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Abstract: Thermal inertia, which represents the resistance to change in temperature of the upper
few centimeters of the surface, provides information to help understand the surficial geology and
recent processes that are potentially still active today. It cannot be directly measured on Mars and is
therefore usually modelled. We present a new analytical method based on Apparent Thermal Inertia
(ATI), a thermal inertia proxy. Calculating ATI requires readily available input data: temperature,
incidence angle, visible dust opacity, and a digital elevation model. Because of the high spatial
resolution, the method can be used on sloping terrains, which makes possible thermal mapping
using THEMIS in nearly any area of Mars. Comparison with results obtained by other approaches
using modeled data shows similarity in flat areas and illustrates the significant influence of slope
and aspect on albedo and diurnal temperature differences.

Keywords: Mars; surface temperature; thermal inertia; sloping terrain

1. Introduction

The thermal inertia of surface materials is related to their physical properties, com-
plementing other datasets for geological interpretation. Thermal inertia for a given rock
composition primarily depends on density, but is subject to huge variations that depend on
the rock temperature, porosity, and cementation, the increase of which results in increased
thermal inertia [1]. From a geological point of view, thermal inertia, therefore, depends on
rock composition and thermophysical properties; however, for a sloping surface subject to
weathering, it will be heavily modulated by slope processes affecting porosity and cementa-
tion. Thermal inertia helps to understand the surficial geology and recent processes that are
potentially still active today on Mars. Fine particles (dust) have low thermal inertia, and it
increases for particles of sand size, then for duricrust, rock fragments, and combinations of
these materials. An effective particle size of the surface can be inferred from thermal inertia
values from laboratory-derived relationships between particle size and conductivity [2].

Thermal inertia represents the resistance to change in temperature of the upper few
centimeters of the surface throughout the day [2]. Thermal inertia (J m−2 K−1s−1/2) in SI
units is defined as:

P =
√
(kρC) (1)

and is related to thermal conductivity k (W m−1 K−1), density p (kg m−3), and heat capacity
C (J kg−1 K−1) of the rock. Variations in thermal inertia on Mars were demonstrated
to principally arise from variations in thermal conductivity [3]. Because direct measure-
ment of thermal inertia on Mars is not possible, thermal inertia modelling has become
common ([2,4–16]) including apparent thermal inertia (ATI), and differential apparent
thermal inertia (DATI) ([10,17–26]).

ATI was introduced by Price [27], who developed a model to relate thermal inertia to
parameters measurable by remote sensing. Price [17] retrieved the relationship between

Remote Sens. 2021, 13, 3692. https://doi.org/10.3390/rs13183692 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6438-2675
https://orcid.org/0000-0003-4880-3841
https://orcid.org/0000-0002-1193-0321
https://doi.org/10.3390/rs13183692
https://doi.org/10.3390/rs13183692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183692
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183692?type=check_update&version=3


Remote Sens. 2021, 13, 3692 2 of 22

ATI and P and suggested a possibility to use ATI instead of P, due to the P–ATI direct
relationship, confirmed also by Kahle et al. [28]:

P = αATI + β (2)

where α and β represent a scaling factor and an offset in Price [17]. This is recommended
especially in aridic climates, such as the current climate on Mars, where β related to
atmospheric humidity can be neglected. Alpha depends on solar geometry factors. Thus,
ATI incorporates the functional dependence on albedo, day–night temperature difference,
latitude of the point of interest, and solar declination, as these factors influence the estimate
of P.

ATI approximates thermal inertia [17,27]. ATI values are directly proportional to
the P as proposed in the empirical formula introduced by Price [17,27], and Khale [28,29]
implying thermal inertia units (cal m−2 K−1 s −1/2) inherited by ATI (see Price [17] for
the formula derivation). As the traditional cal m−2 K−1 s −1 units are now rarely used,
we have converted them to the SI units (J m−2 K−1 s −1/2) by multiplying them by 41855
(calorie to joule conversion). ATI is a useful option for space objects because it can be
directly generated from the remote sensing data without additional modelling, as shown
in the equation:

ATI =
1− A

∆T
(3)

where ∆T (K) is the diurnal temperature difference (daytime–nighttime; non-corrected),
and A is the Lambertian albedo. On Mars, ∆T can be obtained from Thermal Emission
Imaging System (THEMIS) images. Temperature was taken at the local time on Mars.
Daytime images are those with a local time of 08:00–20:00, and nighttime images are those
with a local time of 00:00–07:59. The reflected intensity of a Lambertian surface is isotropic,
being independent of the view zenith and relative azimuth angles. It is simply related to
the incident flux [30].

Topography is an important factor in thermal inertia calculations because the incident
thermal energy received by a given slope depends on its orientation and inclination. Many
areas have slopes steeper than 10◦ on Mars. Thus, slope affects local inferred albedo and
temperature. Spacecraft sensors record the angle of incidence radiation on a horizontal
surface, but slope inclination and orientation are neglected. This results in albedo (and
temperature) either over- or underestimated. For instance, if the incidence angle on the
flat surface is 40◦, and the sun shines from the south, then for a south-facing 30◦ slope,
the actual incidence angle (i) is only 10◦ and the resulted albedo is lower by ~20% than it
would be if the surface was horizontal. By incidence angle, we mean the angle between a
ray incident on a horizontal surface and the line perpendicular to that horizontal surface at
the point of incidence.

