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Abstract: Soil moisture (SM) plays a significant part in regional hydrological and meteorological
systems throughout Earth. It is considered an indispensable state variable in earth science. The
high sensitivity of microwave remote sensing to soil moisture, and its ability to function under all
weather conditions at all hours of the day, has led to its wide application in SM retrieval. The aim
of this study is to evaluate the ability of ALOS-2 data to estimate SM in areas with high vegetation
coverage. Through the water cloud model (WCM), the article simulates the scene coupling between
active microwave images and optical data. Subsequently, we use a genetic algorithm to optimize
back propagation (GA-BP) neural network technology to retrieve SM. The vegetation descriptors of
the WCM, derived from optical images, were the normalized difference vegetation index (NDVI), the
normalized difference water index (NDWI), and the normalized multi-band drought index (NMDI).
In the vegetation-covered area, 240 field soil samples were collected simultaneously with the ALOS-2
SAR overpass. Soil samples at two depths (0–10 cm, 20–30 cm) were collected at each sampling site.
The backscattering of the ALOS-2 with the copolarization was found to be more sensitive to SM
than the crosspolarization. In addition, the sensitivity of the soil backscattering coefficient to SM at a
depth of 0–10 cm was higher than at a depth of 20–30 cm. At a 0–10 cm depth, the best results were
the mean square error (MAE) of 2.248 vol%, the root mean square error (RMSE) of 3.146 vol%, and
the mean absolute percentage error (MAPE) of 0.056 vol%, when the vegetation is described as by
the NDVI. At a 20–30 cm depth, the best results were an MAE of 2.333 vol%, an RMSE of 2.882 vol%,
a MAPE of 0.067 vol%, with the NMDI as the vegetation description. The use of the GA-BP NNs
method for SM inversion presented in this paper is novel. Moreover, the results revealed that ALOS-2
data is a valuable source for SM estimation, and ALOS-2 L-band data was sensitive to SM even under
vegetation cover.

Keywords: soil moisture; ALOS-2; GA-BP; water cloud model; L-band

1. Introduction

Soil moisture (SM) is an important state variable that significantly affects the water
cycle, ecosystem, and energy exchange between the land and the atmosphere. SM in-
formation is important in different fields, such as agriculture, meteorology, hydrology,
weather, and evapotranspiration forecasting [1–7]. In recent decades, in the large-scale
domain, the development of remote sensing technology has provided more opportuni-
ties. Specifically, surface SM inversion based on remote sensing technology has become a
hotspot of research [8–11]. Optical remote sensing cannot penetrate clouds and rain and is
easily restricted by weather and solar illumination conditions. Therefore, it is impossible to
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perform an all-weather observation of the Earth in the optical and thermal spectral regions.
However, microwave remote sensing is not subject to weather and light conditions and can
monitor surface SM under all weather conditions at all hours of the day [12]. Moreover, it
has a certain penetrating ability for vegetation and, therefore, it has the potential for the
continuous monitoring of surface SM over a large area [13–20].

In the past few decades, synthetic aperture radar (SAR) has been the primary active
microwave remote sensing means of monitoring SM [6,21]. However, in vegetation-covered
areas, the signal includes direct scattering from plant cover and attenuated backscatter
from the ground. As a result, the observed backscattering signal includes the vegetation,
the surface, and the interaction between vegetation and the surface simultaneously [22],
making it extremely difficult to retrieve SM under the vegetation coverage. Therefore,
the main challenge to estimating SM vegetation coverage is the elimination of the impact
of surface roughness and vegetation [1,23–25]. Many scholars have proposed different
solutions to the impact of vegetation on radar backscattering in vegetation-covered areas.
In many studies, the WCM is applied in an inversion method to estimate SM in vegetation-
covered areas. In the WCM, the total reflected radar signal is modeled as a function of soil
and vegetation contributions. The direct contribution of the vegetation’s scattering and
attenuation is mainly calculated by using biophysical parameters representing vegetation.
Optical data can be used to estimate biophysical parameters [12,26]. Therefore, combining
optical and SAR data is beneficial for SM retrieval in vegetation-covered areas [27–38].

However, due to the topography, the actual measurement (SM, soil roughness, etc.),
and other factors, the lack of soil roughness and other relevant information will affect
the inversion accuracy. In order to solve this problem, the purpose of this study is to
evaluate the potential of combining L-band SAR data and optical data to estimate SM
under vegetation. Research on the basics of the inversion of the WCM using GA-BP neural
networks was developed to solve the problem of the lack of soil roughness and other factors.
This study consists of four main parts: (1) the parameterization of WCM; (2) a learning
simulation of synthetic SAR data; (3) training of a GA-BP neural network; (4) applied
training and the verification of the results of the inversion method on real datasets. Section 2
of the paper describes the study area and in situ measurements. Section 3 investigates the
methods. Section 4 features the results. Section 5 presents the discussion. Finally, Section 6
outlines the main conclusions.

