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Abstract: Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models
highly contributing to fire ignition and propagation. Developing models capable of accurately
estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk
assessment. In this paper, an empirical model based on multivariate linear regression was constructed
for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern
Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used
to obtain a spatial representation of this type of forest cover in that area. A prediction model was
created by combining spectral indices and meteorological variables. This study demonstrates that the
Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological
variables (mean surface temperature and mean wind speed) are a promising combination to derive
cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all
sites improved after using an additive site-specific index based on satellite information, reaching a
R2

adj = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by
the canopy cover fraction of each species of all shrub species present in each sampling plot.

Keywords: live fuel moisture content; Sentinel-2; shrublands; NDMI; meteorological variables;
satellite imagery; wildfire

1. Introduction

Wildfires are key natural processes shaping ecosystems dynamics. Fire consequences
are reduction of soil fertility and damage to forests, land resources, and human assets, but
it can also be beneficial, being the source of forest regeneration and nutrient recycling [1].
Some studies suggest that current fire regimes may cause disasters in the sense of inducing
abrupt community changes or important soil losses [2], although regions subject to regular
fires may have high levels of species richness, and fire may be proposed as a major driver
to explaining plant diversity at both community and global scales [3]. However, due
to climate and land use change, intense wildfires are becoming more common with an
increasing concern of regional and national governments [4–6]. Furthermore, wildfires
entail ecological and socioeconomic costs, leading fire agencies to invest in developing
monitoring tools. Wildfire danger and burnt areas are expected to increase over the century
in southern Europe owing to climate warming [7].

Remote Sens. 2021, 13, 3726. https://doi.org/10.3390/rs13183726 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8460-6111
https://orcid.org/0000-0003-0039-2641
https://orcid.org/0000-0003-0073-7259
https://orcid.org/0000-0003-0471-9795
https://doi.org/10.3390/rs13183726
https://doi.org/10.3390/rs13183726
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13183726
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13183726?type=check_update&version=2


Remote Sens. 2021, 13, 3726 2 of 26

Variables affecting wildfire behavior are based on fuel, topography, and weather
conditions (wind speed, ambient air temperature, relative humidity), fuel variables being
those that describe fuel moisture content and forest structure, such as bulk density and
canopy base height. Thus, mathematical models to predict wildland fire behavior on an
operational basis take into account spatio-temporal variations of wind speed, fuel moisture,
fuel type, and slope [8]. Fuel moisture content (FMC) is a measure of the amount of
water in a fuel (vegetation) available to a fire, and it has long been recognized as a major
component of fire danger [9]. Sharma et al. [10] quantified the relationships between soil
moisture and FMC of mixed live and dead grassland during the growing season in the
USA. The FMC of mixed vegetation is categorized as live and dead fuel moisture content.
Live fuel moisture content (LFMC) is an essential parameter for operational wildfire risk
assessment [11] and forest fire simulations, since it affects vegetation flammability and
fire rate of spread [12]. Field based estimations of LFMC are labor and time intensive as
well as costly, and they cover small areas. Martin-StPaul et al. [13] described protocols for
data collection and confidence interval estimators of LFMC on six different Mediterranean
shrub species of 20 sites in Southern France. Yebra et al. [14] presented a global LFMC
database for exploring LFMC trends in response to environmental change and LFMC
influence on wildfire occurrence, wildfire behavior, and overall vegetation health. Gabriel
et al. [15] presented a structured database covering 21 years of LFMC measurements in the
Catalan region (Spain). Satellite data-based methods cover large areas; this is why remotely
sensed images have been used in numerous studies to obtain LFMC estimations. Yebra
et al. [16] reviewed the use of remotely sensed data for estimating LFMC with particular
concern towards the operational use of LFMC products for fire risk assessment. Luo
et al. [17] showed that LFMC dynamics retrieved from the Moderate Resolution Imaging
Spectrometer (MODIS) reflectance product remarkably affect both grassland and forest
wildfire occurrence over southwest China. The lower the LFMC is, the more difficult it is to
prevent the advance of fire. Reliable and updated estimations of LFMC are needed by fire
managers for better decision making [18]. Thus, assessing, improving, and implementing
near real-time methods to spatially estimate LFMC is of particular importance [19].

Characterizing variations in LFMC is difficult because both foliar mass and dry mass
can change throughout the season [20]. Indeed, meteorological indices are commonly used
to predict LFMC across locations [20–25]. Martin-StPaul et al. [13] used an LFMC database
obtained in the south of France and the island of Corsica during fire seasons from 1996 to
2016 to establish an LFMC linear prediction model by means of a drought index calculated
as the ratio between rainfall and evapotranspiration. However, the results were of limited
accuracy, as the contrasting water strategies between species mean that the dynamics of
LFMC may be different from one species to another in Mediterranean ecosystems. Viegas
et al. [21] grouped the species in three sets according to their relatively high, intermediate, or
low seasonal variability. In some species, usually classified as anisohydric (e.g., Rosmarinus
officinalis), the water content highly varies with climate conditions, whereas in isohydric
species (e.g., Pinus halepensis), this is maintained as relatively constant along the whole
season [21]. Ruffault et al. [23] achieved good results only over high responsive species (i.e.,
anisohydric) when using long term meteorological indices. In particular, the leaves of some
shrub species show few mechanisms to regulate transpiration, so that their content in LFMC
usually shows a strong variation depending on changes in environmental conditions [24].
However, Pellizzaro et al. [25] compared seasonal patterns of LFMC in four species of
Mediterranean shrubland using five drought indices based on meteorological variables,
showing that meteorological indices might fail when using multiple locations to calibrate
models, since they do not account for other environmental factors that might affect water
availability, such as soil conditions and species composition that affect water storage and
competition, respectively.

LFMC depends on both environmental conditions (liquid water absorption) and species
ecophysiology (pigment and structural changes), which impacts spectral reflectance [16].
Remote sensing data take into account the effect of water on the spectral reflectance of
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vegetation, thus remote sensing approaches consider the influence of plant physiological
conditions on the optical properties of vegetation. For instance, Gao and Goetzt [26]
showed that radiation absorption in the short-wave infrared was linked to canopy water
content, and absorption in the red visible spectrum depended on photosynthetic activity.
Indeed, several studies demonstrated the potential use of statistical models to estimate
LFMC using vegetation indices from satellite data [27–29]. Two main approaches are
commonly followed to estimate LFMC from remote sensing data: (1) radiative transfer
models (RTM) which are based on physical laws governing relationships between canopy
spectra and water content, and (2) empirical models which statistically fit field measures
of LFMC with spectral data [16]. The normalized difference vegetation index (NDVI), the
enhanced vegetation index (EVI), or the normalized difference water index (NDWI) were
used with success in empirical models for this purpose [30,31]. RTMs are robust and easy
to generalize (not site specific), but parameterization is complex and depends mostly on
model selection. Furthermore, the main difficulty in using RTM for LFMC recovery is
the uncertainty of the inversion procedure [32]. Instead, empirical models are simple and
easy to calibrate, and they provide a higher level of accuracy than RTM [33]. Moreover,
they combine the use of spectral indices with meteorological variables to improve LFMC
predictions [28,30,34].

Field based models to estimate LFMC were used in four Mediterranean locations
of Catalonia (Spain) [24], in the North Western Sardinia (Italy) [25], and in twenty sites
in several regions of Southern France [13,23]. However, most LFMC estimations have
relied on satellite products with high temporal resolution but coarse spatial resolution,
ranging from 250 m to 1 km (e.g., MODIS, AVHRR, ASTER . . . ) [31,35–38], whereas
developments based on medium spatial resolution images (e.g., from Landsat or Sentinel-1
and 2) are still very scarce [39], suggesting limitations for fragmented forest areas, such
as the Mediterranean or many mountainous areas [16]. Since 2015, the European Spatial
Agency put at free disposition the new generation of Sentinel-2 sensors which provide data
with spatial resolution of 10 m for visible and NIR bands, 20 m for red-edge and SWIR
bands, and 60 m for atmospheric bands, thus potentially overcoming coarse resolution
limitations. Furthermore, since 2017, the temporal resolution increased to 5 days with
the launch of the second Sentinel-2 satellite. Shu et al. [40] demonstrated the potential
usage of the Sentinel-2A data for LFMC mapping in 15 field measurements from the USA,
South Africa, Australia, and France. More recently, Marino et al. [33] proved that empirical
models derived from Sentinel-2 and MODIS data provide similar results in terms of fitting
and error level for LFMC estimation in a monospecific shrubland located in Central Spain.

