Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Fields and Reference Strips
2.2. Ground Observations
2.3. Sentinel-2- and VENµS-Based Vegetation Indices
2.4. Google Earth Engine (GEE)
3. Results
3.1. Correlation between VIs and Biophysical Properties of Crop
3.2. GEE Anomaly App
3.3. Evaluation of Grain Yield and Quality
4. Discussion and Conclusions
- Anomaly: Which calculation will best support decision making—deviation of variance/STD or deviation of percentage from the mean?
- Threshold: What kind of threshold will best support a decision to apply topdressed N?Is it a fixed threshold or should it be affected by parameter(s), such as the VI used, phenology stage, cultivar, fallow, precipitation?
- Reference strip: It is obvious that more pure pixels would enable better identification, but the minimum strip size should be determined, as well as its shape (square/rectangle), distance from the field edge, and orientation (facing north/ignore direction).
- Cloud/Shade: Clear sky provides optimal conditions, while complete cloud cover prevents using the image. However, in many images, part cloudy condition prevails, causing complications such as areas covered by clouds that cannot be used, and areas shaded by clouds (or semitransparent clouds) that are questionable to be used for reference strip decisions. There are some confusing preliminary data showing that anomalies can or cannot be detected under these problematic conditions, which requires further studies to determine the limits.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J. Effects of tillage, crop rotation and nitrogen fertilization on wheat-grain quality grown under rainfed Mediterranean conditions. Field Crop. Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Klitman, S.; Asido, S. Wheat grain yield and soil profile water distribution in a no-till arid environment. Agron. J. 1999, 91, 368–373. [Google Scholar] [CrossRef]
- Har-Gil, D.; Bonfil, D.J.; Svoray, T. Multi scale analysis of the factors influencing wheat quality as determined by Gluten Index. Field Crop. Res. 2011, 123, 1–9. [Google Scholar]
- Kafkafi, U.; Bonfil, D.J. Integrated Nutrient Management—Experience and concepts from the Middle East. In Integrated Nutrient Management for Sustainable Crop Production and Environmental Safety; Milkha, S.A., Grant, C.A., Eds.; The Haworth Press, Inc.: Binghamton, NY, USA, 2008; pp. 523–565. [Google Scholar]
- Bonfil, D.J.; Abbo, S.; Svoray, T. Sowing Date and Wheat Quality as Determined by Gluten Index. Crop Sci. 2015, 55, 2294–2306. [Google Scholar] [CrossRef]
- Turner, N.C. Further Progress in Crop Water Relations. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: San Diego, CA, USA, 1996; Volume 58, pp. 293–338. [Google Scholar]
- Gooding, M.; Davies, W. Wheat Production and Utilization: Systems, Quality and the Environment; CAB International: Wallingford, UK, 1997. [Google Scholar]
- Wuest, S.B.; Cassman, K.G. Fertilizer-Nitrogen Use Efficiency of Irrigated Wheat: I. Uptake Efficiency of Preplant versus Late-Season Application. Agron. J. 1992, 84, 682–688. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Núñez, V.; García del Moral, L.F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crop. Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Triboi, E.; Martre, P.; Girousse, C.; Ravel, C.; Triboi-Blondel, A.-M. Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. Eur. J. Agron. 2006, 25, 108–118. [Google Scholar] [CrossRef]
- Moore, G.; Tyndale-Biscoe, J.P. Estimation of the Importance of Spatially Variable Nitrogen Application and Soil Moisture Holding Capacity to Wheat Production. Precis. Agric. 1999, 1, 27–38. [Google Scholar] [CrossRef]
- Palta, J.A.; Kobata, T.; Turner, N.C.; Fillery, I.R. Remobilization of Carbon and Nitrogen in Wheat as Influenced by Postanthesis Water Deficits. Crop Sci. 1994, 34, 118–124. [Google Scholar] [CrossRef]
- Borghi, B.; Corbellini, M.; Minoia, C.; Palumbo, M.; Di Fonzo, N.; Perenzin, M. Effects of Mediterranean climate on wheat bread-making quality. Eur. J. Agron. 1997, 6, 145–154. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Mufradi, I.; Asido, S.; Long, D.S. Precision nitrogen management based on nitrogen removal in rainfed wheat. In Proceedings of the 9th International Conference on Precision Agriculture, Denver, CO, USA, 20–23 July 2008; p. 156. [Google Scholar]
