Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Materials
2.2.1. Multi-Source Remote-Sensing Data
2.2.2. Forest Succession Reference Data Generation
2.2.3. Ground Control Points
3. Methods
3.1. Derivation of HyMap and LiDAR Metrics
3.2. Feature Selection from Multi-Source Fused Metrics
3.3. Relative Attribute Learning for TDFs Succession Age Attribute
3.4. Accuracy Assessment
4. Results
4.1. HyMap and LVIS Metrics Selection and Age-Attribute Learning
4.1.1. Metric Selection of HyMap Data of SRNP-EMSS
4.1.2. Metric Selection of LVIS Data of SRNP-EMSS
4.1.3. Multi-Source Metric Fusion
4.2. Age-Attribute Mapping
4.3. Statistical Analysis
5. Discussion
5.1. Significance of Key Metric Selection
5.2. Ecological Importance of the Key Metrics Used for Age-Attribute Learning
5.3. TDFs Succession Transition with Respect to Age Attribute
6. Conclusions
- (1)
- Of the hyperspectral metrics used in this study, NDNI, NDLI, DMCI, and MSI selected by the RNAA model were found to be the best set of variables to explain the data variance and, ultimately, the forest age variation of the study area;
- (2)
- A combination of the shape-based (Cx, RG) and point-based (MAX, EC and RH50) LiDAR metrics, selected by the RNAA model and extracted from the LVIS data, were found to be the smallest number of the LiDAR metrics that best explained the forest age variation of the study area;
- (3)
- Fusing hyperspectral and LiDAR data achieved better results than using these data sets independently. Of the parameters used in this study, NDNI, Cx, RG, MAX, EC, and RH50 were found to be the most powerful combination to map the forest age variation of the study area;
- (4)
- The RAL method was successfully used to retrieve the relative age-attribute degree of TDFs in the study area. The result is a continuous forest age-level map that covers the successional stages of the study area;
- (5)
- A comparison between the former age group mapping result by Sun et al. (2019) and ours confirms that the TDF succession process in the study area can be well understood as continuous transition trajectories expressed with dynamic relative levels of the forest age attribute, rather than deterministic ecological processes. Descending standard deviations of the age attribute were observed along the transition trajectories, which account for the varied uniformity of the vertical structures along the process of forest succession.
Author Contributions
Funding
Conflicts of Interest
References
- Myers, N. The world’s forests: Problems and potentials. Environ. Conserv. 1996, 23, 156–168. [Google Scholar] [CrossRef]
- Ingram, J.C.; Dawson, T.; Whittaker, R. Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sens. Environ. 2005, 94, 491–507. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Janzen, D.H. Tropical Ecological and Biocultural Restoration. Science 1988, 239, 243–244. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, J.M.; Boucher, T.M.; Ricketts, T.H.; Roberts, C. Confronting a biome crisis: Global disparities of habitat loss and protection. Ecol. Lett. 2004, 8, 23–29. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Sánchez-Azofeifa, G. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 2010, 143, 144–155. [Google Scholar] [CrossRef]
- Portillo-Quintero, C.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.C.; Quesada, M.; Santo, M.M.D.E. The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: Lessons learned and opportunities for its sustainable management. Reg. Environ. Chang. 2014, 15, 1039–1049. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, S.; Sanchez-Azofeifa, A.G.; Duran, S.M.; Espírito-Santo, M.M. Assessing ecosystem services in Neotropical dry forests: A systematic review. Environ. Conserv. 2016, 44, 34–43. [Google Scholar] [CrossRef]
