance
map in Figure 6. Figure 7 is a line chart of Dongying’s ISA from 1995 to 2018. The figure
clearly shows that the ISA increased consistently each year, with the largest increase from
2000 to 2005.
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Figure 7. Line chart of ISA change trend in Dongying City from 1995 to 2018.

ISA ratio is used to evaluate the expansion speed of ISA in different periods. It is
obtained by dividing the difference between the ISA at the beginning and end of the study
by the time interval. The ISA ratio of Dongying from 1995 to 2018 is shown in Table 3.

Table 3. Dongying ISA ratio from 1995 to 2018.

Year 1995 2000 2005 2010 2015 2018

ISA ratio (%) 9.42 10.04 13.71 15.36 16.74 17.47

As shown in Table 3, the ISA ratio increased yearly and showed variable change
characteristics. The ISA ratio was lowest in 1995 but increased in the following years. The
increase in the ISA ratio was largest between 2000 and 2005. In 2018, the ISA ratio reached
17.47%, which was the maximum ISA ratio in the study period.

ISA EII refers to the proportion of ISA expansion in the study area during the study
period. This value is used to quantitatively compare the degree of ISA expansion and
measure the strength and speed of ISA expansion in different periods. Equation (7) is the
EII calculation formula.

EII =
Sb − Sa

TLA
× 1

T
× 100% (7)

where EII is the expansion intensity index, Sa and Sb are the ISA at the beginning and end
of the study, T is the time interval, and TLA is the total area of the study area.

ISA EII is shown in Table 4. The minimum ISA EII (0.12%) occurred between 1995 and
2000, whereas the highest (0.73%) occurred between 2000 and 2005.
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Table 4. ISA Expansion Intensity Index from 1995 to 2018.

Period 1995–2000 2000–2005 2005–2010 2010–2015 2015–2018

ISA EII (%) 0.12 0.73 0.33 0.41 0.24

3.2. Precision Evaluation

First, the ISA classification accuracy was verified by RMSE. The RMSE image effec-
tively reflects the accuracy of the decomposition result and can be directly used to evaluate
the decomposition result [56]. More highlighted regions in the RMSE diagram result in
a larger RMSE value, indicating a poorer selection of endmembers and decomposition
effect and vice versa. Previous studies demonstrated that the average RMSE must be less
than 0.02 to ensure the decomposition effect [2]. Using data from 2015 as an example, the
spatial distribution of RMSE is shown in Figure 8, and a histogram is shown in Figure 9.
The RMSE value of most pixels is 0 (i.e., less than the allowable value 0.02), meeting the
accuracy requirements. This result confirmed that the selected end element was accurate,
and that the decomposition result was reliable.
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Second, samples were randomly selected on the original image for testing. As there
were no high spatial resolution images with long time series, verification samples could
only be selected from original images. The validation samples ensured that there was no
overlap with the classification samples and that the categories were specific and could
be interpreted accurately. The confusion or error matrix plays a central role in meeting
both the accuracy assessment and area estimation objectives [57]. Therefore, the confusion
matrix was used for accuracy evaluation, and indicators related to ISA classification are
shown in Table 5.

Table 5. Indicators related to ISA classification of land classification confusion matrix in Dongying
from 1995 to 2018.

Year Overall
Accuracy

Kappa
Coefficient

Selected ISA
Pixels

Correctly Classified
ISA Pixels

ISA
Accuracy

1995 92.32% 0.88 2651 2354 88.80%
2000 90.81% 0.87 3390 3225 95.13%
2005 91.00% 0.88 3074 2554 83.08%
2010 89.56% 0.86 3726 3519 94.44%
2015 88.90% 0.85 2592 2534 97.76%
2018 87.61% 0.83 2371 2311 97.47%

Using the LSMA method to extract ISA, the overall classification accuracy was more
than 87.61%, Kappa coefficient was more than 0.83, and the accuracy of ISA correct classifi-
cation was more than 83.08%, demonstrating that this method can extract ISA effectively.
The highest ISA classification accuracy was 97.76% in 2015. These results show that the
classification effect is good.