Slopes have been accounted for in several previous thermal inertia investigations.
Some local studies have used KRC modelling [5–7], where K is for conductivity, R for
density, and C for specific heat, to compute thermal inertia from THEMIS brightness
temperature on sloping terrain [20,21]. The brightness temperature function converts
all available THEMIS radiance bands to the blackbody temperature for the equivalent
radiance integrated over each THEMIS bandpass. The authors of [2] investigated the effect
of slope on thermal inertia by KRC modelling, but could not take slopes into account in
global mapping due to the unavailability of global high-resolution slope data. They found,
however, that for geological applications, thermal inertia derivation should take the slope
angle into account when they are more than ~10◦. Many geological objects are exposed on
surfaces that are steeper than 10◦ (graben fault scarps, wrinkle ridge slopes, caldera rims,
river channel benches, wind-eroded gullies, impact crater rims, and many others), which
makes it necessary to develop robust approaches to determine high-resolution thermal
inertia adapted to slopes above 10◦. To fill this gap, we created the ATI-based method
with a high spatial resolution and implemented a topography correction that makes it
possible to account for steep slopes (provided that incidence angle < 79◦). It is based on a
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mathematical algorithm that can be readily used. The method is described in Section 2. A
tutorial is provided in Supplementary File S1.

2. Method and Datasets

Apparent thermal inertia primarily requires the determination of albedo and temper-
ature (Equation (3)). Solar geometry, dust opacity, topography, and atmosphere thermal
emission during nighttime influence albedo and/or temperature.

2.1. Albedo

Albedo A (Equation (3)) is obtained from Mars Reconnaissance Orbiter’s Context
Camera (CTX) data. At the global scale, TES data, of resolution ~3000 m/pixel, is enough,
but for detailed geologic interpretations, higher spatial resolution is required. CTX data, of
resolution ~6 m/pixel, are appropriate.

The CTX albedo, which is a Lambert albedo, is collected from a wavelength range
of 500–800 nm [31]. This is smaller than the bolometric albedo of TES collected from
a wavelength range of 300–2900 nm [32]. To evaluate these differences, Bell et al. [33]
systematically compared the CTX albedo with bolometric albedo from the TES instruments.
They proposed that the CTX-based albedo gives results ~15% lower than from the TES
albedo. The albedo values provided here account for this correction proposed by Bell et al.—
this factor was included in all our calculations. However, we have verified the uncertainty
related to this approximation based on a mosaic of two CTX images of the Valles Marineris
area (Figure 1). Their spatial resolution is degraded to 8 ppd (see Figure 1) to obtain the TES
albedo map resolution. We found that there is still a difference between the CTX-derived
and TES-derived albedos, which is on average 8% (Figure 2a). However, this leads to an
ATI difference of only 1.5% (Figure 2b).

The CTX images are pre-processed using the PILOT software (http://pilot.wr.usgs.
gov/, accessed on 14 September 2021). PILOT follows the ISIS [34] procedures: spiceinit
(updates camera pointing information), ctxcal (applies radiometric calibration), ctxevenodd
(removes even-odd detector striping), and cam2map (projects from camera space to map
space). The output represents the ratio of reflected radiation (IR) to solar flux (F). Albedo is
the ratio of reflected radiation (IR) to incident radiation (II):

A =
IR
II

(4)

To obtain II, the cosine of the solar incident angle (cosiCTX) is multiplied by the solar
flux [33]:

II = F· cos(iCTX) (5)

where Equation (5) develops to:

A = IR/(F· cos(iCTX)) (6)

Equation (6) enables calculating A on a flat surface. For calculation on an inclined
surface, the following correction of iCTX against topography characteristics (slope angle,
aspect) is required:

i = arccos (L) if t < 12
or i = arccos (M) if t > 12

(7)

where i is iCTX corrected against topography characteristics and t is solar time expressed in
hours. Terms, L and M, are derived from Supplementary File S2 (Part A) and explained
in Equation (9). These terms allow to calculate incidence angle on an inclined surface
accounting not only for solar geometry but also slope inclination and orientation.

The main sources of error in this conversion lie in the incidence angle, which reflects
slope uncertainty, which itself depends on DTM precision. To avoid large errors, pixels

http://pilot.wr.usgs.gov/
http://pilot.wr.usgs.gov/
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with i > 79◦ (6.2% of the study area) are excluded from calculations because for i > 79◦, 1◦

error propagates to ATI error >10%.
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Figure 1. Mosaic of MRO/CTX images (P01_001351_1717_XI_08S084W, 
P01_001417_1718_XI_08S085W) used to evaluate CTX capability at determining albedo. Grid line 
spacing is 8 pixels per degree (ppd), similar to the TES albedo map available at 
https://www.mars.asu.edu/data/tes_albedo/ (accessed on 14 September 2021). Average CTX and 

Figure 1. Mosaic of MRO/CTX images (P01_001351_1717_XI_08S084W, P01_001417_1718_XI_08S085W)
used to evaluate CTX capability at determining albedo. Grid line spacing is 8 pixels per degree
(ppd), similar to the TES albedo map available at https://www.mars.asu.edu/data/tes_albedo/
(accessed on 14 September 2021). Average CTX and TES albedo are calculated for the TES pixels that
are entirely located within the area covered by the CTX images.

https://www.mars.asu.edu/data/tes_albedo/
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(a), which implies CTX-calculated ATI would be 1.5% than TES-based ATI (b). 
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Figure 2. (a) CTX vs. TES albedo for the 8 ppd grid pixels displayed in Figure 1; (b) comparison between 1-A (which is
directly proportional to ATI, Equation (3)) for the CTX and TES data. CTX albedo is on average 8% higher than TES albedo
(a), which implies CTX-calculated ATI would be 1.5% than TES-based ATI (b).