Operational management (e.g., fire risk models) requires predictions for locations
where different species coexist. Some considerations emerge when using different locations
to fit spatial models of LFMC using remote sensing data. Across locations, different values
of vegetation indices for the same LFMC status might be observed due to differences in
vegetation cover and optical properties. The same vegetation type can appear significantly
different at various stages during intra-annual growth cycles [41]. In addition, variation
in optical properties across species due to different chemical composition might generate
different spectral patterns for the same LFMC status. Thus, correction factors to adjust the
parameters across sites might be required to fit, for instance, a linear model for multiple
locations. Previous studies over coarse resolution images followed different approaches to
minimize these effects. Chuvieco et al. [30] used land surface temperature retrieved from
AVHRR for grassland and shrub species, and they identified an advantage of empirical
models in that they can easily include thermal information, which is especially critical in
fuels that are more adapted to summer drought, as is the case of most Mediterranean shrubs.
Stow and Niphadkar [42] normalized the MODIS vegetation indices using a temporal
rescaling based on maximum and minimum values of the time series of each index within
each pixel. Peterson et al. [35] used statistics of vegetation indices to improve spatial models
calibrating empirical equations that explained site-specific and interannual differences in
the amount and the condition of vegetation. To do this, two new independent variables
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were added to a multiple linear regression analysis: an additive and a multiplicative
statistical variable. Caccamo et al. [36] scaled vegetation indices across locations to account
for differences in site-specific properties. Finally, in García et al. [43], normalizing the
data using the minimum and the maximum in the temporal series improved the results,
overcoming the effect of varying vegetation cover and type on the signal recorded by
the sensor.

In Spain, the highest average monthly burned area and the highest number of fires in
the period 2002–2019 occurred by far from June to October (see https://gwis.jrc.ec.europa.
eu/apps/country.profile/charts, last accessed on 14 May 2021). Moreover, in the Valencian
region of Spain, the largest burned area occurred in the months of June, July, August,
and September (the dry season, see Figure S1 of the supplementary material). This fact,
together with the strong climatic differences in the summer season (high temperatures and
scarce rainfall) with respect to the rest of seasons, which make difficult the operability of
a common LFMC model along the year, point out the need to define a prediction model
for LFMC specifically for this period. Moreover, the high fragmentation and the variety
of species in Mediterranean ecosystems suggest that the use of high-resolution data can
help to capture differences in detailed scales. Shrub communities cover a main part of
Mediterranean forests, and they are of particular importance for fire risk monitoring, since
ignition and spread are mainly driven by surface and ladder fuels. Usually, different
species of shrubs dominate but coexist with other tree species.

Therefore, the present study aimed to build and assess an empirical model of LFMC for
mixed vegetation in a Mediterranean area of Spain, combining spectral indices extracted
from Sentinel-2 images and meteorological data, based on LFMC field measurements
obtained during the dry season when fire risk is higher. Thus, the objectives of this paper
were the following: (i) to analyze the seasonal variation of LFMC during the dry season
for mixed vegetation in shrub dominated areas of a Mediterranean area of Spain; (ii) to
assess the performance of different Sentinel-2 spectral indices on predicting LMFC in
pooled locations, accounting also for meteorological information; (iii) to obtain a linear
regression model to estimate LFMC during the fire season using Sentinel-2 images and
meteorological indices.

This paper is organized as follows. First, study sites and data are described, including
field, satellite imagery, and meteorological data. Then, the methodology used to create the
LFMC empirical model is presented. Numerical results show the accuracy of our model to
obtain an estimation of the weighted LFMC of the shrub species at a fine spatial resolution.
In the discussion section, our results are compared with those obtained by other authors,
assessing the usefulness of our methodology. The document ends with some conclusions.

2. Materials and Methods
2.1. Study Area

The study area covers a large sector (around 645,000 ha) located in the center of the
Valencian region at the east of the Iberian Peninsula. This is an area with a highly variable
orography in which the northern part is formed by the NW-SE orientation mountain
alignments associated with the Iberian mountain range and the southern part by a set of
SW-NE orientation mountain alignments created by the strong tertiary age folds of the
Betic mountain range. The central area, remaining in an intermediate domain between
these great mountain ranges, is formed by a wide rocky plateau that rises about 800 m
above sea level.

Lithologically, in mountainous areas where natural vegetation develops, there is a
clear predominance of calcareous rocks, combined in many sectors with marls and clays,
which favor the development of shallow basic soils. Locally, at some points, such as near
zones A and B (Figure 1), there are some outcrops of siliceous sandstones that generate
acid soils. At other points in the study area, we also found gypsum outcrops that, due to
their salinity, make local vegetation development difficult. However, the predominance of

https://gwis.jrc.ec.europa.eu/apps/country.profile/charts
https://gwis.jrc.ec.europa.eu/apps/country.profile/charts
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carbonate spaces and shallow basic soils is very high, and therefore all field samples were
taken in these environments.
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Figure 1. Overall location of the study area (top left); location of field plots and vegetation types (right) (the vegetation map
was obtained from http://www.icv.gva.es/auto/aplicaciones/icv_geocat/#/results/incendios, accessed on 12 April 2021);
and detail of plots 3 and 4 (bottom left), with the two concentric circles used for field data collection (red) and to ensure
homogeneity in the samples from satellite images (green).

The study area presents a clear Mediterranean climate with hot summers, mild winters,
and poor rainfall (between 350 and 550 mm per year) unevenly distributed throughout
the year and the different years. The bulk of rainfall occurs in the autumn months and
to a lesser extent in spring and winter. Summer is hot and very dry, which causes a
strong water deficit for long periods. Within the study area, however, there are differences
associated with (i) altitude (the highest areas are colder in winter and cooler in summer),
(ii) distance from the Mediterranean Sea, which creates a system of local breezes that
cool the environment and provide moisture to the air, and (iii) local effects caused by
the disposition of the relief with respect to the flows of the humid winds. Thus, in the
southeastern zone, G-coded points (Figure 1) receive practically twice as much precipitation
as the rest of the zones, registering up to 800 mm annually. The entire analyzed area would
be framed by thermo and mesomediterranean bioclimatic floors [44].

Although there are significant differences in the vegetation within the studied area, the
entire sector remains within the predominance of Pinus halepensis forests and, above all, of
different species of shrub, which coexist with the pine trees or replace them. Additionally,
in small sectors, there are small groves of Quercus ilex (C, F, and G-coded points in Figure 1).

http://www.icv.gva.es/auto/aplicaciones/icv_geocat/#/results/incendios
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The Pinus halepensis forests are well resistant to drought (it thrives even with annual rainfall
of 250 mm), and they adapt to any type of soil, thus this species is clearly dominant in the
study area. The area has been widely affected by multiple and recurrent forest fires causing
the forest masses to fragment and, currently, the existence of shrubs such as Rosmarinus
Officinalis or woody shrubs as Quercus coccifera with small size is common.

A total of 15 plots were selected for model calibration, covering different climatic areas
in the province of Valencia, which were grouped into 7 geographic areas coded with letters
in Figure 1 and in Table 1. Another set consisting of 5 additional plots was considered to
validate the models, and its description is shown in Table 2. All the plots were defined by a
central point of a 20 m radius circle, where field samples were collected at different times
during the season and a concentric 50 m radius circle with homogeneous vegetation types
and density to ensure that corresponding pixels clipped on the satellite images represented
the same or very similar areas in the field data collection. Their location was chosen based
on the representativeness of the main climatic areas but also on other factors such as the
existence of dominant species of Mediterranean shrub, geographical distribution in the
study area, easy accessibility, and internal homogeneity of the field plots. Some plots were
chosen very close to each other in order to register local variations. Figure 1 (lower left)
shows a detail of plots 3 and 4 with their central points and the two concentric circles: one
for field data collection (20 m radius) and the other to ensure homogeneity in the clipped
samples from satellite images (50 m radius). Tables 1 and 2 show the dominant species,
the altitude, the slope, and the aspect for all sampling plots as codified in Figure 1. The
altitudes of sites range from 203 m to 957 m.