Third, using the 1 km grid data of the land use classification map as an auxiliary
reference, the land use classification data was obtained from the global surface cover-
age data product service website of the National Basic Geographic Information Center
(DOI:10.11769), as shown in Figure 10. Figure 9 was compared with Figure 6 to verify
whether the overall trend was consistent. To facilitate visual comparison, the construction
land in the existing land classification map is shown in red, and all other land types are
shown as green, which is consistent with the color in Figure 6.

As shown in Figure 9, the ISA in Dongying gradually expanded from 1995 to 2018.
From the perspective of regional distribution, the middle part of Dongying has always
been an area with high ISA density, and its ISA is still gradually increasing and radiating
around; the ISA expanded most obviously in the south. ISA is less distributed in the west
and east, but there are also some expansion phenomena. These phenomena are consistent
with the data shown in Figure 6. However, there were differences in the ISA distribution
between Figures 6 and 9, mainly in the following points:

a. From 1995 to 2018, there was a dense ISA distribution area in the northeast of Figure
9, while the ISA distribution in the same position in Figure 6 was relatively thin. By
checking the image of Google Earth in the corresponding year, it can be seen that
this area includes an oil and gas injection plant, a sea cucumber seedling breeding
base, and a salinization farm. Most of these are made up of vegetation and bare soil.
The ISA is relatively small and not as dense as shown in Figure 9.

b. From 2000 to 2015, there was a dense ISA distribution area in the northwest of
Figure 9, while the ISA distribution in the same location in Figure 6 was relatively
thin. By checking the images of Google Earth in the corresponding years, it can be
seen that most of the area is composed of vegetation, cultivated land, and water. The
ISA is relatively small and not as dense as shown in Figure 9.

c. From 1995 to 2018, the northwest area of Figure 6 consists of a dense ISA area,
which is relatively thin in Figure 9. By checking the image of Google Earth in the
corresponding year, it can be seen that this area is a dense residential area, which is a
typical ISA.
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d. From 2005 to 2018, the ISA in the south of Figure 6 has an obvious expansion trend,
forming a relatively dense ISA area, while the ISA in the corresponding position of
Figure 9 is relatively thin. Viewing the image of Google Earth corresponding to the
year, it can be seen that this area is composed of a large number of typical ISAs such
as residential areas, factories, hospitals, and schools.

Thus, compared with classified products, the classification results obtained in this
paper are more reasonable.
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4. Discussion
4.1. Spatio-Temporal Analysis of Impervious Surface
4.1.1. Natural Factors on Urban Expansion

Physical geographical conditions are the basic conditions of urban development that
determine the speed and direction of urban expansion to some extent and, thus, determine
the macro pattern of urban development. Fü et al. [58] proposed that climate change
and human activities are the driving forces of land use and land cover change, and that
natural conditions are a factor of the driving force. Dongying is in a mid-latitude and
features a flat terrain. Therefore, this region exhibits four distinct seasons with cold win-
ters and hot summers. Dongying is rich in land, water, and mineral resources. In 2003,
Dongying was rated as a national health city [59]; in 2017, Dongying was selected as
the fifth national civilized city and was in the top 200 charming cities with Chinese char-
acteristics in 2017 [60,61]; in 2019, Dongying was rated as a national ecological garden
city [62,63]; in 2020, Dongying was included in the list of national double support model
cities (counties) [64]. Because of the abundant natural resources, suitable living environ-
ment, natural geographical advantages, and superior natural environment in Dongying
city, development and opening of the city has occurred, promoting the urbanization process
and further promoting ISA expansion.

4.1.2. Socioeconomic Factors on Urban Expansion

Social and economic development are the main driving forces of urban expansion,
which is the specific performance of social and economic development at the spatial material
level [65]. Based on the actual situation of the study area, data should be used to select
indicators according to local conditions, and strive to analyze and evaluate the impact of
the economy on ISA. Therefore, seven representative socioeconomic indicators that have
been closely linked to ISA expansion were collected from the Dongying yearbook. These
included the investment in fixed assets (IIFA), investment in real estate development (IRED),
urban per capita disposable income (UPDI), urban per capita consumption (UPCC), primary
industry gross domestic product (PGDP), secondary industry gross domestic product
(SGDP), and tertiary industry gross domestic product (TGDP), as shown in Table 6.

Table 6. Dongying socioeconomic indicators from 1995 to 2018.