2.2. Surface Temperature

THEMIS thermal images (100 m/pixel) are used to calculate ∆T in Equation (3), one
daytime and one nighttime. Brightness temperature is calculated using the THMPROC
program (http://thmproc.mars.asu.edu, accessed on 14 September 2021). It is computed
from the calibrated spectral radiance for band 9 (centred at 12.57 µm) assuming surface
emissivity ε = 1.0 and atmospheric opacity 0.0. Band 9 brightness temperature may be
used to approximate surface kinetic temperature because this band has the highest signal-
to-noise ratio and is more transparent to atmospheric dust than the other bands. ε = 1.0
is a good approximate for Mars, where [2] found it to vary between 1.0 to 0.96 at band 9.
Moreover, since the calculations are based on relative temperature differences, emissivity
correction is not necessary.

The minimum and maximum local brightness temperatures are determined using the
MARSTHERM model (https://marstherm.boulder.swri.edu/, accessed on 14 September
2021) (see Section 3.2 for more details).

The change of incident radiation (II) in time, considered in ∆T correction, is a function
of Mars’ axial tilt, orbital eccentricity, perihelion longitude, solar longitude, latitude, local
solar time, slope inclination, and slope aspect. These parameters are linked in a complex
way but can be summarised by: ∫ td

4
II =

∫ 12

4
II +

∫ td

12
II (8)

with terms
∫ 12

4 II and
∫ td

12 II derived from Supplementary File S2 (Part B) and explained in
Equation (8). These terms allow calculating cumulative incidence radiation on an inclined
surface accounting not only for solar geometry but also slope inclination and orientation.
The ∆T correction itself is applied with an equation:

∆Tc = ∆T
II (h)

II (i)
(9)

where ∆Tc is the corrected temperature difference, ∆T the uncorrected temperature differ-
ence, II (h) the final total incident radiation for a given pixel, and II (i) the average final
total incident radiation for the flat areas. ∆T, and consequently ATI, on the flat areas should

http://thmproc.mars.asu.edu
https://marstherm.boulder.swri.edu/
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remain unchanged after this correction. To avoid large errors in calculating ∆T, the cells
with pixels of i > 79◦ (1.4 % of the study area) are excluded from the calculations (see
Section 2.6 for more details).

2.3. Solar Longitude

Although differences caused by differences in Ls are considered in Equation (8),
THEMIS daytime images are advised to be taken during the same season, and as close in
time as possible to minimise potential errors related to seasonal differences in dust opacity
(Section 2.6). It is assumed in Equation (8) that Ls for nighttime images is the same. To
select an optimal daytime and nighttime image pair, several factors need additionally to be
considered, including orientation, slope, missing lines, instrument noise, and atmospheric
dust opacity.

2.4. Dust Opacity

Dust in the Martian atmosphere absorbs part of the thermal radiation, which affects the
input parameters used in the computation of ATI, as demonstrated by [10], who provided
a graphical relationship (their Figure 13) of ATIc (dust-corrected ATI in J m−2 K−1 s −1/2)
as a function of ATI (apparent thermal inertia before atmospheric correction) and τ (visible
dust opacity, 0 < τ < 1). Although they have not provided a numerical function, based on
their graphical representation, we developed an equation to quantify the impact of dust
opacity on the computed ATI values:

ATIC = (0.913− 0.244·τ)·ATI − 14 + 79·τ (10)

The equation is calibrated on a grid of 18 points read from the Haberle and Jakosky
figure (see Supplementary File S3). The 18 points were selected from where all the values,
i.e., for ATIc, ATI, and τ, are clearly indicated in the figure. The equation is adjusted
so to yield the minimum sum of squared differences between the given and predicted
values of ATIc. The given and predicted ATIc are consistent with each other within
5 J m−2 K−1 s −1/2, whereas the average inaccuracy is 1.6. The equation is valid for ATIc
from 40 to 450, ATI from 50 to 500, and τ from 0.01 to 1, and is sufficient in this direct
form to perform entire atmospheric correction in GIS software. For τ, either the mean
value for Mars or the Climatologies of the Martian Atmospheric Dust Optical Depth
database (http://www-mars.lmd.jussieu.fr/mars/access.html, accessed on 14 September
2021; [35–37]) can be used. Note that the equation is not valid for τ > 1, which disables
using it in the middle part of the annual dust storm season.

2.5. Topography

Slope inclination and aspect are extracted from the Mars Express High-Resolution
Stereo Camera (HRSC) digital terrain model (DTM), with a spatial resolution of 50 m/px
and vertical resolution of 10 m [38], following the method explained by [39]. The ATIc
method requires the use of DTM for slopes and aspect calculations, however, any DTM
with spatial resolution preferably not lower than the resolution of the satellite data can
be used.

2.6. Errors and Total Uncertainty

The uncertainty in the ATI calculation arises from errors on the THEMIS nighttime
and daytime temperatures, dust opacity, and two surface properties: albedo and slope
inclination. The errors in the daytime and nighttime THEMIS temperatures may be up
to 3 K each [2]. Assuming daily temperature amplitude is 90 K and albedo is 0.2, 3 K
error implies a 3.3% relative error on thermal inertia due to the error of the nighttime
temperature and 3.3% due to the error of the daytime temperature, which together makes
a maximum possible error of 6.6%.