Table 1. Description of the calibration plots. The attributes are the following: plot number and zone code (see Figure 1),
altitude and slope (in center of the plot), aspect (degrees), the names of the most representative species per plot, and their
specific %FCC.

Plot Number Zone Code Altitude (m) Slope (%) Aspect (Degrees) Species (% FCC)

1 A 270 15.4 179
Pinus halepensis (35), Rosmarinus Officinalis (25), Quercus
coccifera (20), Erica multiflora (20), Pistacia lentiscus (20),

Chamaerops humilis (15)

2 A 302 12.5 157
Pinus halepensis (20), Rosmarinus officinalis (30), Quercus
coccifera (10), Phillyrea angustifolia (12), Pistacia lentiscus

(17), Chamaerops humilis (15)
3 B 217 5.7 127 Pinus halepensis (20), Rosmarinus officinalis (30), Rhamnus

lycioides (12), Juniperus oxycedrus (10), Pistacia lentiscus (7)

4 B 203 3.4 90
Pinus halepensis (40), Rosmarinus officinalis (35), Quercus
coccifera (5), Juniperus oxycedrus (20), Rhamnus lycioides

(10), Erica multiflora (1), Pistacia lentiscus (3), Stipa
tenacissima (30)

5 C 957 11.1 353
Pinus halepensis (10), Rosmarinus officinalis (15), Quercus
coccifera (40), Juniperus oxycedrus (15), Quercus ilex (35),

Juniperus phoenicea (10)
6 D 234 9.8 244 Pinus halepensis (7), Rosmarinus officinalis (30), Quercus

coccifera (45), Juniperus oxycedrus (5), Erica multiflora (15)
7 D 267 16.9 76 Pinus halepensis (15), Rosmarinus officinalis (25), Quercus

coccifera (35), Cistus albidus (3), Erica multiflora (20)

8 E 548 22.5 112
Pinus halepensis (20), Rosmarinus officinalis (30), Ulex

parviflorus (10), Juniperus oxycedrus (15), Quercus coccifera
(5), Erica multiflora (30)

9 E 665 15.8 212 Rosmarinus officinalis (50), Quercus coccifera (50), Ulex
parviflorus (5), Juniperus oxycedrus (20), Erica multiflora (7)

10 E 672 16.4 345 Pinus halepensis (10), Rosmarinus officinalis (30), Quercus
coccifera (50), Juniperus oxycedrus (30), Erica multiflora (7)

11 F 883 3.2 355
Pinus halepensis (5), Rosmarinus officinalis (20), Quercus
coccifera (20), Quercus ilex (10), Juniperus oxycedrus (10),

Cistus albidus (3)
12 F 873 6.0 73 Quercus ilex (15), Rosmarinus officinalis (10), Quercus

coccifera (30), Juniperus oxycedrus (10), Cistus albidus (3)
13 F 882 2.0 45 Rosmarinus officinalis (7), Quercus coccifera (10), Ulex

parviflorus (3), Juniperus oxycedrus (20), Quercus ilex (15)
14 G 577 18.8 92 Erica multiflora (10), Quercus coccifera (60), Rosmarinus

officinalis (30), Quercus ilex (20), Cistus ladanifer (5)
15 G 390 16.7 0 Erica multiflora (20), Quercus ilex (20), Quercus coccifera

(40), Pistacia lentiscus (5), Ulex parviflorus (10)
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Table 2. Description of the validation plots. The attributes are the following: plot number and zone code (see Figure 1),
altitude and slope (in center of the plot), aspect (degrees), the names of the most representative species per plot, and their
specific %FCC. Data were collected in the same time period as in calibration plots described in Table 1.

Plot Number Zone Code Altitude (m) Slope (%) Aspect (Degrees) %FCC Species

16 A 323 12.4 231
Pinus halepensis (70), Rosmarinus Officinalis (40), Erica

multiflora (3), Pistacia lentiscus (30), Phillyrea
angustifolia (20)

17 A 299 9.2 150
Pinus halepensis (15), Ulex parviflorus (10), Quercus

coccifera (12), Pistacea lentiscus (20), Stipa tenacissima (40),
Chamaerops humilis (15)

18 C 740 12.9 36
Pinus halepensis (20), Rosmarinus officinalis (10),

Arbutus unedo (20), Juniperus oxycedrus (30), Erica
multiflora (15), Ulex parviflorus (10)

19 D 321 29.8 224 Pinus halepensis (70), Rosmarinus officinalis (20), Quercus
coccifera (35), Rhamnus lycioides(10), Erica multiflora (20)

20 D 301 5.6 15 Pinus halepensis (80), Rhamnus lycioides (15), Quercus
coccifera (40), Pistacia lentiscus (20), Erica multiflora (15)

Slope and aspect in Tables 1 and 2 were obtained using a digital terrain model with a
resolution of 25 m. Data collection in areas with steep slopes influences solar radiation and
thus the LFMC. In general, areas with a low slope were chosen in order to facilitate field
sampling. Even if there are some plots with greater slopes where the aspect (orientation)
may have some influence in the incoming solar radiation balance, the correlation between
solar radiation and field LFMC values was not statistically significant in the fire season.

Moreover, the fraction of canopy cover (%FCC) of each species was visually estimated
per plot in the field, as shown in Tables 1 and 2, to be used for subsequent analyses.
Although shrubs dominate in the sampled plots, they coexist with other tree species.
However, all the plots belong to a shrub category in which the primary bearer of fire
is woody shrubs and shrub litter of high continuity (SH4 category described in docu-
ment https://agroambient.gva.es/documents/162905929/169203680/Clave+fotográfica+
modelos+combustible_20200430/fd5ae58d-3b3f-4e50-866a-d83544a6f1b2, accessed on 12
April 2021). Rosmarinus officinalis is the first dominant shrubland species in several plots,
but Quercus coccifera has the highest %FCC in other plots.

2.2. Field Data

Field samples were collected for all species as described in Tables 1 and 2, transported
in sealed bags, fresh weighted, and oven dried in a laboratory to determine fresh and
dry weights. Biweekly sampling was performed from June to October 2019. LFMC was
estimated as the percentage of water content of vegetation on a dry-weight basis following
Equation (1):

LFMC =
W f − Wd

Wd
× 100 (1)

W f being the fresh weight and Wd the dry weight. Values of the LFMC obtained per
species, plot, and date were calculated, and the representative value of LFMC for each plot
was finally assigned as the average LFMC value of the shrub species sampled, weighted
according to their %FCC per plot given in Tables 1 and 2, divided by the sum of the weights
of the shrub species. Moving forward, we refer to the weighted average LFMC per as
LFMC_WAS (LFMC weighted average in shrubs). Moreover, values of LFMC_WAV (LFMC
weighted average in all vegetation species) were also calculated using the weighted average
of LFMC with the %FCC from all the vegetation species in the plots. A total of 134 field
samples were collected during the sampling period.