2. Study Area
2.1. Study Area

The area of interest, situated in the Liuzhi Special District of Guizhou province (cen-
tered at 105.159◦E, 26.541◦N), was selected for SM estimation research (Figure 1). The
Liuzhi Special Zone is marked by a warm and humid subtropical monsoon climate with
abundant rainfall. It is located between mountains with steep terrain and a high altitude. In
addition, it is characterized by high vegetation cover, with a forest coverage rate of 51.05%,
rich crop species, and a wide grassland range. Because of the influence of topography and
vegetation, natural disasters, such as landslides and debris flow, are prone to occur in this
area. Therefore, the motivation to estimate SM in this region is very high since disasters are
driven by soil water content changes that significantly affect the economy, the environment,
and people’s lives.
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Figure 1. The study region of the land use patterns in Liuzhi (left), and a district map (right).

2.2. Radar Data

In this research, the ALOS-2 SAR data was utilized for SM inversion research. The
ALOS-2 is the only L-band SAR satellite currently in orbit. Its frequency is 1.2 GHz. This
study uses fine dual-polarization modes (HH and HV) with a nominal spatial coverage
resolution of 3 m. Using an algorithm to calibrate SAR images by the Japan Aerospace
Exploration Agency (JAXA), the digital number (DNi) of each pixel was converted to the
radar backscatter coefficient (σ0

pq) by radiation calibration. The calculation formula for
radiation calibration of the ALOS-2 data is:

σ0
pq = K·DN2

i (1)

The absolute calibration constant is represented by K. Following radiometric calibra-
tion, the backscattering coefficient had linear units, which was then converted to dB units
for convenience [35] using Equation (2):

σ0
dB = 10· log10

(
σ0

pq

)
(2)

SARscape, an advanced radar image processing software developed by SARmap
(Purasca, Switzerland), was used to process the ALOS-2 data by performing multilooking,
filtering, geocoding, and radiometric calibration.

2.3. Optical Data

The operational land imager (OLI) sensor, and the thermal infrared sensor (TIRS),
are two instruments on NASA’s Landsat-8 satellite [39]. Landsat-8 and Landsat 4–7 prod-
ucts have similar spatial resolution and spectroscopic characteristics. There is a total of
11 bands in Landsat-8 imagery. The spatial resolution of bands 1–7 and 9–11 is 30 m. The
spatial resolution of band 8 is 15 m. The satellite achieves global coverage every 16 days
(https://earthexplorer.usgs.gov/, accessed on 19 August 2021).

The NDVI is a significant measure reflecting crop growth and nutrition informa-
tion [40]. The NDWI is an important index for evaluating vegetation water status [41]. The
NMDI was calculated based on a near-infrared and two short wave infrareds [42,43].

https://earthexplorer.usgs.gov/
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2.4. In Situ Measurements

While acquiring ALOS-2 SAR data, the field measurements were performed in the
study area from 26 September 2020 to 27 September 2020. During this period, there was no
precipitation or significant temperature changes in the experimental area. In the research
field, the appropriate sampling points were selected to collect soil samples. The terrain of
the Liuzhi Special Zone in Guizhou Province is complex and there are many mountains,
which increases the difficulty of sampling. Therefore, the areas we sampled were all flat
areas, such as farmland and grassland. At the same time, in order to make the samples
diverse, we tried to distribute them as widely as possible. A handheld GPS was used to
record the longitude and latitude of each sample point, take photos of the sampling point
(one photo), and take pictures of the surrounding environment (four photos from the front,
back, left, and right). We finally selected 120 sampling points. 119 samples were taken at
depths of 0–10 cm, and 120 samples were taken at depths of 20–30 cm. Figure 2 shows the
distribution of sampling points.
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The determination of the soil moisture content was obtained by the laboratory weigh-
ing and drying of soil samples. Water content can be expressed as gravimetric water
content and volumetric water content. The ratio of the quantity of water in the soil and the
dry soil is gravimetric water content (Mg). It is represented by Formula (3).

Mg =
Mw

Ms
(3)

where Mw represents the quality of water in the soil, and Ms represents the mass of dry soil.
The volumetric water content (of Mv) is the ratio of the volume of the soil water in soil.