Dust opacity error results from the inaccuracy of Equation (10), which is 1.6 J m−2 K−1 s−1/2

making up 0.5% of the average ATI, (320 J m−2 K−1 s−1/2), and standard deviation (SD)

http://www-mars.lmd.jussieu.fr/mars/access.html
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due to seasonal variation of dust opacity in the high-dust season, which is 0.1. Based on
Equation (10), we estimate that a dust opacity error of 0.1 generates a relative error of
5.6–7.6% on apparent thermal inertia. We obtain these numbers by comparing average
ATIC values corrected for dust opacities of 0.22 (average), 0.32 (average + 1 SD) and
0.12 (average—1SD), which are, respectively, 184.3, 198.3, and 170.3 tiu for an ATI of
251 tiu, as well as 320.9, 338.8, and 303.0 for an ATI of 410 tiu. Considering the two errors
of 0.5% and 5.6–7.6%, the total uncertainty related to dust opacity is 5.6–7.6% applying the
rule of error propagation for error addition.

As mentioned in Section 2.1, the uncertainty of the albedo calculation is 8% and has an
effect on ATI of 1.5%. The error in the computation of slope inclination on HRSC DTM is
~4◦ [40], which can generate up to 35% of error on ATI values where the incidence angle is
very high (79◦). This is calculated by comparing ATI for 79◦, to the average ATI for 75◦ and
83◦ provided all other parameters are fixed at most typical values. In the most common
case where the incidence angle is in the range 0◦–50◦, ATI error is, however, within 10%.

Taking temperature, dust opacity, slope inclination and albedo into account, the total
uncertainty on ATIc is estimated to be within 12% in most cases; however, it can be 36%
when the incidence angle is 79◦.

3. Application

The method was tested in Valles Marineris (Figure 3). Most slopes are below 30◦. Due
to DTM resolution, steep cliffs are commonly reduced to lower slopes by averaging with
neighboring slopes. The value of the steepest slope measured on the HRSC DTM is 57◦.
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Figure 3. Elevation map of the Valles Marineris region derived from the MEX HRSC Blended DEM Global 200m_v2 (A) with
the location of the testing area on the MOLA shaded relief basemap adapted from [41] (B).

We evaluated our approach (Section 4.2) by comparing the ATIc values of three flat
areas uniformly covered by a dune field with thermal inertia values from [2] and modelled
values for dunes on Mars proposed by [42] and refined by [43].

3.1. Albedo

Albedo is calculated from the two mosaicked CTX images (Figure 4a). Topography-
corrected albedo is calculated using Equation (7) and is in the range 0.05–0.55 (Figure 4b).
HRSC DTM (Figure 4d) and slope (Figure 4e) maps show the topography and slopes
distribution of the study area. Albedo arithmetic mean is 0.15. Four albedo classes are
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determined using unsupervised classification (Figure 4c, Table 1). Bell et al. (2008, their
Table 2) linked albedo values with grain sizes. According to their classification, class 1
(0.17) mostly overlaps with fine representing dunes, class 2 with coarser sand or rocks
(0.14), class 3 with dominant rock exposures—volcanic rocks and boulders (0.11), and class
4 with terrains dominated by sand and dust-sized particles (0.25) [44].
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Figure 4. (a) CTX visible light image mosaic of the test area (P01_001417_1718_XI_08S085W: t = 15.56 h, Ls = 135.5◦, and
P01_001351_1717_XI_08S084W: t = 15.55 h, Ls = 133.0◦); (b) albedo map derived from CTX data, showing the albedo values
corrected against topographic slope and aspect; (c) classes generated by unsupervised classification using the isodata
algorithm [45] in IDRISI Selva [46]; the white zones in (b,c), which cover 6.2% of the image, are excluded from calculations
due to incidence angle >79◦ or full shade; (d) Mars Express High-Resolution Stereo Camera (HRSC) digital terrain model
(DTM) of the study area (in meters above sea level); (e) slope inclination map (in degrees) of the study area. Average albedo
for each class is listed in Table 1. Coordinates of the top-left corner of the displayed area: 85◦15′58.267”W, 7◦8′57.982”S.

Table 1. Average albedo values of the classes generated by unsupervised classification (Figure 4c)
performed in IDRISI Selva [46] using the isodata algorithm [45] along with corresponding temperature
differences (∆T) (see also Figure 5).

Isodata Class Average Albedo Average ∆T

1 0.17 94.2
2 0.14 91.5
3 0.11 87.4
4 0.25 91.2

Table 2. Selected characteristics of the THEMIS day and nighttime images used in the high-resolution
apparent thermal inertia map calculation.

THEMIS Image ID Local Solar Time (t) Solar Longitude (Ls) Mars Year

Day
I17277013 16.16 319.1 27
I07967021 16.73 271.2 26

Night
I16872020 4.34 299.6 27
I08186009 4.57 282.5 26
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28.4–82.0 K (c), 32.8–105.7 K (d), and 46.2–155.4 K (e). The white zones in (d,e) are excluded from calculations due to
incidence angle > 79◦ or full shade.

3.2. Surface Temperature

For remote observation of thermal inertia, measurements of day and night surface
temperatures are required [27]. The maximum ∆T of any material is inversely proportional
to thermal inertia. To calculate the thermal inertia of any material we have to know the
maximum ∆T describing it. As Price [27] states, smaller values of thermal inertia P lead to
greater day–night temperature contrast. Similarly, the effect of a smaller variation of flux
to the atmosphere resulting from a given change of surface temperature (smaller) yields
a larger day–night surface temperature contrast. Interpretation of the remotely sensed
thermal inertia thus requires a proper portion of energy.

The study area is covered by a mosaic of two THEMIS daytime/nighttime image pairs
(Figure 5a,b) from which diurnal temperature difference ∆T is calculated (Table 2). ∆T
is the maximum surface temperature variation, usually calculated on a daily basis [47].
The THEMIS images are taken at full resolution (minimum and maximum “summing”
parameters set to 1), and their image rating value (a subjective image quality assessment
in the range 1–7) is 4 and 7, respectively. Due to discrete temperature measurements,
the daily maximum temperature (and consequently daily temperature amplitude) needs
to be estimated from submaximal temperature. Based on the MARSTHERM model, the
maximum surface temperature falls typically at ~13:00, but all the daytime THEMIS images
covering the study area in Valles Marineris are taken between 14:25 and 19:18. The selected
set of images is therefore a trade-off between image rating, which needs to be as high as
possible, and acquisition time, which needs to be as early as possible.

