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Abstract: The spectral information contained in the hyperspectral images (HSI) distinguishes the
intrinsic properties of a target from the background, which is widely used in remote sensing. However,
the low imaging speed and high data redundancy caused by the high spectral resolution of imaging
spectrometers limit their application in scenarios with the real-time requirement. In this work,
we achieve the precise detection of camouflaged targets based on snapshot multispectral imaging
technology and band selection methods in urban-related scenes. Specifically, the camouflaged
target detection algorithm combines the constrained energy minimization (CEM) algorithm and the
improved maximum between-class variance (OTSU) algorithm (t-OTSU), which is proposed to obtain
the initial target detection results and adaptively segment the target region. Moreover, an object
region extraction (ORE) algorithm is proposed to obtain a complete target contour that improves
the target detection capability of multispectral images (MSI). The experimental results show that
the proposed algorithm has the ability to detect different camouflaged targets by using only four
bands. The detection accuracy is above 99%, and the false alarm rate is below 0.2%. The research
achieves the effective detection of camouflaged targets and has the potential to provide a new means
for real-time multispectral sensing in complex scenes.

Keywords: snapshot multispectral imaging; camouflaged target detection; CEM; OTSU; urban
object-analysis

1. Introduction

Hyperspectral target detection is widely used in industry, agriculture, and urban
remote sensing [1]. Hyperspectral images (HSI) are often presented as spectral data
cubes measured for each pixel as a spectral vector. The elements in the spectral vector
correspond to the reflectance or radiation value in different spectral bands [2]. Therefore, it
is possible to detect the camouflaged targets based on the spectral characteristic of the target
materials [3]. Manolakis, Shaw, and other researchers [4–7] in MIT’s Lincoln laboratory
summarized the detection algorithms that exploit spectral information and argued that the
“apparent” superiority of sophisticated algorithms with simulated data or in laboratory
conditions did not necessarily translate to superiority in real-world applications. From the
perspective of military defense and reconnaissance applications, they proposed to improve
the performance of detection algorithms by solving the problem of the inherent variability
target and background spectra (i.e., the mismatch between the spectral library and in-scene
signatures) [5,7]. In addition, many other scholars made relevant contributions. Yan [8] and
Hua [9] et al. successfully used the constrained energy minimization (CEM) [10] algorithm
and the adaptive coherence estimator (ACE) [6] algorithm to detect the camouflaged targets
in real-world scenarios. Kumar et al. [11] used unsupervised target detection algorithms,
including the K-means classification method, the Reed–Xiaoli (RX) algorithm, and the
Iterative Self Organizing Data Analysis Technique Algorithm (ISODATA) to detect various
camouflaged targets in mid-wave infrared HSIs.
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However, the slow imaging speed of currently available spectral imagers and the
“Hughes phenomenon”, which is induced due to the high dimensionality of data, limit
the usage of HSI in applications with a high real-time requirement [12]. To address
the problem of data redundancy in HSI, many researchers worked on dimensionality
reduction (band selection) in HSI [13–16]. The main idea of band selection is to identify
a representative set of bands among the spectral components with high correlation. The
optimal clustering framework (OCF) [14], the multi-objective optimization band selection
(MOBS) method [15], and the scalable one-pass self-representation learning (SOP-SRL)
framework [16] are effective band selection methods.

Different from preserving the spectral features of substances through band selection,
some researchers [17–20] focused on including the spatial features in the image analysis,
which can be used for modeling the objects in the scene and increasing the discriminability
between different thematic classes. Kwan and Ayhan et al. [21,22] demonstrated the effec-
tiveness of Extended Multi-Attribute Profiles (EMAP) through extensive experiments. They
also applied the Convolutional Neural Network (CNN)-based deep learning algorithms
to spectral images enhanced with the EMAP, which achieve better land cover classifica-
tion performance using only four bands as compared to that using all 144 hyperspectral
bands [22]. However, this method generated additional augmented bands, consuming
large amounts of computing resources and increasing the running time [21,22].

Additionally, the data redundancy problem also can be solved by determining several
characteristic bands. Zhang [23], Liu [24], and Tian [25] et al. experimentally determined
the characteristic bands of jungle camouflaged materials and white snow camouflaged
materials as 680–720 nm and 330–380 nm, respectively. Afterward, the rapid identification
of camouflaged targets was achieved with a common camera and the corresponding
spectral filters. This method has high real-time performance and simple implementation.
However, it requires more necessary prior knowledge to successfully detect specific targets
and has narrow applications.