Mv =
Vw

V
(4)

where Vw is the volume occupied by water in the soil, and V is the total volume of the soil.
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The relationship between soil volumetric water content and mass water content can
be expressed as:

Mv = Mgρ (5)

where ρ represents the bulk density.
119 samples from a 0–10 cm depth were collected, and 120 samples were collected at a

depth of 20–30 cm. The values of soil volumetric water content less than 20% and greater
than 62% were removed. A total of 116 sample points remained. Following outlier removal,
the measured range of SM at a 0–10 cm depth was between 22.90 and 60.82 vol%, and the
average SM was 39.49 vol%. The measured range of SM at a 20–30 cm depth was between
21.17 and 61.92 vol%, and the average SM was 37.28 vol%.

3. Methods

The research is divided into two parts, the WCM and GA-BP, which are used for
SM estimation. The GA-BP algorithm is used to analyze the empirical model, 3.1. radar
signal modeling.

In 1978, Attema and Ulaby took crops as the research object and proposed a semi-
empirical vegetation backscattering model ground on the first-order solution of the radi-
ation transfer equation, namely, the WCM [44]. The intensity of radar backscattering is
easily affected by the surface roughness and vegetation [22]. This is accounted for in the
WCM, due to the joint scattering contribution of the vegetation and the underlying surface
scattering to determine the total backward canopy scattering coefficient. The vegetation
layer reduces the contribution of the underlying surface scattering to a certain extent. When
the influence of the radar shadow and terrain undulation is neglected, the WCM can be
expressed as Equation (6):

σ0 = σ0
veg + τ2σsoil (6)

The total backscattering coefficient is represented by σ0 in the vegetation coverage
area; σ0

soil represents the backscattering coefficient for the soil surface; σ0
veg shows the

backscattering coefficient produced by the surface plants; τ2 is the two-way attenuation
coefficient; σ0

veg and τ2 are expressed in Equations (7) and (8):

σ0
veg = AV1 cos θ

(
1 − τ2

)
(7)

τ2 = exp(−2BV2/ cos θ) (8)

σ0
soil =

σ0 − AV1 ∗ cos θ[1 − exp(−2 ∗ B ∗ V2 ∗ sec θ)]

exp(−2 ∗ B ∗ V2 ∗ sec θ)
(9)

where θ is the angle of radar incidence; V1 represents the direct scattering of vegetation; and
V2 represents the attenuation of vegetation. The common feature is that optical vegetation
parameters are needed to parameterize the scattering component of the vegetation. In this
study, V1 and V2 were replaced by the NDWI, the NDVI, and the NMDI, calculated from
Landsat-8 imagery; A and B are empirical constants. The values of A and B are obtained by
nonlinear least-square fitting.

3.1. GA-BP Neural Network
3.1.1. Genetic Algorithm (GA)

GA is a computational model simulating the natural selection and genetic mechanisms
of Darwinian biological evolution. This is a method used to find the optimal solution
according to the natural evolutionary process. The core content of the genetic algorithm is
divided into five steps: parameter coding, initial population setting, fitness function design,
genetic operation design, and control parameter setting.

The basic operation of the genetic algorithm is split into three steps: selection,
crossover, and mutation operation [45–47]. Selection is the operation of selecting su-
perior individuals from the group and eliminating inferior individuals. Crossover refers
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to replacing and recombining the partial structures of two parent individuals to generate
new individuals. The basic content of the mutation operator is to change the gene value on
some loci of the individual string in the population.

3.1.2. Back Propagation (BP) Neural Network

The BP neural network is divided into an input layer, a hidden layer, and an output
layer. It is a multilayer feedforward neural network.

The learning process of the algorithm was divided into two stages: the first stage
was the forward propagation process, in which the actual output values of nodes in each
layer were calculated layer by layer from the input layer through the hidden layer. The
nodes in each layer only accepted the input from the nodes in the previous layer and
influenced only the state of nodes in the next layer. The second stage was the process of
back propagation. If the output layer failed to get the expected output value, the error
between the actual output and the expected output was calculated recursively layer by
layer. The weight of the previous layer was corrected according to the error to minimize
the error signal. In the direction of the decline of the error function slope, the network
weight and threshold changes were constantly adjusted to gradually approach the objective
function. Each time, the weight and error changes were proportional to the influence of the
network error [48,49].