Indicators IIFA
(×1012 CNY)

IRED
(×1012 CNY)

UPDI
(×105 CNY/year)

UPCC
(×103 CNY/year)

PGDP
(×109 CNY)

SGDP
(×109 CNY)

TGDP
(×109 CNY)

1995 11.37 — 6.17 4.17 2.83 16.25 2.12
2000 19.75 4.02 8.60 7.00 3.01 31.24 5.62
2005 60.57 4.70 14.94 9.63 4.60 66.36 16.37
2010 134.90 10.03 23.80 14.74 8.23 113.68 41.96
2015 308.47 19.39 38.74 23.14 13.31 149.34 77.03
2018 255.75 16.72 47.91 28.90 14.65 162.71 101.12

As shown in Table 6, all seven socioeconomic indicators increased at each indicator
from 1995 to 2018. As illustrated in Figure 11, seven socioeconomic indicators were
positively correlated with ISA expansion. The expansion trend of the ISA is generally
consistent with the growth trend of socioeconomic indicators. An interaction exists between
socioeconomic development and ISA expansion: the rapid and steady development of
the social economy improves the speed of the urbanization process, and ISA expansion
provides space and a platform for economic development.
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Figure 11. Correlation between ISA and socioeconomic indicators.
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4.1.3. Cultural Factors on Urban Expansion

Urban culture determines the direction and quality of urban economic development.
Dongying is the hometown of Sun Wu, a great ancient military strategist, and the birthplace
of Lv Opera, a local representative opera in Shandong [66]. A great living environment,
profound history and culture, and hospitable people are of great cultural attraction to
urban migrants. Based on the Dongying yearbook, selecting from scientific, comprehensive,
systematic, and other principles for factors, and in line with the actual situation of the city
and the layout of cultural construction, the following four cultural indicators are selected
as the driving factors: year-end population (YEP), cultural expenses (CE), cultural relic
operation expenses (CROE), and inbound tourists (IT) (Table 7).

Table 7. Dongying cultural indicators from 1995 to 2018.

Indicators YEP (×105) CE (×105 CNY) CROE (×105 CNY) IT (×103 Person Times)

1995 16.411 — — —
2000 17.213 87.1 87.1 1.028
2005 18.05 216.46 216.46 1.3
2010 18.487 654.55 654.55 33
2015 19.062 1005.4 1239.4 58
2018 19.668 1648.6 1209.3 64

The four cultural indicators in Table 7 have increased at each indicator from 1995 to
2018. As illustrated in Figure 12, the four cultural indicators exhibited a positive correlation
with ISA. The expansion trend of ISA is generally consistent with the growth trend of
cultural indicators. Under the promotion of culture, urban economic development drives
urban development. The unique urban culture promotes the development of Dongying
city, and the pioneering and enterprising culture constructs the economic foundation of the
development of Dongying city and adds vitality to the city.

4.2. Limitations of the Work

Although the proposed method has achieved satisfactory results in mapping the
abundance of ISA, there were some limitations. First, high–quality Landsat remote sens-
ing images of Dongying could not be obtained from 1995 to 2018. To overcome nonsta-
tionary and discontinuous spectral components in remote sensing image time series, a
robust method of jump detection was proposed based on the anti–leakage least–squares
spectral analysis (ALLSSA), along with an appropriate temporal segmentation, namely,
Jumps Upon Spectrum and Trend (JUST) (https://doi.org/10.3390/rs12234001 (accessed on
7 July 2021)) [67], which can be applied to simulate vegetation time series with varying
jump location and magnitude, the number of observations, seasonal component, and
noises. Subsequent studies should be performed to determine the temporal and spatial
variation of ISA by analyzing the time series of vegetation, as the area of vegetation is
generally a non–ISA area. Second, although LSMA has been broadly considered as one
of the most efficient methods, issues such as the endmember variability have not been
considered. Because of the spatial heterogeneity of the landscape, the distribution of land
use types differ for various regions, and the fixed end element type may lead to estimation
error. Third, the spectral characteristics of high albedo ISAs and bare land are very similar,
making it challenging to distinguish them. For Dongying, as a coastal city, it is difficult to
separate the beach from the ISA. Therefore, higher image resolution and more advanced
endmember extraction methods can improve the accuracy of ISA extraction. Fourth, the
socioeconomic and cultural indicators used in this study account for the whole of Dongying
City. Monitoring of the ISA at the urban scale reflects the overall trend in Dongying city
expansion but ignores the different roles and interactions of different parts of the city in
urbanization, leading to an insufficient understanding of the details of urban expansion.
Using statistical data for districts and counties, and extracting the ISAs of each district and
county, may improve the accuracy and specificity of the results.

https://doi.org/10.3390/rs12234001
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5. Conclusions

Based on Landsat TM data of 1995, 2000, 2005, and 2010, as well as Landsat OLI data
of 2015 and 2018, the ISA distribution, variation trends and potential driving forces over
Dongying were investigated, With the following conclusions drew out.