In order to achieve real-time spectral imaging, a filter array consisting of interfero-
metric devices in multispectral imagers was designed to obtain spectral images containing
corresponding bands [26,27]. A snapshot multispectral camera was manufactured by
XIMEA, in conjunction with the Interuniversity Microelectronics Centre (IMEC) to quickly
obtain multispectral images (MSIs). It integrates the pixel-level Fabry–Pérot filter mosaic
array on the CMOS chip of an existing industrial camera, which improves the imaging
speed. Contrary to the traditional multispectral imaging equipment, which obtains MSI
at discrete time points, this snapshot multispectral camera extends spectral imaging to a
broader field, such as dynamic video [28]. However, it is still a challenging problem to
accurately detect the targets by limited multispectral bands.

Usually, a balance between the detection accuracy and the characteristic band num-
bers is of great significance in the application of targets detection in urban scenarios. In
this work, based on the snapshot spectral imaging, we introduce the OCF algorithm to
determine several general-purpose bands for the detection of camouflaged targets, so
as to reduce the consumption of computing resources. We also propose a camouflaged
target detection method based on CEM and an improved maximum between-class variance
(OTSU) algorithm (t-OTSU). The CEM algorithm requires only prior spectral information
to efficiently detect different camouflaged targets with low computational resource con-
sumption, which applies well to our requirement. The proposed t-OTSU algorithm that
overcomes the defect of the traditional OTSU algorithm is used to adaptively segment the
target region from the output of the CEM detector in different scenarios. To eliminate the
influence of misjudged regions contiguous to the target region, the object region extraction
(ORE) algorithm is also proposed to obtain a complete contour of a camouflaged target.

2. Methodology

In this section, a detailed introduction of the proposed algorithm is presented. Figure 1
shows the flow chart of the proposed algorithm.



Remote Sens. 2021, 13, 3949 3 of 23

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 23 
 

 

In this section, a detailed introduction of the proposed algorithm is presented. Figure 

1 shows the flow chart of the proposed algorithm.  

2.1. Calibration 

The snapshot multispectral camera (MQ022HG-IM-SM5X5-NIR, XIMEA) with a 

spectral range of 670–975 nm is used to acquire the raw multispectral images ( rawI ). Then, 

the raw images ( rawI ) are corrected by using the white and dark references to reduce the 

spatial intensity variation of light and the dark current effect of the CMOS camera. The 

corrected multispectral image ( MSII ) can be calculated as follows: 

_

_ _

-

-

raw black ref

MSI

white ref black ref

I I
I

I I
=  (1) 

where _black refI  and _white refI  represent a dark and a white reference, respectively. 

 

Figure 1. The flow chart of the proposed camouflaged target detection method. 

2.2. CEM Detector 

The CEM [10] detector is equivalent to an adaptive filter to pass the desired target 

with a specific gain, while the filter output resulting from unknown signal sources can be 

minimized, which can be used in camouflaged target reconnaissance. The MSI with N 

spectral vectors and D bands is expressed as a D N  matrix 1 2 3[ , , ,..., ]Nx x x x=X , and the 

spectrum of the target is represented as a 1D  vector d . The main idea of the CEM al-

gorithm, i.e., designing a finite impulse response (FIR) linear filter 1 2[ , ,..., ]T

N  =W , is 

implemented based on the MSI X  and the prior known target spectrum vector d . There-

fore, the output of CEM is described as the inner product of the spectral vector x  and the 

FIR filter W  as: 

Ty x= W . (2) 

The average energy output is expressed as: 

            

            

T T

T

T

N N

N

x

xx

=

=

=

22

2 2

1 1

1

W

W W

W RW

y

 
(3) 

Figure 1. The flow chart of the proposed camouflaged target detection method.