- How to grow a tropical national park: Basic philosophy for Guanacaste National Park, northwestern Costa Rica. Experientia 1987, 43, 1037–1038. [CrossRef]
- Cao, S.; Yu, Q.; Sanchez-Azofeifa, A.; Feng, J.; Rivard, B.; Gu, Z. Mapping tropical dry forest succession using multiple criteria spectral mixture analysis. ISPRS J. Photogramm. Remote Sens. 2015, 109, 17–29. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Broadbent, E.N.; Rozendaal, D.M.A.; Bongers, F.; Zambrano, A.M.A.; Aide, T.M.; Balvanera, P.; Becknell, J.M.; Boukili, V.; Brancalion, P.H.S.; et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2016, 2, e1501639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, R.A.; Tommaselli, A.M.; Honkavaara, E. Generating a hyperspectral digital surface model using a hyperspectral 2D frame camera. ISPRS J. Photogramm. Remote Sens. 2018, 147, 345–360. [Google Scholar] [CrossRef]
- Sanchez-Azofeifa, G.A.; Kalacska, M.; Quesada, M.; Calvo-Alvarado, J.C.; Nassar, J.M.; Rodriguez, J.P. Need for integrated research for a sustainable future in tropical dry forests. Conserv. Biol. 2005, 19, 285–286. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Pfaff, A.; Robalino, J.A.; Boomhower, J.P. Costa Rica’s payment for environmental services program: Intention, implementation, and impact. Conserv. Biol. 2007, 21, 1165–1173. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Azofeifa, G.A.; Guzmán-Quesada, J.A.; Vega-Araya, M.; Campos-Vargas, C.; Durán, S.M.; D’Souza, N.; Gianoli, T.; Portillo-Quintero, C.; Sharp, I. Can terrestrial laser scanners (TLSs) and hemispherical photographs predict tropical dry forest succession with liana abundance? Biogeosciences 2017, 14, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Quesada, M.; Sanchez-Azofeifa, A.; Alvarez-Añorve, M.; Stoner, K.E.; Avila-Cabadilla, L.; Calvo-Alvarado, J.C.; Castillo, A.; Espírito-Santo, M.M.; Fagundes, M.; Fernandes, G.W.; et al. Succession and management of tropical dry forests in the Americas: Review and new perspectives. For. Ecol. Manag. 2009, 258, 1014–1024. [Google Scholar] [CrossRef]
- Buzzard, V.; Hulshof, C.M.; Birt, T.; Violle, C.; Enquist, B.J. Re-growing a tropical dry forest: Functional plant trait composition and community assembly during succession. Funct. Ecol. 2015, 30, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Castro, K.L.; Sanchez-Azofeifa, G.A.; Rivard, B.; Sanchez-Azofeifa, A. Monitoring secondary tropical forests using space-borne data: Implications for Central America. Int. J. Remote Sens. 2003, 24, 1853–1894. [Google Scholar] [CrossRef]
- Prach, K.; Walker, L.R. Four opportunities for studies of ecological succession. Trends Ecol. Evol. 2011, 26, 119–123. [Google Scholar] [CrossRef]
- Becknell, J.M.; Powers, J.S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Can. J. For. Res. 2014, 44, 604–613. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Sanchez-Azofeifa, G.A.; Kalacska, M.; Rivard, B.; Calvo-Alvarado, J.C.; Janzen, D.H. Secondary forest detection in a neotropical dry forest landscape using Landsat 7 ETM+ and IKONOS imagery1. Biotropica 2005, 37, 497–507. [Google Scholar] [CrossRef]
- Kalacska, M.E.R.; Sánchez-Azofeifa, G.A.; Calvo-Alvarado, J.C.; Rivard, B.; Quesada, M. Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 2005, 37, 486–496. [Google Scholar] [CrossRef]