2.3. Remote Sensing Data

Spectral indices were calculated using images from Copernicus Sentinel-2 A and B
satellites. The multispectral instrument (MSI) on-board Sentinel-2 measures the Earth‘s
reflected radiance in thirteen spectral bands with three different spatial resolutions (10 m,
20 m, and 60 m). Sentinel-2 data are freely available, and their parameters provide great

https://agroambient.gva.es/documents/162905929/169203680/Clave+fotogr�fica+modelos+combustible_20200430/fd5ae58d-3b3f-4e50-866a-d83544a6f1b2
https://agroambient.gva.es/documents/162905929/169203680/Clave+fotogr�fica+modelos+combustible_20200430/fd5ae58d-3b3f-4e50-866a-d83544a6f1b2
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convenience in retrieving various vegetation and spectral indices [40]. Moreover, this
mission is composed of two satellites allowing for repeated surveys every 5 days. The
Level-2A product, i.e., orthorectified and atmospherically corrected to surface reflectance,
was accessed via Google Earth Engine using a resampled pixel size of 10 m, independently
of the actual resolution of spectral bands. Three types of spectral indices were considered
in this study. First were indices more tightly related to vegetation photosynthetic activity
containing the red band, which might account for soil and atmospheric corrections, e.g., En-
hanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and Optimized
Soil Adjusted Vegetation Index (OSAVI) or not, e.g., Normalized Difference Vegetation
Index (NDVI), Ratio Vegetation Index (RVI), and Visible Atmospherically Resistant Index
(VARI). The second group of spectral indices was related to soil and vegetation water
content, since they include short wave infrared (SWIR) bands [45]. Indices in this category
were: Normalized Difference Moisture Index (NDMI), Normalized Multi-band Drought
Index (NMDI), and Normalized Difference Water Index (NDWI). Their differences were
mainly due to the part of the SWIR considered. The third group of indices was related to
vegetation greenness, e.g., Vegetation Index-Green (VIGreen) and Transformed Chlorophyll
Absorption Index (TCARI), since they contain information on the green band. Moreover,
specific leaf area (SLA) index was calculated, which potentially accounts for different leaf
types. Table 3 shows the formulas for all spectral indices adapted to Sentinel-2 images. The
main indices used in the literature for LFMC predictions are highlighted in bold in Table 3.

Table 3. Spectral indices obtained from Sentinel-2 images and formulas with the band numbers.

Spectral Index Formulation for Sentinel-2

Enhanced Vegetation Index [46] EVI = 2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5 × B2 + 1)

Soil Adjusted Vegetation Index [47] SAVI = ((B8 − B4)/(B8 + B4 + 0.5)) × 1.5

Optimized Soil Adjusted Vegetation Index [48] OSAVI = (1 + 0.16) × (B8 − B4)/(B8 + B4 + 0.16)

Normalized Difference Vegetation Index [49] NDVI = (B8 − B4)/(B8 + B4)

Ratio Vegetation Index [50] RVI = B8/B4

Visible Atmospherically Resistant Index [51] VARI = (B3 − B4)/(B3 + B4 − B2)

Normalized Difference Moisture Index [52] NDMI = (B8 − B11)/(B8 + B11)

Normalized Multi-band Drought Index [53] -

Normalized Difference Water Index [54] NDWI = (B8 − B12)/(B8 + B12)

Vegetation Index-Green [55] VIgreen = (B3 − B5)/(B3 + B5)

Transformed Chlorophyll Absorption Index [56] TCARI = 3 × ((B5 - B4) − 0.2 × (B5 − B3) * (B5/B4))

Ratio TCARI-OSAVI [56] TCARI_OSAVI = TCARI/OSAVI

Specific leaf area [57] SLA = (B9)/(B5 + B12)

The values of these indices were calculated for the central pixel of each plot in all
dates from the beginning to the end of the LFMC data collection. In addition, to reduce
atmospheric noise and residuals from radiometric correction, we used the Savitzky–Golay
filter as proposed by [58] for Sentinel-2 NDVI time series implemented in the R package,
which uses a third degree polynomial to smooth the time series. This smoothing algorithm
avoids oscillations that occur between close dates due to factors other than changes in the
humidity of the vegetation (see Figure S2 in supplementary material). Thus, prediction
models used the spectral indices described in Table 3 calculated for the central pixel of
each plot for every date considered after applying smoothing of the time series. Moreover,
windows of 3 × 3 or 9 × 9 pixels were tested and compared (see Appendix B). Values
of spectral indices corresponding to the field collection dates were approximated by the
smoothed values on the closest Sentinel-2 image acquisition date. Thus, time lag between
field dates (reference data collection) and images used for the spectral index calculation
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was less than 5 days. Furthermore, mean, minimum, maximum, and range values of the
time series during the studied period per spectral index were also calculated in each plot
to account for specific site effects on surface reflectance in the prediction models.

2.4. Meteorological Data

The Spanish Meteorological Agency (AEMET) registers data of precipitation, tempera-
ture, wind, and relative humidity from a set of meteorological stations within our study
area. Figure 2 shows their geographical location as a function of the meteorological variable
collected together with the location of the field plots. Data of daily precipitation, maxi-
mum, minimum, and average daily temperature, average wind speed in km/h for 600 s
of the maximum daily wind gusts, and daily maximum and minimum relative humidity
were obtained. Values registered at the meteorological observatories were interpolated to
LFMC locations using Meteoland R package [59]. This method is similar to the inverse
distance weighted but uses a truncated Gaussian filter to select weather stations, including
corrections for elevation effects on climatic variables. Relative humidity and wind speed
data were also interpolated despite having available a smaller number of stations, since
extreme weather conditions such as strong winds can influence the relationships between
meteorological data and LFMC values [25].
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All meteorological variables were also averaged or accumulated (cumulative values)
for the previous days to account for different time windows effects on LFMC. Thus, the
average of the daily mean temperatures and the average of the maximum and the minimum
daily temperatures were calculated in temporal windows of 7, 15, and 30 days prior to the
field data collection date. The cumulative precipitation values for the last 3, 7, 15, 30, and
60 days were also calculated. Other computed indices were the average in the last 3, 7, and
15 days of the daily maximum and minimum relative humidity and average wind speed in
Km/h for 600 s of the maximum daily wind gusts.

2.5. Statistical Analysis

The methodology used for this can be summarized in the following steps:

1. Analyze the seasonal variation of LFMC across species to assess for different water
strategies in the study area.

2. Assess the performance of different spectral indices on predicting LMFC_WAS across
single locations, accounting also for meteorological information.

3. Assess the performance of spectral indices on predicting LMFC_WAS in pooled
locations considering site spectral characteristics (e.g., the average of the time series
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of the selected SI). The inclusion of long-term (cumulative) meteorological data was
also evaluated to improve pooled site model predictions.

4. Forward stepwise linear regression models were also applied considering all calibra-
tion plots from Table 1 distributed in the study area.

5. The evaluation of the models was done using 10-fold cross-validation with 3 repeti-
tions and leave-one-site-out cross validation.

6. The precision of the best pooled site regression model was tested in the 5 additional
plots of Table 2.

7. Final regression model was applied to generate maps of LFMC_WAS estimations
using Sentinel-2 images at 10 m/pixel spatial resolution.

Firstly, the temporal evolution of LFMC in different forest species was analyzed as
well as LFMC_WAS time series differences in some plots located in the same geographical
zone (at short distances, see Figure 1 and Table 1). Fisher’s least significant difference (LSD)
procedure [60] was used to identify the plots with the most distant LFMC_WAS mean
values, assuming that two mean values were equivalent if their LSD intervals overlapped.

Secondly, correlation between spectral indices (SI) and LFMC_WAS was calculated
for each calibration plot, and the SI with the highest R2 value was selected. Then, the
spectral indices that performed better in a greater number of plots were considered to
build a multivariate linear regression model of LFMC_WAS in which the constant and the
coefficients varied from one plot to another. Only one spectral index and/or a maximum
of two meteorological variables (named Meteo1 and Meteo2) were selected for each site
using forward stepwise regression. Thus, initially, we assumed that the adjustment was
given by Equation (2):

LFMC_WASij = αj + β j SIij + δj Meteo1ij + µj Meteo2ij (2)

where subscript “i” refers to the date of data collection and subscript “j” to the plot number.
Thus, an equation per plot with different constant and coefficients for the independent
variables was obtained.

Thirdly, to account for differences across sites in pooled site regressions, several
statistics (average, minimum, maximum, and range) of those SI considered in Equation (2)
were calculated for each plot using all available data from Sentinel-2 images from the time
period in which a data sample was collected. In this way, these statistics had different
values per site but the same in the entire time series. This strategy is similar to the one
followed by Peterson et al. [35] aiming to explore if variations between plots in some of
these statistics contribute to the prediction of LFMC_WAS. For consistency and robustness,
the average of SI at each site was included in pooled site regression models.