3.2. Soil Moisture Retrieval

SM was estimated using a GA-BP algorithm. In order to study the performance of the
inversion method, the BP neural network was trained and verified on the synthetic dataset.
The specific steps were as follows:

(1) The BP neural network consists of three layers. The layers are completely intercon-
nected, with each layer having layers of simple processing units (neurons). The
input data information is assigned to the input layer, multiplied, and forwarded
through a weighting factor, and a deviation is added to the hidden layer. The output
layer neurons obtained by the control are considered the input values of the output
layer [27]. In this study, based on the data, we will set two inputs and one output. The
soil backscattering coefficient under different polarizations (HH, HV), excluding the
influence of vegetation, was used as input. These synthetic SAR backscatter datasets
are obtained from the WCM. The parameterization uses soil volumetric moisture,
vegetation descriptors, and incident angle values as input variables to simulate the
backscatter coefficient of HH and HV polarization. Only parameters that can be easily
estimated from optical images, such as the NDVI, the NDWI, and the NMDI, were
considered in the generation of the synthetic dataset. When the WCM was coupled
with the surface scattering model used to retrieve SM under vegetation cover, the
separation of the vegetation-scattering contribution was mainly through synchronous
optical data or auxiliary data measured on the ground. However, there is no unified
standard for vegetation parameterization at present, and there is no theoretical basis
to support which vegetation parameter can effectively and accurately represent vege-
tation scattering. Therefore, different vegetation parameters are used to characterize
the contribution of vegetation scattering. This paper aims at the estimation of SM
under vegetation cover. Therefore, before the active microwave method is used to
retrieve SM, the data should be firstly downscaled. According to the resampling
method, the radar backscattering coefficient, with a resolution of 3 m, is downscaled
to the backscattering coefficient with a resolution of 30 m, and the total backscattering
coefficient δtot of the vegetation-covered surfaces under HH and HV polarization is
obtained, respectively. The WCM model is parameterized. Firstly, the least-square
method was used to estimate parameters A and B by fitting the model based on the
ground-truthed measurements (Equations (7)–(9)). Among them, the parameters of
V1 and V2 were described by the NDVI, the NDWI, and the NMDI, and the incident
angle was obtained from the radar image. With parameters A and B, it becomes possi-
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ble to predict the WCM components (δ0
veg, τ2, and δ0

soil) and, consequently, the total
backscattering coefficient (δtot) using one vegetation descriptor and the SM values as
inputs in the WCM.

(2) GA was used to optimize the weight and threshold of the BP neural network. Each
individual in the population contained a network ownership value and threshold.
The individual calculated the individual fitness value through a fitness function, and
the genetic algorithm found the corresponding individual with the optimal fitness
value through selection, crossover, and mutation operations.

(3) The set-up BP neural network topology: the BP neural network was optimized using
a genetic algorithm to get the optimal individual to assign the initial weight and
threshold of the network. The prediction function was output after the network was
trained. The GA model was used to optimize the BP neural network and improve
inversion accuracy. In the GA module, iterations, population, crossover probability,
mutation probability, and BP network evolution are important input parameters. The
nonlinear function to be fitted in this paper has two input parameters and one output
parameter, so the BP neural network structure set was 2-5-1, that is, the input layer
had two nodes, the hidden layer had five nodes, and the output layer had one node,
with a total of 15 weights and six thresholds. Hence, the individual code length of
the genetic algorithm was 21. The two polarized backscattering coefficients of HH
and HV were taken as the input, and the measured SM corresponding to longitude
and latitude was the output. The parameters of the genetic algorithm were set as
follows: population size = 70; evolution times = 300; crossover probability = 0.6; and
mutation probability = 0.2. Figure 3 presents the flow chart of SM inversion based on
the GA-BP neural network.
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4. Results
4.1. Sensitivity Analysis of the Radar Signal
4.1.1. Water Cloud Model Parameterization

The WCM parameterization results were calculated and analyzed according to Section 3.2.
Table 1 details the WCM input parameters.
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Table 1. The input parameters of the WCM.

Parameter Min Value Max Value Mean Unit

NDVI 0 0.76 0.08 -
NDWI 0.3 0.94 0.72 -
NMDI 0.58 0.97 0.85 -

Incidence Angle - - 39.663 ◦

The backscatter coefficient of soil without vegetation influence was calculated from
the WCM. The HH polarization and HV polarization backscatter values were lower than
the total backscatter.

By comparison, because of the higher sensitivity of the HH polarization to the dihedral
angular reflection effect, the backscattering coefficient was higher than that of the HV
polarization. This is because the branches and shapes of the surface vegetation have more
influence on crosspolarization than on copolarization. The inclination angle of branches and
leaves affected the degree of response of different polarizations. Thus, the HH polarization
and HV polarization of the radar scattering were affected differently.