2.1. Calibration

The snapshot multispectral camera (MQ022HG-IM-SM5X5-NIR, XIMEA) with a spec-
tral range of 670–975 nm is used to acquire the raw multispectral images (Iraw). Then, the
raw images (Iraw) are corrected by using the white and dark references to reduce the spatial
intensity variation of light and the dark current effect of the CMOS camera. The corrected
multispectral image (IMSI) can be calculated as follows:

IMSI =
Iraw − Iblack_re f

Iwhite_re f − Iblack_re f
(1)

where Iblack_re f and Iwhite_re f represent a dark and a white reference, respectively.

2.2. CEM Detector

The CEM [10] detector is equivalent to an adaptive filter to pass the desired target
with a specific gain, while the filter output resulting from unknown signal sources can be
minimized, which can be used in camouflaged target reconnaissance. The MSI with N
spectral vectors and D bands is expressed as a D× N matrix X = [x1, x2, x3, . . . , xN ], and
the spectrum of the target is represented as a D× 1 vector d. The main idea of the CEM algo-
rithm, i.e., designing a finite impulse response (FIR) linear filter W = [ω1, ω2, . . . , ωN ]

T , is
implemented based on the MSI X and the prior known target spectrum vector d. Therefore,
the output of CEM is described as the inner product of the spectral vector x and the FIR
filter W as:

y = WTx. (2)

The average energy output is expressed as:

1
N ‖y‖

2
2 = 1

N ‖W
Tx‖2

2
= 1

N WTxxTW
= WTRW

(3)

where R = (1/N)XXT denotes the correlation matrix of the MSI and y = [y1, y2, . . . , yN ]
represents the output of the CEM detector.
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By highlighting the target pixel while suppressing the “energy” of the background
pixel, the CEM detector in the spectral space can separate the target from the background.

min
W

E
{

y2} = WTRW

s.t. WTd = 1
(4)

The filter is obtained as:

WCEM =
R−1d

dTR−1d
. (5)

The resultant target detection is expressed by the following mathematical expression.

y = (WCEM)TX
= dTR−1

dR−1dT X
(6)

After CEM treatment, the target is separated by using a threshold segmentation [8].
However, we observe that the results are significantly affected by the spectrum resolu-
tion. It is difficult to obtain a complete camouflaged target when the spectral bands are
significantly reduced. To effectively address this problem, we propose an improved OTSU
algorithm (t-OTSU).

2.3. Improved OTSU Algorithm (t-OTSU)

The traditional OTSU is an adaptive threshold segmentation algorithm, which is
sensitive to the object size [29,30]. It is noteworthy that in the long-distance reconnaissance
scenes, the proportion of the target pixels is much smaller than the background. Therefore,
a large number of interferential areas are generated when OTSU is directly applied to the
output of the CEM detector. The t-OTSU algorithm was proposed to eliminate the influence
of object size. At the same time, by setting the value of the parameter t, we can avoid the
phenomenon of false detection in the scene without camouflage target, to alert us to change
the scene to search for targets.

Based on the traditional OTSU algorithm, we set the parameter t to determine the
final adaptive threshold. We divide the pixels in the output of the CEM detector into two
categories (i.e., C0 and C1) based on a threshold T (1 ≤ T ≤ M), where the output of the
CEM detector (I) is represented in M gray levels. C0 represents the set of background
pixels, and C1 represents the target. The probability of background and target pixels is
p1 and p2, respectively. This is mathematically expressed by the following expression.

p1 =
T

∑
i=1

pi p2 = 1− p1 (7)

where pi denotes the probability of the i th gray-level pixels, and

pi = ni/N (8)

where ni denotes the number of pixels at the i th gray level and N (N = n1 + n2 + . . .+ nM)
represents the total number of pixels.

Suppose m1 and m2 denote the mean values of the two categories, respectively; then,
the overall mean mG of the image is expressed as:

m1 = 1/p1 ∗
T

∑
i=1

ipi m2 = 1/p2 ∗
M

∑
i=T+1

ipi mG =
M

∑
i=1

ipi (9)

p1m1 + p2m2 = mG. (10)
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Similar to variance, the between-class variance is computed by the following relation.