Moreover, the inclusion of up to two new meteorological variables was tested, thus
combinations with different numbers of independent variables were considered, comparing
the adjusted R2, the Akaike’s information criterion (AIC), and the Schwarz’s Bayesian
information criterion (SBIC) [61] in order to reduce the number of independent variables in
the model. This new model would include the SI that performed better in more plots, its
seasonal average at each sample point (Average_SIj), and two meteorological variables, as
expressed by Equation (3):

LFMC_WASij = α + γ Average_SIj + β SIij + δ Meteo1ij + µ Meteo2ij (3)

Model (3) uses the set of LFMC_WAS values obtained in all plots and dates to obtain a
common LFMC_WAS model for the study area.

The inclusion of new variables in the model (3) was only justified if their contribution
was statistically significant. To avoid multicollinearity, the Pearson’s linear correlation
coefficients (R) were calculated between meteorological variables that were candidates
to be part of Equation (3). In addition, said coefficient R was also calculated between
each meteorological variable and the SI index. Then, meteorological variables having
high correlation (R > 0.8) with SI were excluded to avoid imprecise regression coefficients
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difficult to interpret. In addition, R between Meteo1 and Meteo2 in (3) was smaller than
0.8. High Pearson correlation coefficient between two regressors means probability of
multicollinearity. However, a linear relation involves many of the regressors, therefore, it
may not be possible to detect such a relationship with a simple pair-wise correlation [62].
Thus, we calculated the variance inflation factor (VIF) for each variable, which was equal
to the ratio of the overall model variance to the variance of a model that includes only a
single independent variable, informing about the multicollinearity of a model.

The performance of model (3) was compared with the lineal regression model (4):

LFMC_WASij = α + β SIij + δ Meteoij (4)

which considers as predictors: SI given in model (3) (without taking into account the
additive term of model (3)) with the first meteorological variable that was introduced using
forward stepwise linear regression (p-value < 0.05).

Two cross-validation approaches were used to evaluate the models:
(i) Repeated 10-fold cross-validation. The database with plots from Table 1 was

randomly divided into 10 groups, and then, alternately, one group was used to validate
and the remaining groups were used to calibrate. Cross-validation mean was calculated
after repeating the process 3 times in each of the 10 folds.

(ii) Leave-one-site-out cross validation. Once a plot from Table 1 was chosen, the
method used all the data except those of that plot to calibrate the model in all dates.
Evaluation was done using the adjusted R2, RMSE (root mean squared error), and MAE
(mean absolute error), repeating the process in all plots.

The performance of the best model selected by cross-validation was evaluated with
the five independent sites described in Table 2 in order to get an independent validation.

Finally, that model was applied to generate maps of LFMC_WAS using Sentinel-2
images at 10 m/pixel spatial resolution masking out those areas that did not correspond to
shrub or sparse woodland according to the Spanish Forest Map (https://www.miteco.gob.
es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50_
descargas_ccaa.aspx, accessed on 12 April 2021). Sentinel-2 time series were downloaded
and processed using Google Earth Engine to obtain values of NDMI with a temporal reso-
lution of 5 days and the average NDMI at the sample period, which was calculated in each
Sentinel-2 pixel. The meteorological data were provided by the Spanish Meteorological
Agency (http://www.aemet.es, accessed on 12 April 2021) from stations distributed in the
region (see Figure 2) and interpolated to the Sentinel-2 pixel size using the R Meteoland
package [59]. Similarly, statistics related to the different temporal scales were calculated
for every meteorological variable. Pixels with clouds were filtered out and excluded
from maps.

3. Results
3.1. Variation of LFMC across Species and Individual Site Regressions

Different patterns of LFMC behavior were observed along the studied period for
different species (Figure 3). Some species, such as Rosmarinus officinalis, presented drastic
changes in LFMC (ranging from 38% to 152% from June to October), whereas, in other
species, such as Pinus halepensis, changes were very smooth (from 83% to 119%). In general,
shrub species such as Rosmarinus officinalis, Ulex parviflorus, Juniperus oxycedrus, and Erica
multiflora showed an important LFMC decrease at the beginning of the dry season and
a fast recovery after summer. Quercus species also showed an LFMC decrease during
summer but with a soft recovery at the end of the dry season. In contrast, Pinus halepensis
showed very smooth LFMC variations during the studied period. This behavior is due to
the fact that Pinus halepensis tends to have very constant water potential throughout the
year [22]. This causes differences between the values of LFMC_WAV and LFMC_WAS due
to the fact that two tree species present in our plots, Pinus halepensis and Quercus ilex, were
not considered in the calculation of LFMC_WAS. Figure 4, which compares LFMC_WAS

https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50_descargas_ccaa.aspx
https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50_descargas_ccaa.aspx
https://www.miteco.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-disponible/mfe50_descargas_ccaa.aspx
http://www.aemet.es
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values with LFMC_WAV, shows that main differences occurred in the driest period, where
the values of LFMC_WAS were lower than those of LFMC_WAV.
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in all vegetation species).

The overall trend of LFMC_WAS showed a decrease and recovery at the beginning
and the end of the dry season, respectively, and was similar in all the sites, but significant
differences were observed between plots located in the same geographical area separated
by distances of less than 5 km (e.g., in areas F and G, see Figure S3 of the supplementary
material). There was a statistically significant difference of the mean values of LFMC_WAS
between several plots according to Fisher’s LSD procedure (Figure 5, e.g., plots 14 and 15,
both G-coded in Figure 1).
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In order to determine the best spectral index in predicting LFMC_WAS at plot level,
per plot regressions were performed for each spectral index, and those with the greatest
R2 coefficient were selected (second column of Table 4). NDMI and NMDI were the best
predictors of LFMC_WAS in most of the plots, but the precision of the model varied
depending on plot properties. Using NDMI, the best results were obtained in plots 1, 4, 7,
10, and 12, meanwhile, NMDI was the optimal index in plots 6, 9, 13, 14, and 15.
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Table 4. R2 for several linear regression models using LFMC_WAS as dependent variable. The first column refers to the plot
number according to Table 1. The second column shows R2 for the best spectral index. The third and the last columns show
the R2 and the selected variables after applying a forward stepwise regression analysis using NDMI and T60 in column 3 or
NDMI, NMDI, T60, T30, and W7 in column 4 (p-value < 0.05). T60 and T30 are the average of daily mean temperatures
calculated in 60 and 30 days, respectively, prior to the date of LFMC_WAS collection in the field. W7 is the average of the
mean wind speed for 600 s of the maximum daily wind gusts for the previous 7 days.

Plot
Number

R2 of LFMC_WAS Model Using
the Best Spectral Index

R2 of LFMC_WAS Model Using
Forward Stepwise Linear

Regression with the Following
Predic-Tors: NDMI and T60

R2 of LFMC_WAS Model Using
Forward Stepwise Linear Regression

with the Following Predictors:
NDMI, NMDI, T60, T30, and W7

1 0.56 NDMI 0.56 NDMI 0.56 NDMI

2 0.95 SAVI 0.97 NDMI+T60 0.97 NDMI + T30

3 0.59 EVI 0.46 T60 0.75 T30

4 0.57 NDMI 0.57 NDMI 0.83 T30 + T60

5 0.86 TCARI_OSAVI 0.67 T60 0.67 T60

6 0.77 NMDI 0.64 NDMI 0.92 T30 + W7

7 0.85 NDMI 0.85 NDMI 0.95 T30 + T60

8 0.79 SLA 0.52 NDMI 0.52 NDMI

9 0.77 NMDI 0.94 NDMI + T60 0.96 NMDI + T30

10 0.71 NDMI 0.87 NDMI + T60 0.87 T30

11 0.86 OSAVI 0.78 T60 0.83 T30

12 0.71 NDMI 0.88 T60 0.88 T60

13 0.65 NMDI 0.86 T60 0.95 T60 + W7

14 0.66 NMDI 0.51 NDMI 0.84 NMDI + T30

15 0.66 NMDI 0.77 T60 0.77 T60

When accounting for climate conditions, the combination of NDMI and T60 (the
average of daily mean temperatures calculated in the 60 days prior to the date when
LFMC_WAS data were collected) improved the results in plots 2, 9, and 10. On the
other hand, temperature is a variable closely related to LFMC_WAS in those plots with
a significant presence of Quercus coccifera (plots 5, 6, 7, 10, 11, 12, 13, and 15 according to
the last column of Table 1), where spectral indices were not so relevant, and the highest
R2 values were found using models without NDMI or NMDI. Moreover, the temperature
changes explain the lower values of LFMC_WAS in plot 4, in which the species Stipa
tenacissima had a high %FCC.