4.1.2. The Sensitivity of ALOS-2 Data to SM under Vegetation Cover

The relationship with the soil backscattering coefficient and SM, presented in Table 2,
was obtained by replacing the vegetation water content with different vegetation indices.
At depths of 0–10 cm, the quality of the fit was approximately the same for all the vegetation
descriptors used, with an MAE of the predicted backscattering coefficients between 2.792
and 3.142 dB in HH, and between 3.083 and 3.469 dB in HV polarization. The RMSE
of the predicted backscattering coefficients was between 3.606 and 4.053 dB in HH, and
between 3.755 and 4.226 dB in HV polarization. The MAPE of the predicted backscattering
coefficients was −0.25 dB in HH, and −0.16 dB in HV polarization. At depths of 20–30 cm,
the quality of the fit was approximately the same for all the used vegetation descriptors,
with an MAE of the predicted backscattering coefficients between 2.843 and 3.199 dB in
HH, and between 3.085 and 3.472 dB in HV polarization. The RMSE on the predicted
backscattering coefficients was between 3.67 and 4.13 dB in HH, and between 3.743 and
4.13 dB in HV polarization. The MAPE of the predicted backscattering coefficients was
−0.25 dB in HH, and −0.16 dB in HV polarization. Therefore, the copolarizations of the
ALOS-2 were found to be more sensitive to SM than the crosspolarizations. In addition,
the sensitivity to SM at a depth of 0–10 cm was higher than at a depth of 20–30 cm.

Table 2. The results of the relationship between the backscattering coefficient and SM.

(dB) 0–10 cm (vol%) 20–30 cm (vol%)

MAE RMSE MAPE MAE RMSE MAPE

WCM (V1 = V2 = NDVI) HH 2.792 3.606 −0.25 2.843 3.67 −0.26
HV 3.083 3.755 −0.16 3.085 3.743 −0.16

WCM (V1 = V2 = NDWI) HH 3.006 3.882 −0.25 3.06 3.951 −0.26
HV 3.319 4.043 −0.16 3.321 4.03 −0.16

WCM (V1 = V2 = NMDI) HH 3.142 4.058 −0.25 3.199 4.13 −0.26
HV 3.469 4.226 −0.16 3.472 4.212 −0.16

4.2. Modeling Results
4.2.1. GA-BP Results Analysis

In order to improve the sensitivity of the radar signal, HH and HV were used as inputs
in the BP neural network model. The GA-BP parameter settings are displayed in Table 3.
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Table 3. GA-BP preferences.

GA Preferences Value

Iterations 300
Population 70

Crossover probability 0.6
Mutation probability 0.2

BP Preferences Value

Maximum number of training 100
The training accuracy 0.00001

Learning rate 0.1

Figure 4 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDVI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network became stable, as seen in the fitness curve region, after
160 generations, and the GA algorithm can search the appropriate weight and threshold
at this time (Figure 4A). The error percentage of the BP neural network ranges from −0.4
to 0.6. (Figure 4B). The prediction of BP is between −0.25 and 0.2 (Figure 4C). The BEST
dotted line indicates that the BP training result is ideal when the BP network is trained to
the sixth generation (Figure 4D).
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Figure 4. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NDVI in Equation (9)), sampling
depth is 0–10 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error of BP
network, and (D) is BP training process. The three solid colored lines in the figure: the blue line represents the performance
of the MSE index in the BP training process in each generation; the green line shows the performance of the MSE index in the
BP crossvalidation process in each generation; and the red line represents the performance of the MSE index in the BP testing
process in each generation. The red line represents the test condition, which is the result of BP calculation and training (D).
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Figure 5 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDVI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network is stable in the fitness curve region after 60 generations,
and the GA can search the appropriate weight and threshold at this time (Figure 5A).
The error percentage of the BP neural network ranges from −0.4 to 0.5 (Figure 5B). The
prediction of BP is −0.15 to 0.2 (Figure 5C). The BEST dotted line indicates that the BP
training result is ideal when the BP network is trained to the second generation (Figure 5D).
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Figure 5. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NDVI in Equation (9)), sampling
depth is 20–30 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error
of BP network, and (D) is BP training process. The three solid colored lines in the figure: the blue line represents the
performance of the MSE index in the BP training process in each generation; the green line shows the performance of the
MSE index in the BP crossvalidation process in each generation; and the red line represents the performance of the MSE
index in the BP testing process in each generation. The red line represents the test condition, which is the result of BP
calculation and training (D).