Equation (8) accounts for ∆T correction—derived from Supplementary File S2 (Part B)
and explained in Equation (8). td in the equation stands for the time of the daytime image
acquisition. The equation allows calculating the cumulative incidence radiation on an
inclined surface for a given time interval (∆T) accounting not only for solar geometry but
also for slope inclination and orientation. Next, as the selected daytime THEMIS images
used in our approach were taken at ~16:00 (Table 2), which deviates from the maximum
temperature at 13:00 (Figure 6), we are counting a ratio of (T16:xx−Tmin)/(Tmax − T4:00)
and divided our ∆T by the calculated ratio.

For nighttime THEMIS images, we assume (in Equation (8)) that the Sun rises at 04:00,
which is associated with a small error. For instance, sunrise at 05:00 LST or 07:00 would
generate a temperature error of ~1 K or ~3 K, respectively. After topography correction,
biased ∆T values for slopes are modified, whereas the ∆T values for flat areas remain
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unchanged. The real surface is mathematically transformed to a virtual flat surface in
which ATIc does not depend on the topography (Figure 5c,d).
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Figure 6. Seasonal variability of surface temperature during a martian year at 8◦ S at 00:00 LST, 06:00 LST, 12:00 LST and
18:00 LST using MARSTHERM. TauD is dust opacity, Agnd is ground albedo, I is thermal inertia, P is surface pressure,
Lat is latitude, IceT is the semi-infinite amount of CO2 ice with respect to albedo and emissivity in the MARSTHERM
physical modelling scheme, NT is ground time step per day, with 10 min steps, NFQ is the number of ground time steps per
atmospheric time step, SLANG is surface slope inclination, SLAZI is surface slope aspect.

All the images represent the same season of the year—Southern Summer (270◦ to
360◦/0◦). The difference between the average Ls of the nighttime images and the average
Ls of the daytime THEMIS images in the study area equals 4◦ (Table 2). According to
Figure 6, the surface temperature at the same location will change with Ls. The seasonal
variability of surface temperature curves in Figure 6 is derived for the 8◦ S latitude (location
of the study area). This can cause an error of up to ~2 K between the assumed and true
nighttime temperature, as it varies seasonally (see the 6:00 curve in Figure 6). For two
daytime images with Ls = 319.1◦ and 271.2◦, the temperature change in the study area is
close to 5 K (4.65 K) at 18:00 (Figure 6). The temperature change is probably even lower
(close to 4 K) as the images were taken earlier, at 16:16 and 16:73.

Dust opacity is estimated to be 0.22 in the study area (value for the pixel covering
our study area). This number is extracted from the averaged maps of column dust optical
depth (CDOD) at 9.3 µm normalised to the reference pressure of 610 Pa for MY (Mars
years) 24, 25, and 26, using the gridded CDOD values from [35] with a spatial resolution of
6◦ × 3◦ (longitude x latitude) during the high dust loading season (Ls < 10◦ and Ls > 140◦).
Observations are from the TES and THEMIS images. We have also filtered the data from [35]
by keeping only grid points for which the recorded time window TW = 1 sol, and the grid
point reliability cdodrel >5 [35].
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3.3. Apparent Thermal Inertia

Figure 7 shows the ATIc map (Figure 7a), and how it compares with [2] thermal inertia
map (Figure 7b), hereafter called TI map. The difference between the ATIc and TI maps is
in general small (Figure 7).
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physical parameters from image-related parameters. In contrast, such a boundary is visi-
ble in the TI map. The differences in thermal inertia values between the two stamps exceed 
the limits of the thermal inertia measurements errors (Figure 7b, black line; see Section 
2.6). 

To correct ΔT against topography, the following steps need to be carried out (de-
scribed in detail in Supplementary File 1 point IV–VI): (1) slopes and aspects calculation 
from DTM (in degrees), using, for example, HRSC/MEx (High-Resolution Stereo Camera 
onboard Mars Express orbiter); (2) calculation of the equation for cos(i) presented in Equa-
tion (7) in Supplementary File 2 (adapted to GIS in Supplementary File 1) by copy and 
paste to any Raster/Grid calculator tool in the selected GIS software; (3) finding the 
summed up value for the flat areas (F) typically represented by the mode; (4) application 
of the following Equation (11): ∆ ܶ = ∆ܶ ൈ ܨܨ  (11)

Figure 7. (a) ATIc map (J m−2 K−1s−1/2); (b) thermal inertia (TI) map based on the thermal inertia
mosaic of [2] released in 2014 (J m−2 K−1s−1/2). The thermal inertia scale in (a,b) has been unified
for easier comparison; the true ranges are 157–729 for (a) and 88–736 for (b). The white zones in (a,b)
are excluded from calculations due to incidence angle > 79◦ or full shade, which reduces the energy
input on the slope. The thick black lines in (a,b) indicate boundaries between individual THEMIS
images. The red-hatched zones in (a) receive high amount of reflected radiation (IR) (see Section 5.2
Model Limitations). Areas 1–5 are discussed in Section 4.1.