σ2= p1(m1 −mG)
2 + p2(m2 −mG)

2 (11)

Based on Equations (7) and (8), the σ2 is further expressed as:

σ2 = p1 p2(m1 −m2)
2

=

(
mG∗p1−

T
∑

i=1
ipi

)
p1(1−p1)

. (12)

The optimal threshold T∗ is defined as:

σ2(T∗) = max
{

σ2}
s.t. 1 ≤ T∗ ≤ M

. (13)

The parameter t is set to limit the value T to avoid the interference caused by the
target size. The final result is expressed as follows:

T =

{
t 1 < T∗ < t
T∗ t < T∗ < M

. (14)

The proposed t-OTSU algorithm is designed to segment the target region while
minimizing the misclassified background pixels. However, there are still some misclassified
regions around the target region. To solve this problem, we propose the following object
region extraction (ORE) algorithm.

2.4. Object Region Extraction (ORE)

The opening operator can be used to separate the regular target region and the
connected cluttered background areas, which does not affect the contour integrity of the
target [31]. Thus, the ORE algorithm based on morphological operations [32] is proposed
to eliminate the interferential regions. In our work, we use a disk structural element of
radius 1 to separate the target region from the connected cluttered background area without
affecting the contour integrity of the target.

The morphological “opening” is the combination of “erosion” and “dilation”, which is
utilized to smooth the contours of large object regions while eliminating small free regions.

The erosion is similar to the convolution operation. We slide the structural element
(SE) on the binary image It−OTSU , and the minimum value of the pixels in the overlapping
area of the SE and It−OTSU is assigned to the corresponding anchor point position as the
output value. This is expressed as follows:

It−OTSU 	 SE =
{

x, y
∣∣∣(SE)xy ⊆ It−OTSU

}
(15)

where (x, y) denotes the corresponding position of anchor points, which is the center of SE.
Contrary, in dilation, the maximum value of pixels in overlapping areas is used as the

output of the corresponding anchor point position as:

It−OTSU ⊕ SE =
{

x, y
∣∣∣(SE)xy ∩ It−OTSU 6= O

}
. (16)

The morphological opening is the superposition of erosion and dilation and is ex-
pressed as follows:

Io = It−OTSU ◦ SE = (It−OTSU 	 SE)⊕ SE. (17)

The total number of independent regions in the binary image (Io), denoted as A, is
determined based on the “n-Neighborhood” theory. Then, the regions are marked as
Ri(i = 1, 2, 3, . . . , A). Then, we record the number of the salient points within each area,
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and the area RJ with the most pixels is selected. The salient points in the region RJ are
retained, whereas the rest of the areas are excluded to obtain a complete object region
without interferential areas.

2.5. Evaluation Metrics

We use the false alarm (Fa), accuracy (AC), and F1 measure (F1) as the evaluation met-
rics to quantitatively evaluate the performance of algorithms [33,34], which are expressed
as follows:

Fa =
NFP

NTP + NFP
AC =

NTP + NTN
N

(18)

where NTN and NFP denote the number of background pixels that are correctly and
incorrectly classified, respectively. NTP denotes the number of target pixels classified
correctly, and NFN denotes the number of misclassified target pixels.

F1 is mathematically expressed as:

F1 =
2PreRec

Pre + Rec
(19)

where Pre and Rcall represent the precision and recall, respectively. These quantities are
mathematically expressed as:

Pre =
NTP

NTP + NFP
Rcall =

NTP
NTP + NFN

. (20)

Now, the F1 is simplified as:

F1 =
2NTP

2NTP + NFP + NFN
. (21)

The ideal value of the index AC, which indicates that the proportion of correctly
classified pixels is 1. Contrary, Fa is a negative evaluation index, which is expected to
approach 0 indefinitely. The F1 is similar to AC; however, it is considered more accurate.