- Kalacska, M.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.C.; Quesada, M.; Rivard, B.; Janzen, D. Species composition, similarity and diversity in three successional stages of a seasonally dry tropical forest. For. Ecol. Manag. 2004, 200, 227–247. [Google Scholar] [CrossRef]
- Kalacska, M.; Sanchez-Azofeifa, G.A. Hyperspectral Remote Sensing of Tropical and Sub-Tropical Forests; Kalacska, M., Sanchez-Azofeifa, G.A., Eds.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9780429136702. [Google Scholar]
- Kalacska, M.; Sanchez-Azofeifa, G.; Rivard, B.; Caelli, T.; White, H.P.; Calvo-Alvarado, J.C. Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy. Remote Sens. Environ. 2007, 108, 82–96. [Google Scholar] [CrossRef]
- Castillo-Núñez, M.; Sánchez-Azofeifa, G.A.; Croitoru, A.; Rivard, B.; Calvo-Alvarado, J.C.; Dubayah, R.O. Delineation of secondary succession mechanisms for tropical dry forests using LiDAR. Remote Sens. Environ. 2011, 115, 2217–2231. [Google Scholar] [CrossRef]
- Castillo, M.; Rivard, B.; Sanchez-Azofeifa, A.; Calvo-Alvarado, J.C.; Dubayah, R. LIDAR remote sensing for secondary Tropical Dry Forest identification. Remote Sens. Environ. 2012, 121, 132–143. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.; Vierling, L.A.; Hudak, A.T.; Nelson, R.F.; Evans, J. Quantifying tropical dry forest type and succession: Substantial improvement with LiDAR. Biotropica 2012, 45, 135–146. [Google Scholar] [CrossRef] [Green Version]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys. Res. Lett. 2005, 32, L21S02. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, E.; Olofsson, K.; Holmgren, J.; Olsson, H. Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens. Environ. 2012, 118, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Armston, J.; Disney, M.; Lewis, P.; Scarth, P.; Phinn, S.; Lucas, R.; Bunting, P.; Goodwin, N. Direct retrieval of canopy gap probability using airborne waveform lidar. Remote Sens. Environ. 2013, 134, 24–38. [Google Scholar] [CrossRef]
- Milenković, M.; Schnell, S.; Holmgren, J.; Ressl, C.; Lindberg, E.; Hollaus, M.; Pfeifer, N.; Olsson, H. Influence of footprint size and geolocation error on the precision of forest biomass estimates from space-borne waveform LiDAR. Remote Sens. Environ. 2017, 200, 74–88. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, S.; Sanchez-Azofeifa, G. Using LiDAR waveform metrics to describe and identify successional stages of tropical dry forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 482–492. [Google Scholar] [CrossRef]
- Li, W.; Cao, S.; Campos-Vargas, C.; Sanchez-Azofeifa, A. Identifying tropical dry forests extent and succession via the use of machine learning techniques. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 196–205. [Google Scholar] [CrossRef]
- Sun, C.; Cao, S.; Sanchez-Azofeifa, G.A. Mapping tropical dry forest age using airborne waveform LiDAR and hyperspectral metrics. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101908. [Google Scholar] [CrossRef]
- Lucas, R.; Honzák, M.; Curran, P.J.; Foody, G.; Milne, R.; Brown, T.; Amaral, S. Mapping the regional extent of tropical forest regeneration stages in the Brazilian Legal Amazon using NOAA AVHRR data. Int. J. Remote Sens. 2000, 21, 2855–2881. [Google Scholar] [CrossRef]
- Kalacska, M.; Calvo-Alvarado, J.C.; Sanchez-Azofeifa, G.A. Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol. 2005, 25, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, D.; Grauman, K. Relative attributes. In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 503–510. [Google Scholar]