4. Analysis of Results
4.1. Overview

The boundary between THEMIS images outlines (“stamps”) is almost invisible after
topographic image correction (Figure 7a, black line) and the two stamps represent the same
range of values. It is a measure of the efficiency of the method in extracting thermophysical
parameters from image-related parameters. In contrast, such a boundary is visible in the TI
map. The differences in thermal inertia values between the two stamps exceed the limits of
the thermal inertia measurements errors (Figure 7b, black line; see Section 2.6).

To correct ∆T against topography, the following steps need to be carried out (described
in detail in Supplementary File S1 point IV–VI): (1) slopes and aspects calculation from DTM
(in degrees), using, for example, HRSC/MEx (High-Resolution Stereo Camera onboard
Mars Express orbiter); (2) calculation of the equation for cos(i) presented in Equation (7) in
Supplementary File S2 (adapted to GIS in Supplementary File S1) by copy and paste to any
Raster/Grid calculator tool in the selected GIS software; (3) finding the summed up value
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for the flat areas (F) typically represented by the mode; (4) application of the following
Equation (11):

∆TC =
∆T × F

F0
(11)

where ∆Tc is corrected ∆T, F is the sum of all intervals (described in point V.2 in Supple-
mentary File S1) and F0 is the F value for flat areas.

In addition, Figure 7 shows that the thermal inertia values using ATIc and TI in the
study area are comparable in range (100–750), however, some significant differences exist.
Moreover, the TI map has more colour gradations than the ATIc map due to topography
artefacts and not due to the actual lithological as can be observed in several detailed
examples (see Section 4.2).

The high thermal inertia located on the TI map (Figure 7—area 1) is the major differ-
ence. High thermal inertia is expected to correspond to abundant rocky outcrops. Geologic
investigation of this area based on the available CTX and HiRISE images shows that this is
not the case, and this high thermal inertia area is probably an artefact due to the absence of
considering slopes on the TI map.

The top of Sinai Planum has dominantly low ATIc (<350, area 2), with convoluted
patterns showing an ATIc of 350–370 related to eroded outcrops of layered deposits. These
are known from other places in plateau areas around Valles Marineris [48] and are likely
made of volcanic ash [2].

The lowest values (~250, area 3), are dominantly in the channel beds of Louros Valles
and gullies of the Ius Chasma spur-and-gully slopes (e.g., [49]), and seem to correspond
to dunes.

Most of the Louros Valles and Ius Chasma slopes (area 4) have ATIc values up to ~400,
but locally even >700. The <400 values may correspond to debris flows or other flow types
showing detrital accumulation of rocky material transported by gravity processes.

Significant differences between TI and ATI are observed in area 5. Here, ridge crests
representing hard rocks exposures are more clearly visible on the ATIc with values ranging
from 400–750 in contrast to lower values on the TI map. Geomorphological, e.g., [50], and
petrological studies, e.g., [51], indicate these are volcanic outcrops, which is consistent
with their relatively high values. Although these values are still 3−5 times lower than the
thermal inertia values of fresh basalt [52], this is probably caused by weathering and partial
regolithization of original basalts. Similar olivine-rich weathered basalt in easternmost
Valles Marineris have also been found to have thermal inertia of 400–600 [20] (e.g., Area 5).

4.2. Method Validation

Comparing results for dune fields within ATIc and TI maps is a useful approach
due to the existence of detailed studies on the role of grain size on thermal inertia under
Martian pressure conditions [42,43,53]. Grain size is estimated based on terrestrial data
by [43]—Table 3. Dune fields frequently occupy flat surfaces on Mars. ATIc for sands and
other grain types are presented in Table 3 and calculated using Equation (1). Thermal
conductivity (k) depends on pressure and grain size, and for a pressure of 613 Pa is:

K = 0.00375d0.467 (12)

where d is grain size diameter in µm [43].
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Table 3. Apparent thermal inertia of grains on Mars as a function of grain size. Grain classification
and grain size ranges are from [54].

Grain Classification Grain Size Range (µm) ATIc Range (J m−2 K−1s−1/2)

Clay (clay) 0–3.9 13.8–99.6
Silt (silt) 3.9–62.5 99.6–190.4

Very fine sand (vfs) 62.5–125 190.4–223.9
Fine sand (fs) 125–250 224–263

Medium sand (ms) 250–500 263–310
Coarse sand (cs) 500–1000 310–364

Very coarse sand (vcs) 1000–2000 364–428
Granules (g) 2000–4000 428–503
Pebbles (p) 4000–64,000 503–961

For three flat areas uniformly covered by a dune field (Figure 8), ATIc is very similar
and they agree with the modelled values for dunes on Mars proposed by [42] and refined
by [43]. The average ATIc, and TI of the three dune fields overlap with the average ATIc
of 320, and 282 for TI (Figure 9). The average thermal inertia for the three dune fields is
235, 291, and 314 (TI) and 310, 319, and 334 (ATIc) respectively. For each of these maps,
the largest discrepancies (235 vs. 291/314—TI; 310/319 vs. 334—ATIc) are found when
measured on different THEMIS image pairs (image boundaries are reported in Figure 7a,b).
The theoretical minimum in Figure 9 is calculated considering the empirical relationship
between thermal conductivity and grain size derived by [43], assuming a specific heat of
850 J·kg−1·K−1 and a bulk density of 1650.0 kg·m−3, as proposed by [52].
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slope deposits) on the ATIc-CTX boundary seems to be <20.  