3. Results
3.1. Experimental Scenarios

We obtain the original images by using a snapshot multispectral imager (MQ022HG-
IM-SM5X5-NIR, XIMEA), as depicted in Figure 2a. This device contains 25 wavelength-
specific Fabry–Pérot filters ranging from 660 to 975 nm overlaid on the custom CMOS
chip, with the spectral resolution of about 10 nm, as presented in Figure 2b. The lens
(ML-M1616UR, MOTRITEX) with 16 mm focal length and the lens (VIS-NIR, #67-714,
EDMUND) with 35 mm focal length are applied.
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We select the anti-spectral reconnaissance camouflaged net (ASRC-net) with a small
mosaic pattern and the anti-infrared reconnaissance camouflaged net (AIRC-net) with a
deformed camouflaged pattern as the target, as shown in Figure 2c,d, respectively. We
used a hyperspectral camera (GaiaField-V10E, Dualix) with a spectral response range of
400–1000 nm and a spectral resolution of 2.8 nm to obtain the spectra shown in Figure 3. It
should be noted that the target spectrum is affected by many factors such as seasons, vegeta-
tion growth status, and light conditions. Figure 3 shows that the camouflage characteristics
of the two camouflaged nets are significantly different even under the same conditions.
In the range of 660–975 nm (the spectral range of the snapshot multispectral camera), the
spectrum of the ASRC-net is close to that of the vegetation, which increases the difficulty of
camouflaged target detection. The AIRC-net effectively reduces the radiation of the targets
in the near-infrared band, which has the ability of anti-infrared reconnaissance. Therefore,
we use these two camouflaged nets to fully verify the feasibility of the proposed algorithm.
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To verify the feasibility of the proposed algorithms, we focus on several urban-related
scenarios where camouflaged nets appear frequently but are difficult to detect, i.e., (i) Lawn,
(ii) Bush and Tree (BT), (iii) Bush and Fountain (BF), and (iv) Unmanned Aerial Vehicle
(UAV) scene, as shown in Table 1. The experiment was carried out under different light
intensities (1370–19,648 lux) to study the effect of spectrum changes caused by light intensity
on the algorithm performance. The detection distance is around 20–50 m. In addition, the
focal lengths of 35 and 16 mm are applied in BF to generate a different field of view (FOV)
at the same imaging distance. The integration time varies from 0.1540 to 5 ms.

Table 1. The basic parameters of the experiments.

Scene Distance
/m

Focus Length
/mm

FOV
/cm2

Light Intensity
/Lux

Integration Time
/ms

Lawn 23 35 740 × 393 19,618 0.154
BT 25 35 804 × 427 1370 5

BF
20 16 1408 × 748 1600 3
20 35 644 × 342 1600 3

UAV 50 16 3520 × 1870 1800 3

3.2. Results of the Band Selection

Data redundancy is a critical issue in MSI. To address this problem, a band selection
algorithm named OCF is introduced. The OCF [14] constructs an optimal cluster structure
on HSI, and the discriminative information between the bands is evaluated based on a clus-
ter ranking strategy for the achieved structure to determine the optimal band combination.
Figure 4 shows the flow chart of the OCF algorithm.
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Figure 4. The flow chart of the OCF algorithm (in the figure, each color refers to a cluster of bands). First, the optimal band
partition via OCF is based on the given objective function. Then, all the bands are evaluated through an arbitrary ranking
method. Finally, the top-rank bands are selected in each cluster.

As shown in Table 2, we determine a series of subsets of bands, where the number
of bands ranged from 4 to 25. In each band subset, the specific bands are selected by
ranking the occurrence frequency of the characteristic bands. The above characteristic
bands are obtained by applying the OCF algorithm to the abundant data of the first three
urban scenarios.

Table 2. Subsets of bands in the first three urban scenarios.

Number of Bands The Wavelength of Selected Bands (nm)

12 665/686/710/727/738/751/779/787/850/897/911/949
10 665/686/710/738/751/802/841/897/911/949
7 665/686/710/738/751/841/897
6 665/710/751/766/779/897
5 665/710//751/779/841
4 665/710/727/751

3.3. Compared Methods

The effectiveness of the proposed methods is evaluated by comparing the proposed
algorithm with six commonly applied algorithms, namely ACE-T, CEM-T, HCEM-T, ACE-
OTSU, CEM-OTSU, and HCEM-OTSU. The ACE-T, CEM-T, and HCEM-T are the combina-
tion of the ACE algorithm [6], the CEM algorithm [10], the HCEM algorithm [3], and a fixed
threshold T, respectively. In addition, ACE-OTSU, CEM-OTSU, and HCEM-OTSU are the
combinations of OTSU [29] and the three previously mentioned algorithms, respectively. To
analyze whether the performance improvement of the algorithm is brought by the t-OTSU
algorithm or the ORE algorithm, we also combine CEM with t-OTSU as an additional
comparison. In the HCEM detector, the CEM detector is used as a basic detector in each
layer. The spectrum of a target is iteratively updated based on the output of the upper
layer. Meanwhile, the parameter t of the t-OTSU algorithm is set to 0.3, while the fixed
threshold T is set to 0.5. The remaining parameters of HCEM are kept as the default. It
should be noted that the input spectrums we use in the algorithms are obtained by the
snapshot multispectral camera. Due to the diversity of colors of two camouflaged nets,
we use the average spectrums of multiple regions on their surfaces as input spectrums of
the algorithms.