- Palta, J.; Fillery, I. N application increases pre-anthesis contribution of dry matter to grain yield in wheat grown on a duplex soil. Aust. J. Agric. Res. 1995, 46, 507–518. [Google Scholar] [CrossRef]
- Palta, J.; Fillery, I. N application enhances remobilization and reduces losses of pre-anthesis N in wheat grown on a duplex soil. Aust. J. Agric. Res. 1995, 46, 519–531. [Google Scholar] [CrossRef]
- Rharrabti, Y.; Royo, C.; Villegas, D.; Aparicio, N.; García del Moral, L.F. Durum wheat quality in Mediterranean environments: I. Quality expression under different zones, latitudes and water regimes across Spain. Field Crop. Res. 2003, 80, 123–131. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Karnieli, A.; Raz, M.; Mufradi, I.; Asido, S.; Egozi, H.; Hoffman, A.; Schmilovitch, Z. Decision support system for improving wheat grain quality in the Mediterranean area of Israel. Field Crop. Res. 2004, 89, 153–163. [Google Scholar] [CrossRef]
- Shanahan, J.F.; Schepers, J.S.; Francis, D.D.; Varvel, G.E.; Wilhelm, W.W.; Tringe, J.M.; Schlemmer, M.R.; Major, D.J. Use of remote sensing imagery to estimate corn yield. Agron. J. 2001, 93, 583–589. [Google Scholar] [CrossRef] [Green Version]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Amaral, L.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinove, L. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
- Thompson, L.J.; Puntel, L.A. Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a Practical Decision Support System for Precision Nitrogen Management in Corn. Remote Sens. 2020, 12, 1597. [Google Scholar] [CrossRef]
- Bijay, S.; Ali, M.A. Using Hand-Held Chlorophyll Meters and Canopy Reflectance Sensors for Fertilizer Nitrogen Management in Cereals in Small Farms in Developing Countries. Sensors 2020, 20, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizzari, M.; Santaga, F.; Benincasa, P. Sentinel 2-Based Nitrogen VRT Fertilization in Wheat: Comparison between Traditional and Simple Precision Practices. Agronomy 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Bonfil, D.J. Monitoring wheat fields by RapidScan: Accuracy and limitations. Adv. Anim. Biosci. 2017, 8, 333–337. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100, S-117–S-131. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A. Application of chlorophyll-related vegetation indices for remote estimation of maize productivity. Agric. For. Meteorol. 2011, 151, 1267–1276. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Everitt, J.; Bradford, J. Evaluating high resolution SPOT 5 satellite imagery to estimate crop yield. Precis. Agric. 2009, 10, 292–303. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Wang, J.; Huang, W.; Song, X.; Li, C. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Li, C.-J.; Wang, J.-H.; Wang, Q.; Wang, D.-C.; Song, X.-Y.; Wang, Y.; Huang, W.-J. Estimating wheat grain protein content using multi-temporal remote sensing data based on partial least squares regression. J. Integr. Agric. 2012, 11, 1445–1452. [Google Scholar] [CrossRef]
- Bonfil, D.J. Wheat phenomics in the field by RapidScan: NDVI vs. NDRE. Isr. J. Plant Sci. 2017, 64, 51–54. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Shiff, S.; Lensky, I.M.; Bonfil, D.J. Using Satellite Data to Optimize Wheat Yield and Quality under Climate Change. Remote Sens. 2021, 13, 2049. [Google Scholar] [CrossRef]
- Ferencz, C.; Bognár, P.; Lichtenberger, J.; Hamar, D.; Tarcsai, G.; Timár, G.; Molnár, G.; Pásztor, S.Z.; Steinbach, P.; Székely, B.; et al. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 2004, 25, 4113–4149. [Google Scholar] [CrossRef]
- Enclona, E.A.; Thenkabail, P.S.; Celis, D.; Diekmann, J. Within-field wheat yield prediction from IKONOS data: A new matrix approach. Int. J. Remote Sens. 2004, 25, 377–388. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Karnieli, A.; Hively, D.; Kustas, W. A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery. Remote Sens. Environ. 2020, 242, 111752. [Google Scholar] [CrossRef]
- Lin, Y.; Zhu, Z.; Guo, W.; Sun, Y.; Yang, X.; Kovalskyy, V. Continuous Monitoring of Cotton Stem Water Potential using Sentinel-2 Imagery. Remote Sens. 2020, 12, 1176. [Google Scholar] [CrossRef] [Green Version]
- Upreti, D.; Pignatti, S.; Pascucci, S.; Tolomio, M.; Huang, W.; Casa, R. Bayesian Calibration of the Aquacrop-OS Model for Durum Wheat by Assimilation of Canopy Cover Retrieved from VENµS Satellite Data. Remote Sens. 2020, 12, 2666. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Karnieli, A.; Raz, M.; Mufradi, I.; Asido, S.; Egozi, H.; Hoffman, A.; Schmilovitch, Z. Rapid assessing water and nitrogen status in wheat flag leaves. J. Food Agric. Environ. 2005, 3, 207–212. [Google Scholar]