However, within the same image, both methods seem to be relatively well distin-
guished between various geological terrains. For example, volcanic ashes show systemat-
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ues than coarse-grained slope deposits (Profile A in Figure 11 and Profile B in Figure 12). 
Yet, there are also exceptions especially for fine-scale features such as two in Profile D 
(Figure 12), where the TI method seems to be insensitive for hard-rock exposures well 
visible on the CTX and ATIc images. On Profile C in Figure 12, the TI profile shows an 
excellent sensitivity for little dune field in the valley but values for coarse-grained slope 
deposits on steep slopes seem to be exaggerated. This may be related to method deficiency 
on the slopes >10° mentioned by Fergason et al. [2]. The ATIc profile D seems to yield more 
consistent results for these coarse-grained slope deposits, less affected by non-geological 
factors such as slope inclination and orientation.  

Figure 9. Thermal inertia for dunes according to ATIc calculation and other methods. Whiskers
represent the total range of values for the dune fields in Figure 8, and the blue boxes span from
the arithmetic mean to ±1 standard deviation. The value of the red line (251) is calculated from
the theoretical minimum dune sand grain size of 215 µm in Martian conditions [42] and empirical
relationship between thermal conductivity and grain size derived by [43] assuming a specific heat
of 850 J·kg−1/K−1 and a bulk density of 1650.0 kg·m−3 [52]. Similarly, the modelled TI values are
derived assuming typical 470–600 µm grain size provided by [42].

Both the ATIc and TI maps indicate a globally sandy surface and shows a multimodal
distribution, with two modes on the ATIc map, and three modes on the TI map (Figure 10).
The two modes observed on the ATIc and TI maps represent fine (~250) and coarse (~350)
sand. The “finest fraction” mode on the TI map (~185) is an artefact resulting from the
THEMIS mosaic boundary, and in fact, represents the area to the left of the black line shown
in Figure 7b. Apart from these differences, ATIc and TI seem to give similar results on flat,
sandy areas.
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This is particularly well visible on the regional profile A (Figure 7) presented in
Figure 11. Here, dune fields show mostly the same value of ~310 but the range of TI values
within the profile is broader (~90) than for ATIc (~50) even within the same CTX image. This
may result from some artificial linear boundaries perpendicular to the profile such as the
one around 15 km of the profile visible on the TI image. Even more pronounced differences
are visible between the CTX images (green boundary for TI and orange boundary for ATIc
on Figure 11). On the TI-CTX boundary, there is a jump of >100 tiu within the consolidated
sediments of the smooth plateau. A similar jump (within the coarse-grained slope deposits)
on the ATIc-CTX boundary seems to be <20.
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Figure 11. Regional profile across a flat part of the study area. Thermal inertia (TI) results of Fergason et al. [2] are compared
to our ATI results and geomorphological interpretation of the surface. Note the CTX image boundaries in both methods and
their effects on the obtained results.

However, within the same image, both methods seem to be relatively well distin-
guished between various geological terrains. For example, volcanic ashes show system-
atically higher values than dune fields, and hard-rock exposures systematically higher
values than coarse-grained slope deposits (Profile A in Figure 11 and Profile B in Figure 12).
Yet, there are also exceptions especially for fine-scale features such as two in Profile D
(Figure 12), where the TI method seems to be insensitive for hard-rock exposures well
visible on the CTX and ATIc images. On Profile C in Figure 12, the TI profile shows an
excellent sensitivity for little dune field in the valley but values for coarse-grained slope
deposits on steep slopes seem to be exaggerated. This may be related to method deficiency
on the slopes >10◦ mentioned by Fergason et al. [2]. The ATIc profile D seems to yield more
consistent results for these coarse-grained slope deposits, less affected by non-geological
factors such as slope inclination and orientation.
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5. Discussion
5.1. Model Strengths and Applicability

A new method for high-resolution apparent thermal inertia mapping on Mars is
presented. Our method is based on the algorithm using a set of publicly available data that
is temperature, albedo, solar geometry, visible dust opacity, and a digital elevation model.
This approach could hopefully serve a broader community of researchers interested in the
thermal properties of rocks on Mars. We took into account local topography characteristics
(slope inclination and aspect) for different insolation rates on inclined surfaces, which
heavily affects albedo and temperature. As our approach has been tested in a challenging
area of Valles Marineris, we think that thermal mapping using THEMIS is possible in
any area of Mars, independently of its local topography. The use of the ATIc method for
fine-scale geologic studies may be advantageous.

Specifically, we have tested our method in the following aspects: (1) layered de-
posits/volcanic ash: Figure 7—area 2; (2) Martian sands/dunes occurrence (including
grain size distinction)—area 3; (3) gravity slopes—area 4; (4) rocky outcrops (e.g., ridge
crest)— area 5. ATIc values remain the same in opposite slopes where they expose the
same rock (the effect of the time of the day was removed). On the other hand, for flat areas
(dunes fields, layered deposits), ATIc and TI values remain similar, which sup-ports the
validity of our method on flat areas.

The applicability of ATIc to geological studies is thus broad. Firstly, ATIc may help to
distinguish magmatic volcanic cones from mud volcanoes [55] and can be even applied
to distinguish between effusive and explosive magmatic volcanism by identification of
pyroclastic deposits in volcanic areas. According to Brož et al. [56], Martian explosive
volcanoes such as scoria cones are expected on Mars as on Earth, they commonly occur on
the terrestrial basaltic volcanoes and associated volcanic plains. These are small edifices
difficult to recognise. Hauber et al. [57] pointed out that grain size analysis can be helpful
in their identifications as they consist of relatively fine tephra particles or some other
fragmented material. Although based on numerical modelling of [58,59], the ejected
particles forming Martian scoria cones should be ~20 times finer than is typical on Earth,
this is still corresponding to a mean particle size of ~2 mm on Mars, so significantly more
than typical Aeolian deposits such as dunes.

Secondly, ATIc may be useful to determine grain size variation related to changes in
depositional environments (e.g., in the Murray Formation in the Gale Crater [60]) as well
as grain size data for eolian ripples and dunes estimations of wind and climatic conditions
on Mars [61].