Figure 6 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDWI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network was stable in the fitness curve region after 105 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 6A).
The error percentage of the BP neural network ranged from −0.5 to 0.5 (Figure 6B). The
prediction of BP was −0.25 to 0.25 (Figure 6C). The BEST line indicates that an ideal BP
training result was reached at the 11th generation (Figure 6D).
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Figure 6. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NDWI in Equation (9)), sampling
depth is 0–10 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error of BP
network, and (D) is BP training process.The three solid colored lines in the figure: the blue line represents the performance of
the MSE index in the BP training process in each generation; the green line shows the performance of the MSE index in the
BP crossvalidation process in each generation; and the red line represents the performance of the MSE index in the BP testing
process in each generation. The red line represents the test condition, which is the result of BP calculation and training (D).

Figure 7 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NDWI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network was stable in the fitness curve region after 75 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 7A).
The error percentage of the BP neural network ranges from −0.5 to 0.5 (Figure 7B). The
prediction of BP was −0.2 to 0.2 (Figure 7C). The BEST dotted line indicates that the BP
training result was ideal in first generation (Figure 7D).

Figure 8 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NMDI in Equation (9)) at a depth
of 0–10 cm. The GA-BP network was stable in the fitness curve region after 120 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 8A).
The error percentage of the BP neural network ranges from −0.5 to 0.5 (Figure 8B). The
prediction of BP was −0.2 to 0.2 (Figure 8C). The BEST dotted line indicates that the BP
training result was ideal in the third generation (Figure 8D).
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Figure 9 shows the training results obtained by using the soil backscattering coeffi-
cients (HH, HV) as inputs in the WCM model (V1 = V2 = NMDI in Equation (9)) at a depth
of 20–30 cm. The GA-BP network was stable in the fitness curve region after 75 generations,
and the GA can search for the appropriate weight and threshold at this time (Figure 9A).
The error percentage of the BP neural network ranges from −0.4 to 0.6 (Figure 9B). The
prediction of BP was −0.2 to 0.15 (Figure 9C). The BEST dotted line indicates that the BP
training result was ideal at the third generation (Figure 9D).

4.2.2. Soil Moisture Retrieval

As stated in Section 3.2, different datasets were used to retrieve SM using the GA-
BP neural network: (1) using the radar signal in both HH and HV (V1 = V2 = NDVI in
Equation (9)); (2) using the radar signal in both HH and HV, which come from the WCM
(V1 = V2 = NDWI in Equation (9)); (3) the radar signal in both HH and HV (V1 = V2 = NMDI
in Equation (9)). Estimates of SM and SM reference scores were compared to assess the
accuracy of the SM inversion.
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Figure 9. GA-BP training results of the vegetation description in the WCM (V1 = V2 = NMDI in Equation (9)), sampling
depth is 20–30 cm. (A) shows the fitness curve, (B) shows error percentage of BP neural network, (C) is prediction error
of BP network, and (D) is BP training process. The three solid colored lines in the figure: the blue line represents the
performance of the MSE index in the BP training process in each generation; the green line shows the performance of the
MSE index in the BP crossvalidation process in each generation; and the red line represents the performance of the MSE
index in the BP testing process in each generation. The red line represents the test condition, which is the result of BP
calculation and training (D).

To calculate the SM, use two-thirds of the data as the training set, and the rest as the
validation set.

Figures 10–12 show the results of the GA-BP method.
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These two backscattering coefficients (HH and HV) were used in GA-BP (WCM,
V1 = V2 = NDVI in Equation (9)) analysis of the ALOS-2. According to the GA-BP re-
sults, the MAE, RMSE, and MAPE values were calculated as 2.248 vol%, 3.146 vol%,
and 0.056 vol% at the depth of 0–10 cm, respectively (Figure 10A). At a 20–30 cm depth, the
MAE, RMSE and MAPE values were 2.481 vol%, 3.196 vol%, and 0.065 vol%, respectively
(Figure 10B).

The results of the backscattering coefficients were used in GA-BP (WCM, V1 = V2 = NDWI
in Equation (9)). Correspondingly, at the depth of 0–10 cm, based on the GA-BP results, the
MAE, RMSE and MAPE values were calculated as 2.883 vol%, 3.495 vol%, and 0.069 vol%,
respectively (Figure 11A). At a 20–30 cm depth, the MAE, RMSE and MAPE values were
calculated as 2.389 vol%, 2.834 vol%, and 0.06 vol%, respectively (Figure 11B).