- Zhao, G.; Cheng, L.; Wu, H.; Li, H.; Li, X. Relative attribute based unmixing. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2705–2708. [Google Scholar]
- Cao, S.; Sanchez-Azofeifa, A. Modeling seasonal surface temperature variations in secondary tropical dry forests. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 122–134. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Nassar, J.M.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.; et al. Research priorities for neotropical dry forests. Biotropica 2005, 37, 477–485. [Google Scholar] [CrossRef]
- Calvo-Rodriguez, S.; Sánchez-Azofeifa, G.A.; Durán, S.M.; Espírito-Santo, M.M.D.; Nunes, Y.R.F. Dynamics of carbon accumulation in tropical dry forests under climate change extremes. Forests 2021, 12, 106. [Google Scholar] [CrossRef]
- Kalacska, M. Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sens. Environ. 2004, 91, 134–152. [Google Scholar] [CrossRef]
- Quesada, M.; Stoner, K.E. Threats to the conservation of tropical dry forest in Costa Rica. In Biodiversity Conservation in Costa Rica Learning the Lessons in a Seasonal Dry Forest; University of California Press: Los Angeles, CA, USA, 2004; pp. 266–280. ISBN 0520223098. [Google Scholar]
- Blair, J.; Rabine, D.L.; Hofton, M.A. The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS J. Photogramm. Remote Sens. 1999, 54, 115–122. [Google Scholar] [CrossRef]
- Hofton, M.; Rocchio, L.; Blair, J.; Dubayah, R. Validation of vegetation canopy lidar sub-canopy topography measurements for a dense tropical forest. J. Geodyn. 2002, 34, 491–502. [Google Scholar] [CrossRef]
- Fukushima, Y.; Hiura, T.; Tanabe, S.-I. Accuracy of the MacArthur-Horn method for estimating a foliage profile. Agric. For. Meteorol. 1998, 92, 203–210. [Google Scholar] [CrossRef]
- Casas, A.; Riano, D.; Ustin, S.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Zortea, M.; Zanotta, D.C.; Shimabukuro, Y.E.; Filho, C.R.D.S. Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sens. Environ. 2016, 179, 66–78. [Google Scholar] [CrossRef]
- Mørup, M.; Hansen, L.K. Archetypal analysis for machine learning and data mining. Neurocomputing 2012, 80, 54–63. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, G.; Jia, X. Hyperspectral image unmixing based on fast kernel archetypal analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 331–346. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.F.; Mahdavi, M.; Jin, R.; Zhou, Z.H. Nyström method vs. random Fourier features: A theoretical and empirical comparison. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 476–484. [Google Scholar]
- Rahimi, A.; Recht, B. Random features for large-scale kernel machines. In Proceedings of the International Conference on Advances in Neural Information Processing Systems, Whistler, BC, Canada, 6–10 December 2009; pp. 1177–1184. [Google Scholar]
- Liang, L.; Grauman, K. Beyond comparing image pairs: Setwise active learning for relative attributes. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 208–215. [Google Scholar]
- de Almeida, C.T.; Galvão, L.S.; Aragão, L.E.D.O.C.E.; Ometto, J.P.H.B.; Jacon, A.D.; Pereira, F.R.D.S.; Sato, L.Y.; Pontes-Lopes, A.; Graça, P.; Silva, C.V.D.J.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Zhao, G.; Jia, X.; Zhao, C. Multiple endmembers based unmixing using archetypal analysis. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 5039–5042. [Google Scholar] [CrossRef]