The data were processed with the Matlab 2018 under a win 10 system on a desktop
computer with an i5 six-core CPU and 16GB memory.

3.4. Experimental Results with the Lawn Scene

As shown in Figure 5a, the ASRC-net and the AIRC-net are spread on a lawn with
sufficient light. The false-color image (Figure 5b) shows that the AIRC-net can be easily
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identified from the background of the lawn. On the other hand, the special design of
the ASRC-net makes it barely distinguishes from the lawn. The reference images of the
ASRC-net and AIRC-net are shown in Figure 5c,d, respectively.
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Figure 5. (a) The visible image of the Lawn scene, where the ASRC-net is circled by the solid line and the AIRC-net is circled
by the dashed line; (b) The false-color image of the Lawn scene; (c) The reference image of the ASRC-net; (d) The reference
image of the AIRC-net.

The detection results of the ASRC-net and AIRC-net are exhibited in Figures 6 and 7,
respectively. It is notable that as the number of bands decreases, the misjudged areas
all increase with all five comparison algorithms except HCEM-T. With inadequate band
numbers, the contour of the target is unclear with the algorithm of HCEM-T, which affects
our judgment of the target area. As discussed earlier, the performance of the OTSU
algorithm is influenced by the target size [30]. When the target is relatively small, a large
number of background pixels are misclassified as the target, which was the reason for a
large number of misjudged areas in the detection results of HCEM-OTSU, CEM-OTSU,
and ACE-OTSU algorithms. However, the improved t-OTSU algorithm can avoid this
phenomenon well, as can be seen from the ASRC-net detection results of CEM-t-OTSU
(Figure 6). It is noteworthy that the performance of the recently proposed HCEM is even
worse than the original CEM algorithm. The main reason is that based on the principle
of HCEM, the reweighted target spectrum in each layer gradually deviates from the real
target spectrum. It is possible to exhibit better performance when the target spectra occupy
a larger proportion of data [1].

Wang [10] et al. discussed that the decrease in spectral resolution caused by the
reduction of bands has a serious impact on the performance of comparison methods.
Figure 8 (ASRC-net) and Figure 9 (AIRC-net) compare the AC, Fa, and F1 corresponding
to the detection results of the seven algorithms, respectively. As compared with several
other algorithms, the proposed algorithm maintains relatively high target contour integrity
due to the combination of the improved t-OTSU algorithm and the ORE algorithm. When
the number of bands reduces from 25 to 4, the AC values corresponding to the ASRC-net
and AIRC-net are above 0.996 and 0.995, respectively, which are higher than the compared
algorithms. The Fa values corresponding to the proposed algorithm are below 0.0015,
which is slightly higher than the HCEM-T algorithm. The F1 value considers both the
precision and the recall, which reflects the performance of the camouflaged target detection
algorithm more comprehensively [33]. When the number of bands is above 5, the F1 value
corresponding to the ASRC-net result obtained by the proposed algorithm stays above
0.9. It has to be pointed out that the highest value corresponding to other algorithms is
only 0.81 (CEM-T), as presented in Figure 8c. When the proposed algorithm is applied to
detect AIRC-net in MSIs with four bands, the result F1 is around 0.91. The specific analysis
of detection results and quantitative metrics shows that in a simple urban background
(Lawn) with sufficient light (light intensity: 19,618 lux), the proposed method shows good
performance and robustness in detecting different camouflaged targets.
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Figure 6. The detection results of different methods for the ASRC-net in the Lawn scene with bands ranging from 4 to 25.
All the results are normalized to the range [0, 1] for a fair comparison.

3.5. Experimental Results in the BT Scene

As compared to the Lawn scene, the background of the BT scene in the city is more
complicated, as it includes bushes (with both brown and green color), trees, lawn, and
building. The positions of the two camouflaged nets are marked in Figure 10a. In or-
der to distinguish the targets from the background, a corresponding false-color image
is provided in Figure 10b. The reference images of camouflaged targets are shown in
Figure 10c,d, respectively.