(1) A pixel–based linear spectral mixture decomposition model was adopted for ISA
extraction. The retrieved ISA thematic map fit the limited requirement of root mean
square error (RMSE). Accuracy of ISA correct classification is greater than 83.08%.
Further, the cross–comparison exhibits the general consistent with the ISA distribu-
tion of the land use classification map published by the National Basic Geographic
Information Center.

(2) Research shows that the gradual increasing trend can be captured on the expansion
of ISA from 1995 to 2018. The scope of ISA was the smallest in 1995, but it was large
in 2015 and 2018. Despite of the central region always shown as the high ISA density,
it still keeps increasing annually and radiating the surrounding region, especially in
the southward which has formed into a new large–scale and high intensity of ISA in
2015–2018. Though the ISA patches scattered in the west region or along the northern
and eastern part of the ocean coastline are still small, the expansion trend of ISA can
be detected. The EII of ISA measuring the situation of its expansion changes from the
lowest value 0.12% between 1995 and 2000 up to the highest 0.73% between 2000 and
2005. This shows that urban development was relatively slow from 1995 to 2000 and
relatively fast from 2000 to 2005.

(3) Our investigation shows that expansion of ISA over Dongying is related to three
driving forces (physical geography, socioeconomic factors, and urban culture). Richly



Remote Sens. 2021, 13, 3666 19 of 22

endowed by nature, the city’s natural geographical environment provides an elevated
chance of further urbanization. The rapid increase of regional economy provides a
fundamental driving force for expanding ISAs. The development of urban culture
promotes the sustainable development of ISAs. These three driving forces interact
with the ISA and provide a good foundation and conditions for ISA expansion. Our
findings provide a scientific basis for future urban land use, construction planning,
and environmental protection in the Dongying area.
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Symbol Table
Lλ measured spectral radiance
DN recorded electrical signal value
G sensor gain
B sensor bias
L total radiance received by the pixel at the sensor
ρ pixel surface reflectivity
ρe average surface reflectance around the pixel
S atmospheric spherical albedo
La atmospheric backscattering emissivity (atmospheric radiation)
A coefficient depending on atmospheric conditions
B coefficient depending on geometric conditions
MIR mid-infrared band
Green green light band
b number of spectral bands, b = 1,2 . . . 6
xb reflectivity of band b
k kth end element, k= 1,2,3,4
sk proportion of the area occupied by k
akb reflectivity of k in band b
eb residual
n total number of endmembers in the image
Sa ISA at the beginning of the study
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Sb ISA at the end of the study
T time interval
TLA total area of the study area
Name Abbreviation Table
ISA Impervious Surface Area
MNF Minimum Noise Fraction
PPI Pixel Purity Index
LSMA Linear Spectral Mixture Analysis
USGS the United States Geological Survey
NLCD National Land Cover Database
VIS Vegetable–Impervious surface–Soil
TM Thematic Mapper
OLI Operational Land Imager
DN Digital Number
BIL Band Interleaved by Line
FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
MNDWI Modified Normalized Difference Water Index
RMSE Root Mean Square Error
IIFA Investment in Fixed Assets
IRED Investment in Real Estate Development
UPDI Urban Per capita Disposable Income
UPCC Urban Per Capita Consumption
PGDP Primary industry Gross Domestic Product
SGDP Secondary industry Gross Domestic Product
TGDP Tertiary industry Gross Domestic Product
YEP Year-End Population
CE Cultural Expenses
CROE Cultural Relic Operation Expenses
IT Inbound Tourists
ALLSSA the Anti-Leakage Least-Squares Spectral Analysis
JUST Jumps Upon Spectrum and Trend
EII Expansion Intensity Index
SMA Spectral Mixture Analysis
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