The NDMI and the average of daily mean temperatures in the previous 30 or 60 days
were consistent indices for all plots, providing robustness to the results and suggesting high
potential to obtain a single prediction model for the area covered by all plots. The average
of the mean wind speed for 600 s of the maximum daily wind gusts (W7) for the previous
7 days could improve the accuracy of the model in plots 6 and 13 when used together with
the mean temperature in the previous days. Applying forward stepwise linear regression,
models with R2 greater than 0.46 were obtained in all plots using variables NDMI and/or
T60 (column 3 of Table 4).

The value of R2 using NDMI as a predictor of LFMC_WAS was always greater than
0.5 with p-values < 0.05, except in three plots (3, 5, and 15), although the coefficients used
for the regression models showed high inter-plot variations (see Table S1 in supplementary
material). Plot 5 presented the lowest proportion of shrub species, and Quercus ilex species
occupied 35% of the %FCC. Plot 15 had different climatic and topographic characteristics,
as mentioned is Section 2.1, with higher precipitation in some dates of our study period
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(see Figure S4 in the supplementary material), making difficult the adjustment even though
NDMI values were also higher with respect to other plots.

3.2. Pooled Site Regressions

NDMI was used to build a model to estimate LFMC_WAS combining data from
different plots. However, adjusted R2 (R2

adj) was equal to 29.07% in the pooled site
regression to predict LFMC_WAS using a single spectral index (NDMI) as an explanatory
variable, suggesting the need to integrate new complementary variables (see SLR1 (simple
linear regression) model in Table 5). The use of the NMDI variable as a predictor led to
more imprecise results (SLR2 model in Table 5).

Table 5. Multiple regression models for LFMC_WAS. The columns represent: formulation, p-value of each coefficient,
variance inflation factor (VIF), adjusted R2 (R2

adj), root mean square error (RMSE), and mean absolute error (MAE).

Model Formulation p-Values VIF R2
adj RMSE MAE

SLR1 LFMC_WASij = 81.27 + 106.879 NDMIij
<0.0000

0.29 12.46% 9.93%<0.0000 1.0

SLR2 LFMC_WASij = −7.4714 + 175.578 NMDIij
0.6428

0.19 13.26% 10.72%<0.0000 1.0

AdLR
LFMC_WASij = 81.572 −

188.442 Average_NDMIj + 237.077 NDMIij

<0.0000
0.48 10.67%; 8.42%<0.0000 3.2329

<0.0000 3.2329

AdMLR
LFMC_WASij =

177.45 − 79.848 Average_NDMIj +
142.125 NDMIij − 2.496 T60ij − 4.08 W7ij

<0.0000

0.70 8.13% 6.33%
0.0008 4.1737

<0.0000 4.27214
<0.0000 1.54064
<0.0000 1.22462

MLR
LFMC_WASij =

154.654 + 73.676 NDMIij − 2.961 T30ij

<0.0000
0.66 8.54%; 6.56%<0.0000 1.07416

<0.0000 1.07416

In order to modify the constant of the SLR1 model to be adapted to each site, the fol-
lowing predictors were included in the AdLR (linear regression with an additive variable)
model: NDMI and average of NDMI computed per plot in the period studied considering
interactions between variables. NDMI and Average_NDMI as explanatory variables pro-
vided a R2

adj = 0.48 (AdLR model in Table 5), but the interaction of these two variables was
not statistically significant, therefore, this term was not included in the model. The use of
minimum, maximum, or range of NDMI instead of the average did not improve the ad-
justed R2 value, and their respective products with NDMI were not statistically significant.

Model (3) was tested using NDMI, Average_NDMI, and two meteorological variables
as explanatory variables. The best model was obtained using T60 and W7 as meteorological
variables (AdMLR (multivariate linear regression with an additive variable) model in
Table 5). All variables of AdMLR model were statistically significant, with R2

adj = 0.70,
RMSE = 8.13%, and MAE = 6.33%. VIF values were less than five in all the predictors,
showing no multicollinearity. Figure 6 shows the evolution of R2

adj according to the
number and the type of predictors considered. Using variables NDMI and T60, an R2

adj

greater than 0.6 was obtained. Adding W7 R2
adj increased it to 0.67, and by modifying

the constant of the model using the Average_NDMI (AdMLR model), an R2
adj of 0.70

was reached.
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In model (4), the best results were obtained using NDMI and T30 as independent
variables, with the MLR model of Table 5 reaching R2

adj = 0.66, RMSE = 8.54%, and
MAE = 6.56%. The variable T30 was the most significant in said model, which only in-
troduced a meteorological variable without taking into account the additive term (Av-
erage_NDMI). RMSE and MAE values in MLR and AdMLR models were lower than
those obtained in some plots using simple regression between LFMC_WAS and NDMI
(Table S1 in the supplementary material).

Figure 7 shows the scatterplot and the fitting line between observed and predicted
values for models MLR and AdMLR (coefficients in Table 5). In both models, the slope was
close to one and the intercept near zero, suggesting no significant bias in the estimates, and
studentized residuals were smaller than three. The greatest differences between the two
models occurred at the maximum values of LFMC_WAS (corresponding to the beginning
of June and in plots where the wind speed was higher), where the values obtained by the
AdMLR model were closer to the field measurements.

The results of MLR and AdMLR models (Table 5) using cross-validation with 10-fold
and three repetitions were:

MLR model: R2
adj = 0.71; RMSE = 8.43%; MAE = 6.62%;

AdMLR model: R2
adj = 0.72; RMSE = 8.18%; MAE = 6.61%.

The MLR model obtained reliable results with the leave-one-plot-out cross validation
procedure, with R-squared greater than 0.56, RMSE less than 12.5, and MAE less than 11.5
in all plots (Table A1 in Appendix A). The greatest errors occurred in those plots with the
lowest or the highest LFMC_WAS values. The AdMLR model improved the predictions
at higher altitude plots (zone codes C and F in Table 1) or in zones where the average
wind speed calculated by means of W7 was higher (zone code C, see Figure S5 in the
supplementary material).

Thus, the selected model for predicting LFMC_WAS was the AdMRL model (Table 5),
defined by Equation (5):

LFMC_WASij = 177.45 − 79.848 Average_NDMIj + 142.125 NDMIij − 2.496 T60ij − 4.08 W7ij (5)

Model (5) was applied using Sentinel-2 images at 10 m/pixel spatial resolution (SWIR
bands were resampled to 10 m resolution for data harmonization) to compute NDMI and
the average of the NDMI in our study period in each plot. Meteorological variables (T60
and W7) were interpolated at such spatial resolution.

The precision of model (5) was tested in the five additional plots, which are described
in Table 2. Table 6 shows the values of R-squared, RMSE, and MAE values for those
validation plots, which were similar to those obtained for calibration plots. This confirmed
the validity of our models in other plots in our study area with a higher presence of
non-shrub species in the sample time period.
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Table 6. Root mean square error (RMSE), mean absolute error (MAE), and the square of Pearson’s
correlation coefficient (R-squared) between observed and predicted LFMC_WAS in validation plots
given in Table 2. Model (5) was used for prediction of LFMC_WAS.