Thirdly, Di Pietro et al. [62] made a detailed thermal inertia map using differential
apparent thermal inertia technique on a selected portion of the studied area (thumbprint
terrains in Acidalia Planitia) to give information on the particle sizes and more generally,
thermophysical properties of the soil. After analysing all the datasets (differential apparent
thermal inertia technique, Context Camera, High-Resolution Imaging Science Experiment
images, and topographic profiles based on Mars Orbiter Laser Al-timeter) they supported
the tsunami-driven mud-volcanoes hypothesis in the study area.

5.2. Model Limitations

Although the algorithm presented here works well in most configurations of orienta-
tion and slope, three limitations are identified. The first is related to the very steep slopes
in the shade at the time the CTX image is taken, or before the THEMIS IR day image is
taken (white zones on Figure 7a). The incidence angle on these slopes is so high that it
generates large errors in the ATIc calculation.

The second limitation is met in areas where the horizon reduces the total energy
input due to shading. Shading may especially occur at mid-slope in impact crater rims
or other concave slopes. We filtered out all the instances where shading happens (<0.1%
of the studied area) using the Analytical Hillshading tool in SAGA GIS, as explained in
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the tutorial in Supplementary File S1, to ensure that we avoid erroneous ATI values in
these areas.

The third limitation is related to the area of a high amount of reflected radiation (IR).
Our approach does not account for the radiation potentially reflected from the neighbouring
surface. Assuming an infinite flat surface in front of an inclined surface of slope angle s,
following [63–65], the ratio (R) of this radiation, with respect to the total incident radiation
(F), can be calculated as:

R = 0.5A (1 − cos(s)) (13)

In the case of a valley, the radiation reflected on this inclined surface by the opposite
slope, of angle s*, Equation (13) becomes [66]:

R = 0.5A (1 − cos(s + s*)) (14)

To calculate this percentage (Figure 13) more accurately, we need to consider that
the two facing slopes receive uneven amounts of primary radiation due to their different
orientation relative to the sun, and the slope that receives the least primary radiation
receives the most reflected radiation from the other slope. In order to account for this effect,
Equation (14) should be modified to:

R =
F(s∗)A(1− cos(s + s∗))

2F(s)
(15)

where F(s) is the total radiation for the observed slope, and F(s*) is the total radiation for the
opposite slope. Equation (15) implies that although the proportion of reflected radiation
with respect to the total radiation is typically 1–5%, it could be infinitely higher if F(s)
approaches zero.
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Figure 13. Percentage (R) of the reflected radiation (IR) with respect to the total radiation calculated
with Equation (14) as a function of the observed slope (s), opposite slope (s*), and albedo (A). The
blue field indicates the expected error range (1.2 to 5.3%, dashed lines) for the valleys in the study
area, where typical slopes are 20–30◦ and albedo is 0.10–0.21.
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This is the case for the west-facing valley slopes in the early morning, and the east-
facing valley slopes in the late afternoon. This transitory behavior yields little impact on
temperature correction due to the integration over a broader time interval (Equation (7)).
For the albedo correction, though, the effect may become significant in special cases. In the
case studied in Section 4, where the CTX images were taken in the afternoon, east-facing
slopes receive relatively higher amounts of reflected radiation (IR). Consequently, the total
radiation (F) is overestimated; for example, by up to 60% for NE-SW oriented valleys with
30◦-steep slopes in Figure 7a, assuming a typical albedo of 0.21. The calculated albedo
would then be 37.5% too low, and the calculated ATIc, 10% too high. This is likely the
reason why anomalously high ATIc values are sometimes obtained for the east-facing
slopes (the red-hatched zones in Figure 7a) compared to the west-facing slopes, in ~1%
of the studied area. For most slopes with inclinations of 10–30◦ in this area, this effect is
almost negligible (<5%), and the slopes 10–30◦ steep are still beyond the threshold of 10◦

reported in the validation of [2] model. This issue is expected to be infrequent outside the
Valles Marineris area because it requires a very narrow valley with steep to medium slopes.

The fourth limitation is also related to sloped surfaces, which irradiate toward a solid
angle <2π sr. This limitation is also important, particularly inside valleys and canyons. The
effect of this is that sloped surfaces remain warmer longer than similar but flat surfaces,
which may affect both night (dawn) and day (afternoon) temperature and thus also ATI as
this has not been accounted for in our correction.

6. Conclusions

The TI approach used so far on Mars is adapted to the observation scale where slopes
can be neglected. In contrast, the proposed ATIc technique, while being consistent with TI
at such scales, makes it possible to go into processes that are slope-dependent, generally
smaller-scale. Importantly, the presented method is based on the algorithm using a set
of publicly available data comprising temperature, albedo, solar geometry, visible dust
opacity, and a digital elevation model.

The proposed technique should be especially useful for geomorphologists, but hope-
fully also for geologists working on rock composition, mechanical properties, and, more
generally, geological processes on steep slopes. ATIc has a wide range of applications
discussed in Section 5, especially in combination with other datasets. These include,
for example, (1) providing an origin for thumbprint terrains and constrains for the ge-
ological evolution of Acidalia Planitia; (2) grain size analysis in the Martian explosive
volcanoes identifications consisting of fine tephra particles or some other fragmented
material; (3) grain size variations to track changes in depositional environments; (4) distin-
guishing volcano cones from mud volcanoes; (5) identification of layered deposits, volcanic
ash, sands and dunes, gravity slopes and rocky outcrops.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13183692/s1, Supplementary File S1, Supplementary File S2, Supplementary File S3.
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