- Guariguata, M.R.; Ostertag, R. Neotropical secondary forest succession: Changes in structural and functional characteristics. For. Ecol. Manag. 2001, 148, 185–206. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Letcher, S.; van Breugel, M.; Martínez-Ramos, M.; Bongers, F.; Finegan, B. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philos. Trans. R. Soc. B Biol. Sci. 2006, 362, 273–289. [Google Scholar] [CrossRef]
- Herrmann, I.; Karnieli, A.; Bonfil, D.J.; Cohen, Y.; Alchanatis, V. SWIR-based spectral indices for assessing nitrogen content in potato fields. Int. J. Remote Sens. 2010, 31, 5127–5143. [Google Scholar] [CrossRef]
- Hyodo, F.; Kusaka, S.; Wardle, D.; Nilsson, M.-C. Changes in stable nitrogen and carbon isotope ratios of plants and soil across a boreal forest fire chronosequence. Plant Soil 2012, 364, 315–323. [Google Scholar] [CrossRef]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9503-2. [Google Scholar]
- Gei, M.; Rozendaal, D.M.A.; Poorter, L.; Bongers, F.; Sprent, J.I.; Garner, M.D.; Aide, T.M.; Andrade, J.L.; Balvanera, P.; Becknell, J.M.; et al. Legume abundance along successional and rainfall gradients in Neotropical forests. Nat. Ecol. Evol. 2018, 2, 1104–1111. [Google Scholar] [CrossRef]
- Rozendaal, D.M.A.; Bongers, F.; Aide, T.M.; Alvarez-Dávila, E.; Ascarrunz, N.; Balvanera, P.; Becknell, J.M.; Bentos, T.V.; Brancalion, P.H.S.; Cabral, G.A.L.; et al. Biodiversity recovery of Neotropical secondary forests. Sci. Adv. 2019, 5, eaau3114. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P.; Law, B.E.; Treuhaft, R.N. Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. J. Geophys. Res. Space Phys. 2001, 106, 5151–5160. [Google Scholar] [CrossRef] [Green Version]
- Hesketh, M.; Sánchez-Azofeifa, G.A. The effect of seasonal spectral variation on species classification in the Panamanian tropical forest. Remote Sens. Environ. 2012, 118, 73–82. [Google Scholar] [CrossRef]
- Tang, H.; Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 2017, 114, 2640–2644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waring, B.; Adams, R.; Branco, S.; Powers, J.S. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytol. 2015, 209, 845–854. [Google Scholar] [CrossRef] [Green Version]
Acronym | Source | Description | Formula | |
---|---|---|---|---|
Hyperspectral metrics | ||||
1 | CAI | SWIR | Cellulose absorption index | |
2 | LCA | SWIR | Lignin-cellulose absorption index | |
3 | NDNI | SWIR | Normalized difference nitrogen index | |
4 | NDLI | SWIR | Normalized difference lignin index | |
5 | DMCI | SWIR | Dry matter content index | |
6 | NDTI | SWIR | Normalized difference tillage index | |
7 | NDWI | NIR; SWIR | Normalized difference water index | |
8 | SIWSI | NIR; SWIR | Short infrared water stress index | |
9 | MSI | NIR; SWIR | Moisture stress index | |
10 | NDII | NIR; SWIR | Normalized difference infrared index | |
11 | RMSI | NIR; SWIR | Reciprocal of moisture stress index | |
LiDAR metrics | ||||
12 | Cx | ELW | The x-coordinate of the waveform centroid | |
13 | Cy | ELW | The y-coordinate of the waveform centroid | |
14 | RG | ELW | The radius of gyration, which can be expressed as the root mean square of the sum of the distances that all points on the waveform are from its centroid | |
15 | MAX | ELW | x-coordinate of the maximum waveform amplitude | |
16 | EC | ELW | Effective channel, number of points reflected at each pixel | |
17 | RH50 | NCEREC | Height (relative to zg*) at which 50% of the waveform energy occurs (m) | |