Plot R-Squared RMSE MAE

16 0.68 9.58% 7.21%

17 0.80 6.07% 4.71%

18 0.46 8.15% 6.85%

19 0.57 8.21% 6.33%

20 0.80 6.42% 4.89%

All 0.65 7.79% 6.00%
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R-squared was lower in test plot 18, which was in zone C, where the wind speed
is higher, and the LFMC_WAS values were also lower (Figure 8). However, it should
be mentioned that the wind speed observatories were not optimally located around our
sampling points, which could have influenced the accuracy of the results. Errors between
observed and predicted LFMC_WAS values followed a normal distribution. Half of
the errors were between −5.09 and 2.6, with the mean and the median slightly shifted
towards the negative side. The box-and-whisker plot in Figure 8 shows two outliers, which
correspond to high values of LFMC_WAS obtained at the end of September in plot 16 and
in mid-October in plot 19. These outliers caused the RMSE and the MAE to be slightly
higher in these plots.
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Figure 9 shows two examples of LFMC_WAS maps obtained using model (5) in an
area covered by a Sentinel-2 scene at two different dates, one for 30 June 2019 and the other
for 14 August 2019. Figure 9 shows the spatial changes of LFMC_WAS and the temporal
changes between two dates during the fire season. The second date corresponds to the
month of August, when the lowest values of LFMC were usually reached, in accordance
with the values of LFMC_WAS estimated using model (5).
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4. Discussion

According to physiological studies [22], species commonly classified as anisohydric
highly vary along the dry season, whereas species classified as isohydric tend to maintain
relatively constant LFMC. Discriminating water strategies across dominant species might
be of particular importance for LFMC monitoring. Fire risk might be higher in areas
dominated by anisohydric species since they are more prone to lower the moisture content
and thus potentially increase flammability [11]. Higher LFMC variability might result in
marked spectral response variations and thus present higher potential to be detected using
remote sensing. Previous studies showed that LFMC of shrublands can be retrieved with
higher accuracy than LFMC of grasslands and woodlands [16]. However, it is necessary to
improve the accuracy of LFMC estimates of shrublands in heterogeneous canopies using
empirical LFMC models fitted in the fire season [18].

Results of this paper suggest that different water strategies influence LFMC estima-
tions obtained from remote sensing data. For instance, contrasting LFMC trends across
co-occurring species (e.g., Pinus halepensis and Rosmarinus officinalis) within a 10 m pixel area
might lead to slight LFMC variations due to averaging values, making difficult estimations
and interpretation for risk management. Recently, LFMC models in monospecific shrub ar-
eas of Spain were explored using indices derived from Sentinel-2 images [33,63]. However,
in most of the forest areas of Spain, different shrub species are frequently mixed [28,30],
as in our study area. Therefore, the information obtained through the variables extracted
from satellite images is influenced by the species proportion within each pixel. Thus, the
integration of LFMC measures across co-occurring species into a unique value with an
ecological/physical meaning is not straightforward. In this paper, a weighted average
using the cover fraction of shrub species was considered to minimize this effect. However,
it is important to notice that LFMC, here expressed as the percentage of water content
of vegetation on a dry-weight basis, does not account for absolute differences on water
content across species captured by the satellite sensor [20] or for differences on dry matter
content [64].

Our results showed the potential use of near-real-time remote sensing data from
Sentinel-2 for spatially monitoring LFMC estimations of shrublands at fine scales during
the fire season. Accounting for site-specific spectral characteristics and long-term weather
conditions allowed us to build a spatial model based on multiple locations to project not
only over monospecific but also over heterogeneous areas, which might substantially
improve wildfire risk monitoring. Model performance for each single location was mostly
within the range of previous studies [30,33,34,37,63]. Most of them included both wet
and dry seasons, whereas our study was only focused on the latter. Focusing on the dry
season ensures that our model is calibrated to predict LFMC when fire risk is higher rather
than to detect LFMC variations across seasons, which can be less useful for operational
management. However, models in this study should be considered with caution in opera-
tional management, as they are fitted only with data from one summer season. Moreover,
site-specific spectral characteristics accounted for in Average_NDMI included values from
a limited number of plots that might not be able to capture the high variability of spectral
response of heterogeneous vegetation commonly found in Mediterranean regions. Hence,
results regarding model performance may vary significantly when applied to predict LFMC
values under different weather or site conditions. It will be also useful to obtain models
enabling prediction of the changes between seasons that are also important for operational
fire management (e.g., fire hazard monitoring and prevention planning) in order to better
predict the potential changes of vegetation moisture from low flammability to moderate
and high flammability levels. This could be especially relevant under climate change
scenarios currently affecting our study area as well as other Mediterranean regions.

Although theory suggests that water indices might perform better [45], contrasting re-
sults across different studies [16] suggest that confounding factors such as species traits and
surrounding conditions might affect the performance of different remote sensing indices.
Disentangling factors affecting the performance of different indices across environmental
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conditions might be useful for LFMC monitoring. Chuvieco et al. [30] already mentioned
that LFMC values in most Mediterranean shrubs cannot be accurately estimated using only
NDVI values, because chlorophyll and LAI changes caused by LFMC variations are less
apparent in shrub species than in grasslands. In this paper, spectral indices related to mois-
ture content, calculated using Sentinel-2 images, were explored (e.g., NDMI) in order to
provide LFMC estimations of shrublands. Using these indices, better results were obtained
than with those related to photosynthesis activity (e.g., NDVI, VARI, EVI) and greenness
(e.g., VIgreen), because, in some plots of our study area, the rise in moisture content in
September was not necessarily accompanied by an increase in photosynthetic activity or
leaf area. Recall that the EVI index from MODIS data was used in some references, such
as [18,34]. Marino et al. [63] used VARI, EVI, and VIgreen indices extracted from Sentinel-2
images. Moreover, Marino et al. [33] calculated empirical models with Sentinel-2 images
using VARI and SAVI. However, results of this paper proved that the properties of moisture
indices can help to better estimate LFMC in our study area in the fire season.

Coefficients of the regression models of LFMC using SI as predictors change across
locations, suggesting that a model fitted with data from multiple locations should in-
clude additional variables to improve accuracy. When including the seasonal average
of NDMI of each location, a substantial model improvement is found, since it allows to
consider site-specific spectral characteristics that affect the variation rate of NDMI. For
instance, differences in vegetation cover, aspect, or soil water retention might affect these
responses. Indeed, Peterson et al. [35] found that using statistics of spectral indices in-
creases model performance. They suggested that this approach was more flexible than
scaling/normalization across site approach [36,42] because the former might influence the
slope or the intercept of regression lines. Our results also showed that the inclusion of
meteorological variables potentially improves the model performance in the fire season
in a mixed Mediterranean vegetation area. Previous studies also showed the potential
synergic effect of these variables [30,34]. In our area and year studied, variables of pre-
cipitation and relative humidity were less related to LFMC than the average temperature
(see Table S2 of the supplementary material). For example, precipitation and relative hu-
midity slightly increased the value of R2

adj and decreased the values of RMSE and MAE
when introduced into the MLR model (Table S3 of the supplementary material). Among the
precipitation variables, the accumulated precipitation in the last 60 days (P60) was the one
that presented a greater correlation with LFMC_WAS (Table S2). However, this correlation
depended on location, being higher in zones A, B, C, D, and E given in Figure 1 and lower
in zones F and G (Figure S4 in supplementary material), thus P60 was not chosen by our
variable selection procedure in the final model (5). This suggests that precipitation is an
important variable, but its influence is more sensitive to variations than temperature, and
it should always be considered as a cumulative factor over a period of time. This behavior
could change depending on the seasons, thus inter-seasonal analysis should be carried out
to analyze these variables in atypical climate seasons. In addition, Table A1 (Appendix A)
shows that there were only a few plots where LFMC_WAS values could be predicted with
minimum RMSE and MAE without considering variable W7 in the AdMLR model.

Our final model (AdMLR model (5)) performed within the range of previous studies
which accounted for multiple locations [35,43] despite being built with LFMC measure-
ments from a variety of species with different behavior related to water variations, although
our study period was limited to one summer season. The relationships between LFMC and
the SIs for all sites improved in [43] after using their relative values and relative LFMC,
increasing R2 from 0.19 up to 0.48 for relative EVI. This increase is similar to that showed
in our models SLR1, SLR2, and AdLR described in Table 5 of this paper. The best model
described in [35] with two independent variables for the pooled analyses used VARI and
the median of VIgreen for chaparral with an average cross-validated and adjusted R2 of
0.712, which is similar to that of our final model (AdMLR model of Table 5). In order to
reproduce our method using a series of several years, statistics considering different values
per site and per year should be introduced to address inter-annual and inter-site differences
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in meteorological conditions and vegetation response. Chuvieco et al. [30] predicted LFMC
values of grasslands and Cistus ladanifer in a study area of Spain using NDVI, surface
temperature, and a function of the day of the year. Later, Garcia et al. [28] revised the
methodology to avoid high over-estimation of LFMC values when applied to dry years
using a drought index to discriminate between dry and wet years at the beginning of the
spring season with R2 = 0.71 for shrubs. As future work, we envisage the validation of our
model in a series of years with different precipitation regimes.