It follows that two backscattering coefficients were used in GA-BP (WCM, V1 = V2 = NMDI
in Equation (9)). Underlying the GA-BP results, the MAE, RMSE, and MAPE values were
calculated as 2.417 vol%, 3.096 vol%, and 0.062 vol%, respectively, at the depth of 0–10 cm
(Figure 12A). At a 20–30 cm depth, the MAE, RMSE, and MAPE values’ calculated results were
2.333 vol%, 2.882 vol%, and 0.067 vol%, respectively (Figure 12B).

Combined with the data analysis, the experiments show that, at a depth of 0–10 cm,
the accuracy of the results obtained by the NDVI as a description of vegetation is higher
than that obtained by other parameters.. The findings were better when vegetation was
described as the NDWI at depths of 20–30 cm. Table 4 presents the MAE, RMSE, and MAPE
analyses between the GA-BP-based Mv and the in situ Mv for ALOS-2 data in detail.

Table 4. The results of the MAE, RMSE, and MAPE between the GA-BP-based Mv and in situ Mv for ALOS-2 data.

0–10 cm (vol%) 20–30 cm (vol%)

MAE RMSE MAPE MAE RMSE MAPE

V1 = V2 = NDVI 2.248 3.146 0.056 2.481 3.195 0.065
V1 = V2 = NDWI 2.883 3.495 0.069 2.389 2.834 0.06
V1 = V2 = NMDI 2.417 3.096 0.062 2.333 2.883 0.067

Figures 10–12 show the scatter plots between the measured and inverted soil moisture.
It can be seen from the scatter plots that the retrieved soil moisture was underestimated in
relatively humid regions because of the sensitivity of radar signals to soil moisture. In drier
areas, the retrieved soil moisture was overestimated because the soil moisture content in the
surface layer was lower than that in the deep layer. At the same time, the consistency of the
soil moisture gradient also led to an overestimation of moisture. Because the soil moisture
range in this study area was too extensive, the estimated value was underestimated or
overestimated to a certain extent because of the actual local conditions. A large number of
experimental analyses have verified this result.
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Considering the GA-BP inversion analysis of the ALOS-2, the MAE, RMSE, and
MAPE values were computed with different inputs (WCM, Equation (9)): Figures 10–12,
respectively. The results show that the WCM (V1 = V2 = NDVI, NDWI, NMDI) can
effectively eliminate the backscattering effect of vegetation, and the results of the GA-BP
inversion using ALOS-2 data to estimate SM are satisfactory.

5. Discussion

This novel study shows the sensitivity of ALOS-2 radar data to SM. Only a few studies
have performed SM inversion using ALOS-2 data [7,35,50,51]. Sekertekin et al. compared
the potentials of ALOS-2 L-band and Sentinel-1 C-band data for SM estimation in bare and
vegetation-covered agricultural fields using the WCM. The NDVI and plant coverage (PC)
were considered the vegetation description, and the NDVI performed better than PC. The
results show that the WCM can effectively eliminate the backscattering effect of vegetation,
and the inversion of WCM presented satisfactory results in estimating SM with the ALOS-2
and Sentinel-1 data. Table 5 is a summary of the above methods. These findings show
that the WCM method could effectively remove the influence of vegetation backscattering,
which is consistent with our conclusion.

Table 5. The methods summary.

Author Data Method

Skkertekin et al. ALOS-2 Sentinel-1 WCM Dubois MLR

El Hajj et al.
TerraSAR-X
COSMO-SkyMed
SPOT4/5 Landdat 7/8

WCM Multi-layer perceptron neural
networks (NNs)

Zribi et al. ALOS-2 WCM Dubois Baghdadi et al.

The potential of the C-band and L-band in SM retrieval is compared by El Hajj et al.
However, for both frequencies, they only examine the potential of a copolarized HH HV
C-band and L-band to estimate the SM because they believe that previous studies show
that the use of crosspolarized (HV or VH) and copolarized SM data does not improve
the estimation accuracy. Nevertheless, they did not consider crosspolarization [52,53].
This study, however, used ALOS-2 dual-polarization radar data and considered both
polarization modes (HH and HV) while overcoming the lack of soil roughness.