18 | AH1e10 | ELW | Total waveform amplitude where the relative height is less than 10 m | |
19 | AH1015 | ELW | Total waveform amplitude where the relative height is between 10 and 15 m | |
20 | AH1520 | ELW | Total waveform amplitude where the relative height is between 15 and 20 m |
RNAA Feature Number () | Selected Metrics | Accuracy () | |
---|---|---|---|
Training | Test | ||
1 | CAI | 0.8882 | 0.8710 |
2 | NDLI, MSI | 0.8224 | 0.8010 |
3 | NDLI, DMCI, MSI | 0.8213 | 0.8010 |
4 | NDNI, NDLI, DMCI, MSI | 0.8940 | 0.8797 |
5 | NDNI, NDLI, DMCI, NDWI, MSI | 0.8956 | 0.8774 |
6 | LCA, NDNI, NDLI, DMCI, NDWI, NDII | 0.8949 | 0.8800 |
7 | LCA, NDNI, NDLI, DMCI, NDWI, MSI, NDII | 0.8967 | 0.8771 |
8 | CAI, LCA, NDNI, NDLI, DMCI, NDWI, MSI, NDII | 0.9189 | 0.8989 |
9 | CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, MSI, NDII | 0.9193 | 0.9002 |
10 | CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, MSI, NDII, RMSI | 0.9220 | 0.8970 |
11 | CAI, LCA, NDNI, NDLI, DMCI, NDTI, NDWI, SIWSI, MSI, NDII, RMSI | 0.9249 | 0.8899 |
RNAA Feature Number (G) | Selected Metrics | Accuracy (τ) | |
---|---|---|---|
Training | Test | ||
1 | Cx | 0.8473 | 0.8464 |
2 | Cx, RG, MAX, EC and RH50 | 0.9324 | 0.8931 |
3 | RG, MAX, EC and RH50, AH1015, AH1520 | 0.9347 | 0.8867 |
4 | Cy, RG, MAX, EC, RH50, AH1015 | 0.9307 | 0.8896 |
5 | Cy, RG, MAX, EC, RH50, AH1015, AH1520 | 0.9351 | 0.8858 |
6 | Cy, RG, MAX, EC, RH50, AH1e10, AH1015 | 0.9309 | 0.8893 |
7 | Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 | 0.9351 | 0.8858 |
8 | Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 | 0.9351 | 0.8858 |
9 | Cx, Cy, RG, MAX, EC, RH50, AH1e10, AH1015, AH1520 | 0.9347 | 0.8880 |
Condition | Selected Metrics | Accuracy () | |
---|---|---|---|
Training | Test | ||
HyMap key metrics combined with all the LVIS key metrics | NDNI, NDLI, DMCI, MSI, Cx, RG, MAX, EC, and RH50 | 0.9418 | 0.8806 |
HyMap key metrics combined with one of the LVIS key metrics | NDNI, NDLI, DMCI, MSI, Cx | 0.9087 | 0.8944 |
NDNI, NDLI, DMCI, MSI, RG | 0.9211 | 0.8819 | |
NDNI, NDLI, DMCI, MSI, MAX | 0.9147 | 0.8787 | |
NDNI, NDLI, DMCI, MSI, EC | 0.9031 | 0.8797 | |
NDNI, NDLI, DMCI, MSI, and RH50 | 0.9138 | 0.8928 | |
LVIS key metrics combined with one of the HyMap key metrics | NDNI, Cx, RG, MAX, EC and RH50 | 0.9313 | 0.9027 |
NDLI, Cx, RG, MAX, EC and RH50 | 0.9271 | 0.8992 | |
DMCI, Cx, RG, MAX, EC and RH50 | 0.9267 | 0.9002 | |
MSI, Cx, RG, MAX, EC, and RH50 | 0.9258 | 0.8982 |
Metric | NDNI | Cx | RG | MAX | EC | RH50 |
---|---|---|---|---|---|---|
Weight for age-attribute learning | ------ | 1.6324 | −7.3361 | 2.0739 | −0.9981 | 0.9416 |
0.0015 | 1.6871 | −7.4882 | 2.3589 | −0.5981 | 0.7056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Sanchez-Azofeifa, A.; Laakso, K.; Sun, C.; Fei, L. Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages. Remote Sens. 2021, 13, 3830. https://doi.org/10.3390/rs13193830
Zhao G, Sanchez-Azofeifa A, Laakso K, Sun C, Fei L. Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages. Remote Sensing. 2021; 13(19):3830. https://doi.org/10.3390/rs13193830
Chicago/Turabian StyleZhao, Genping, Arturo Sanchez-Azofeifa, Kati Laakso, Chuanliang Sun, and Lunke Fei. 2021. "Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages" Remote Sensing 13, no. 19: 3830. https://doi.org/10.3390/rs13193830
APA StyleZhao, G., Sanchez-Azofeifa, A., Laakso, K., Sun, C., & Fei, L. (2021). Hyperspectral and Full-Waveform LiDAR Improve Mapping of Tropical Dry Forest’s Successional Stages. Remote Sensing, 13(19), 3830. https://doi.org/10.3390/rs13193830