Equation (5) was applied using predictors calculated at 10 m/pixel spatial resolution.
Averaging spectral indices in 3 × 3 pixel windows, the accuracy of the model slightly
improved, but using 9 × 9 pixel windows resulted in slightly lower accuracy values (see
Table A2 in Appendix B). Comparing these models of Table A2 with the statistics from
Table 5, the main difference was found in the coefficient that multiplied the temporal
average of NDMI (Average_NDMIj).

AdMLR model (5) was fitted to predict LFMC calculated as weighted average of only
the shrub species sampled in shrub areas. However, plots used for calibration of that model
had up to 40% tree cover. Prediction models using the weighted average of LFMC from all
the vegetation species in the plots were also tested, reaching a slightly smaller R2

adj but
also smaller RMSE and MAE, as shown in Table S4 in the supplementary material. The
R-square between observed and predicted values decreased when applying the equivalent
of model (5) for LFMC_WAV (second row of Table S4) to the validation plots described
in Table 2 (R2 = 0.48). This was due to the different behavior of Pinus halepensis species
(Figure 3) with respect to shrub species. Although all plots were classified as shrub, in
some plots of the validation data, the FCC of Pinus halepensis was higher than 40%, which
is the maximum FCC reached in the calibration data.

5. Conclusions

This paper described the construction of empirical models to estimate LFMC_WAS
using data obtained from 15 plots in a Mediterranean area of Spain during the fire season of
2019 (1 June to 31 October), where different forest species coexist, and the area is dominated
by shrubs. In our study area, there were changes in the LFMC_WAS time series caused
by environmental factors together with other spatial changes, thus LFMC_WAS values
differed significantly in the different plots studied. Empirical models for LFMC_WAS
considered several spectral indices extracted from Sentinel-2 satellite images along with
variables obtained by interpolating meteorological data. Our final model (Equation (5) and
AdMLR model in Table 5) for predicting LFMC_WAS in each Sentinel-2 pixel used values
of NDMI calculated in each time value, but with the average of the NDMI in the whole
period analyzed and two meteorological variables. Mean temperature of the previous
60 days was the best meteorological variable, improving the model accuracy while avoiding
multicollinearity. The average wind speed in the previous 7 days for 600 s of the maximum
daily wind gusts allowed modeling small local changes caused by wind.

Results obtained in this paper showed that different spectral indices—and particularly
the NDMI—allow detecting changes of LFMC_WAS at temporal and spatial levels. Joining
the information on spectral indices together with meteorological variables contributed to
reduce the errors inherent to the model. The fitted model was built to take into account
the spatial and the temporal variability of LFMC_WAS at the Sentinel-2 pixel resolution
level. Thus, LFMC_WAS was estimated by means of the NDMI (extracted at pixel level
from Sentinel-2 satellite images) and the meteorological variables (temperature and wind
speed interpolated to 10 m pixel size) plus a constant that modeled spatial differences (site-
specific) during the fire season, obtaining R2

adj = 0.70, RMSE = 8.13%, and MAE = 6.33%.
Overall variations of LFMC_WAS in our study area are mainly seasonal. In this sense,

the cumulative mean temperature is sensitive to seasonal cycles, thus the proposed model
is adapted to seasonal changes in LFMC but could have limitations in atypical years with
abrupt changes of LFMC (e.g., due to summer storms). Therefore, the model needs to be
tested in the future using a series of years with a wider range of meteorological conditions
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to analyze the effect of anomalous intense precipitation including the summer. In this case,
a cumulative precipitation variable could be introduced as a predictor in the model.

In summary, the work carried out showed the possibility of estimating LFMC_WAS in
almost real time based on Sentinel 2 images and available meteorological data. LFMC_WAS
maps were generated for two dates as a preliminary product that, after tunning the model
by including a larger spatio-temporal data set, could be used in the near future in an
operational basis.
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Appendix A

Table A1 shows the errors obtained in the predictions of each plot using leave-one-
plot-out cross validation procedure. Errors between field LFMC_WAS observations and
these predictions were calculated for models using different predictors, and RMSE and
MAE were shown for each plot. The square of Pearson’s correlation coefficient (R-squared)
between observations and predictions computed using such cross validation was also
calculated for each model.
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Table A1. RMSE and MAE obtained using leave-one-plot-out cross validation for three regression models. R-squared is the
square of Pearson’s correlation coefficient between LFMC_WAS observations and cross validation predictions. The first
model used NDMI + T30 as independent variables as in the MLR model of Table 5, the second model used Average_NDMI
+ NDMI + T60 + W7 as in the AdMLR model of Table 5, and the third model used Average_NDMI + NDMI + T60.

Plot
Number

Model with Constant +
NDMI + T30

Model with Constant +
Average_NDMI + NDMI +

T60 + W7

Model with Constant +
Average_NDMI + NDMI + T60

Plot R-Squared RMSE MAE R-Squared RMSE MAE R-Squared RMSE MAE

1 0.56 7.48 5.62 0.52 7.67 5.55 0.44 9.08 6.37

2 0.94 3.85 3.23 0.92 4.87 3.84 0.98 3.45 3.07

3 0.85 10.25 8.19 0.81 11 8.86 0.79 11.36 9.36

4 0.76 11.64 9.73 0.66 11.9 10.2 0.70 12.44 10.08

5 0.61 12.72 10.39 0.67 7.35 5.43 0.69 9.87 7.8

6 0.81 6.38 5.33 0.83 6.33 4.86 0.74 8.09 5.85

7 0.94 5.84 5.03 0.90 6.95 6.07 0.90 7.04 5.9

8 0.56 8.35 6.63 0.45 9.31 7.89 0.50 8.59 7.13

9 0.90 6.72 5.5 0.88 5.46 4.43 0.94 5.89 5.37

10 0.92 6.59 5.92 0.86 9.13 7.49 0.86 7.7 6.68

11 0.85 12.45 11.21 0.77 12.4 11.6 0.85 12.82 11.59

12 0.64 12.16 8.37 0.90 8.57 6.58 0.88 10.59 6.52

13 0.81 7.75 5.21 0.92 5 4.37 0.86 6.87 5.57

14 0.69 8.48 7.48 0.58 9.44 7.87 0.58 9.88 8.19

15 0.71 5.38 4.69 0.67 6.46 5.07 0.81 4.68 4.07

Aver. 0.77 8.40 6.83 0.76 8.12 6.67 0.76 8.56 6.90

Appendix B

Model (3) calculated with the same variables as in AdMLR model but using spectral
indices averaged in other window sizes had accuracies and equations described in Table A2.

Table A2. Multiple regression models for LFMC_WAS with two spatial resolutions of predictors. The columns represent:
spatial resolution of predictors, formulation, p-values of each coefficient, adjusted R2 (R2

adj), root mean square error (RMSE),
and mean absolute error (MAE).

Spatial Resolution of
Predictors Formulation p-Values R2

adj RMSE MAE

3 × 3 Sentinel-2 pixels
LFMC_WASij =
178.174 − 97.495 Average_NDMIj +
159.328 NDMIij − 2.466 T60ij − 4.23 W7ij

<0.0000, <0.0000,
<0.0000, <0.0000
<0.0000

0.72 7.80% 5.95%

9 × 9 Sentinel-2 pixels
LFMC_WASij =
180.43 − 143.746 Average_NDMIj +
177.789 NDMIij − 2.433 T60ij − 4.497 W7ij

<0.0000, <0.0000
<0.0000, <0.0000, <0.0000 0.68 8.33% 6.55%
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