The method used by Zribi et al. for estimating SM using ALOS-2 L-band radar data
was compared for different types of crops (turmeric, marigold, and sorghum). In areas
covered by vegetation, soil roughness measurements are rare. Accordingly, only the WCM
has been considered to simulate the relationship between SM and the radar backscattering
coefficient to retrieve the SM. Zribi et al. obtained moderately accurate estimates of SM
for turmeric and marigold fields, with errors equal to 6.7 vol% and 7.9 vol% for HH
and HV polarization, respectively, for turmeric, and 8.7 vol% and 11 vol%, in the HH
and HV polarizations, respectively, for marigold. This result can be explained by the
fact that the multiscattering effect is not considered in the simplified first-order radiation
transfer equation of the WCM. The method presented in this paper also encountered
challenges, such as the lack of measured soil roughness data. Therefore, we propose a
GA-BP neural network algorithm, which overcomes the above problems to a certain extent
while considering all polarization (HH and HV) modes. Even if there is a lack of measured
data, such as soil roughness, an error analysis is carried out each time according to the
results obtained from the training, and the expected results according to the nature of the
BP neural network. Then, the weights and thresholds are modified step by step to get the
model that can output the same as the expected result.

However, in this study, with the WCM model, different vegetation descriptions were
established. When the vegetation index was the NDVI, the accuracy analysis results of the
SM estimated by the GA-BP method, and the SM measured, were the best. The MAE, RESE,
and MAPE results were 2.248 vol%, 3.146 vol%, 0.056 vol%, respectively, at a 0–10 cm depth.
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When the vegetation index was the NDWI, the accuracy analysis results of SM estimated
by the GA-BP method, and the SM measured, were the best at a 20–30 cm depth. The MAE,
RESE, and MAPE results were 2.389 vol%, 2.834 vol%, and 0.06 vol%, respectively. We can
also see from the results that when the SM is less than about 30 vol%, the inversion results
are slightly higher than the measured values. When the SM was higher than approximately
45 vol%, the inversion result was slightly lower than the measured value. The reason is that
the sensitivity of the backscatter coefficient to the SM increases in relatively low and dry
areas. The sensitivity of the backscattering coefficient to the SM decreases in the relatively
humid area. In the following research, the method will be analyzed and verified according
to different humidity gradients to discuss the applicability of the method.

By using the three vegetation indices as the vegetation input in the algorithm, we
can observe the following conclusions. When the soil moisture is less than about 34%,
we find that the slope of the scatter plot of the measured and inverted soil moisture is
higher. At this time, it was in a relatively dry area, and the retrieved soil moisture was
overestimated because the soil moisture at this time was lower than the deeper part. When
the soil moisture is greater than 44%, the slope of the scatter plot of the measured and
inverted soil moisture is low. At this time, it is in a relatively humid area. This is because
the sensitivity of the radar signal to soil moisture is reduced in the humid area. A large
number of experimental analyses have verified this result.

This study has some limitations. Because the sampling area has many hillsides,
sampling is more difficult. Because of the influence of the topography of the sampling
points, the distribution of the sampling points should choose flat areas as much as possible.
However, the distribution should be as uniform as possible throughout the study area.
At the same time, only soil samples were collected. Soil roughness, soil type, etc., can be
considered in future research. In addition to these limitations, further research is needed to
obtain better results for SM estimation using SAR data. We believe that the results of this
study provide a new idea for future research.

Future studies should look at the following:

1. The addition of different radar backscatter models to find out which model can
improve the estimation accuracy of SM.

2. In the WCM model, more vegetation descriptions can be added.
3. More intelligent optimization algorithms and machine-learning algorithms can be

applied to radar SM inversion.
4. More soil parameters can be added to increase the accuracy of SM inversion.
5. In the follow-up research, the different ranges of soil moisture will be studied and

discussed separately.

6. Conclusions

According to this study, the potential of ALOS-2 L-band radar data for SM calculation
was investigated over vegetation-covered fields.

(1) The results revealed that ALOS-2 L-band data was sensitive to SM in vegetation-
covered surfaces.

(2) The backscattering of ALOS-2 with the copolarization was more sensitive to SM than
the crosspolarization. In addition, at a depth of 0–10 cm, the sensitivity was higher
than at a depth of 20–30 cm. It can be shown that radar penetration decreases with
increasing depth.

(3) The NDVI was more sensitive than the NDWI and the NMDI as a vegetation descrip-
tion in the WCM model for estimating SM based on the ALOS-2 radar backscatter.

(4) The WCM can effectively eliminate the vegetation’s backscattering effect, and the
WCM shows satisfactory results in SM estimation using ALOS-2 data.

(5) Combining the two polarization modes of ALOS-2 using the novel GA-BP neural
network method improved the estimation of SM in the absence of soil roughness
and soil type. This might be the key component in future attempts to overcome SM
retrieval by microwave remote sensing.
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