- Manivasagam, V.S.; Kaplan, G.; Rozenstein, O. Developing Transformation Functions for VENμS and Sentinel-2 Surface Reflectance over Israel. Remote Sens. 2019, 11, 1710. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Special Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crop. Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Walsh, O.S.; Shafian, S.; Marshall, J.M.; Jackson, C.; McClintick-Chess, J.R.; Blanscet, S.M.; Swoboda, K.; Thompson, C.; Belmont, K.M.; Walsh, W.L. Assessment of UAV Based Vegetation Indices for Nitrogen Concentration Estimation in Spring Wheat. Adv. Remote Sens. 2018, 7, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Bonfil, D.J.; Gitelson, A.A. RapidScan and CropCircle radiometers: Opportunities and limitation in assessing wheat biomass and nitrogen. In Proceedings of the 12th International Conference on Precision Agriculture, Sacramento, CA, USA, 20–23 July 2014; p. 1369. [Google Scholar]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, C.; Wang, Y.; Tian, Y.; Zhu, Y.; Cao, Q.; Liu, X.-J. Using an Active Sensor to Develop New Critical Nitrogen Dilution Curve for Winter Wheat. Sensors 2020, 20, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söderström, M.; Piikki, K.; Stenberg, M.; Stadig, H.; Martinsson, J. Producing nitrogen (N) uptake maps in winter wheat by combining proximal crop measurements with Sentinel-2 and DMC satellite images in a decision support system for farmers. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 63, 637–650. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Tian, Y.; Zhu, Y.; Cao, Q.; Liu, X.-J. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Brinkhoff, J.; Dunn, B.; Robson, A.; Dunn, T.; Dehaan, R. Modeling Mid-Season Rice Nitrogen Uptake Using Multispectral Satellite Data. Remote Sens. 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Song, X.; Yang, G.; Li, Z.; Zhang, D.; Feng, H. Monitoring of Nitrogen and Grain Protein Content in Winter Wheat Based on Sentinel-2A Data. Remote Sens. 2019, 11, 1724. [Google Scholar] [CrossRef] [Green Version]
VENµS | Sentinel-2 | |||||
---|---|---|---|---|---|---|
Band | WL | Resolution | Band | WL | Resolution | |
Red | B7 | 667 | 5 | B4 | 664.6 | 10 |
RE1 | B8 | 702 | 5 | B5 | 704.1 | 20 |
RE2 | B9 | 742 | 5 | B6 | 740.5 | 20 |
RE3 | B10 | 782 | 5 | B7 | 782.8 | 20 |
NIR | B11 | 865 | 5 | B8/B8A | 833/865 | 10/20 |
DW (g m−2) | N (g m−2) | N (%) | LAI | |||||
---|---|---|---|---|---|---|---|---|
VI | r | RMSE | r | RMSE | r | RMSE | r | RMSE |
NDVI | 0.519 | 155 | 0.632 | 3.61 | 0.271 | 0.82 | 0.495 | 1.54 |
0.586 | 148 | 0.694 | 3.37 | 0.422 | 0.77 | 0.489 | 1.55 | |
NDRE | 0.702 | 129 | 0.794 | 2.83 | 0.464 | 0.75 | 0.820 | 1.01 |
0.730 | 125 | 0.796 | 2.83 | 0.538 | 0.71 | 0.813 | 1.03 | |
ICCI | 0.749 | 120 | 0.826 | 2.62 | 0.391 | 0.78 | 0.805 | 1.05 |
0.729 | 125 | 0.807 | 2.76 | 0.499 | 0.73 | 0.783 | 1.10 | |
REIP | 0.821 | 103 | 0.869 | 2.31 | 0.421 | 0.77 | 0.829 | 0.99 |
0.797 | 110 | 0.807 | 2.76 | 0.506 | 0.73 | 0.831 | 0.99 |
N Treatment (Base + Top) | Yield | Test Weight | Protein | Wet Gluten |
---|---|---|---|---|
kg N ha−1 | t ha−1 | kg 100 L−1 | % | % |
Reference low (0 + 0) | 2.69 | 82.9 | 10.3 | 22.5 |
Commercial (50 + 0) | 3.85 | 82.3 | 10.3 | 23.5 |
Reference high (100 + 0) | 4.49 | 82.1 | 10.9 | 24.0 |
Commercial + topN (50 + 50) | 4.46 | 80.6 | 11.4 | 26.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonfil, D.J.; Michael, Y.; Shiff, S.; Lensky, I.M. Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data. Remote Sens. 2021, 13, 3934. https://doi.org/10.3390/rs13193934
Bonfil DJ, Michael Y, Shiff S, Lensky IM. Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data. Remote Sensing. 2021; 13(19):3934. https://doi.org/10.3390/rs13193934
Chicago/Turabian StyleBonfil, David J., Yaron Michael, Shilo Shiff, and Itamar M. Lensky. 2021. "Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data" Remote Sensing 13, no. 19: 3934. https://doi.org/10.3390/rs13193934
APA StyleBonfil, D. J., Michael, Y., Shiff, S., & Lensky, I. M. (2021). Optimizing Top Dressing Nitrogen Fertilization Using VENμS and Sentinel-2 L1 Data. Remote Sensing, 13(19), 3934. https://doi.org/10.3390/rs13193934