Figure 11 (ASRC-net) and Figure 12 (AIRC-net) show that the performance of our
algorithm is barely affected in the BT scenes in insufficient light conditions, and complete
target contours are obtained in the MSI of different bands. However, we notice that when
the number of bands is reduced to four, the detection results of the AIRC-net are greatly
affected. A possible reason is that imaging noise caused by poor lighting conditions
aggravated the mismatch between the prior spectrum and the in-scene signature, causing a
degradation in the performance of the algorithms [5,7]. In this experimental scenario, we
find out that the optimization of the t-OTSU algorithm is not obvious. This is because the
targets account for a large proportion and the difference between the thresholds obtained
by the t-OTSU algorithm and those obtained by the OTSU algorithm is small.
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Figure 7. The detection results of different methods for the AIRC-net in the Lawn scene with bands ranging from 4 to 25.
All the results are normalized to [0, 1] for a fair comparison.
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Figure 8. The quantitative comparison of ASRC-net detection results in the Lawn scene. (a) The curves of AC obtained
using different methods; (b) The curves of Fa obtained using different methods. (c) The histograms of F1 obtained using
different methods.

As can be seen in the comparison of evaluation metrics in Figure 13 (ASRC-net) and
Figure 14 (AIRC-net), the performance of several compared algorithms (CEM-T, HCEM-T,
CEM-OTSU, and HCEM-OTSU) are relatively stable when the number of bands ranges
from seven to 25. The CEM-t-OTSU and CEM-OTSU algorithms also exhibit very similar
performance due to the similarity of the thresholds. However, the ACE algorithm is more
sensitive to the change of bands number. On the contrary, our algorithm maintains a stable
performance, as the AC and F1 remain above 0.99 and 0.85, respectively, and the Fa remains
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stable around 0.0015. By analyzing the results in the BT scene, our algorithm can well
overcome the impact of imaging noise caused by the insufficient light intensity (1370 lux).
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using different methods; (b) The curves of Fa obtained using different methods. (c) The histograms of F1 obtained using
different methods.
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Figure 10. (a) The visible image of the BT scene, where the ASRC-net is circled by the solid line and the AIRC-net is circled
by the dashed line; (b) The false-color image of the BT scene; (c) The reference image of the ASRC-net; (d) The reference
image of the AIRC-net.

3.6. Experimental Results in the BF Scene

To explore the effectiveness of the proposed algorithm in detecting the camouflaged
targets at different distances, we use lenses of 16 mm and 35 mm focal lengths to simulate
distance variations in the urban BF scene containing people, roads, fountains, and green
and brown bushes, in which the ASRC-net is set as a target. As compared with the image
acquired by a 16 mm focal length lens shown in Figure 15a, the target occupies a much
larger proportion in the image acquired by a 35 mm focal length lens shown in Figure 15c.
In addition, the reference images of the target for different focal lengths are shown in
Figure 15b,d.

The detection results of different methods are shown in Figure 16 (35 mm) and
Figure 17 (16 mm), respectively. The results show that the complete target contours in MSI
of different focal lengths are detected by using the proposed method. However, since the
OTSU algorithm is very sensitive to the target size [23], a large number of misjudged areas
are generated by CEM-OTSU, ACE-OTSU, and HCEM-OTSU. The situation is even worse
with a 16 mm focal length than with a 35 mm focal length. There is no doubt that the
optimization effect of the t-OTSU algorithm is more prominent in images at 16 mm focal
length than at 35 mm focal length.

The performance of the eight methods at different focal lengths are shown in Figure 18
(35 mm) and Figure 19 (16 mm), respectively. The robustness of the proposed method is
shown by comparing Figures 18 and 19. The AC is stable and above 0.995, Fa is around 0.001,
while F1 stays above 0.93. In the MSIs of the 35 mm focal length, the overall performance
of several comparison methods fluctuated greatly with the decrease in bands. However,
in the images of the 16 mm focal length, the overall performance of several comparison
methods showed a monotonically decreasing trend without fluctuations, which indicated
that these methods were more influenced by the imaging distance. It is noteworthy that
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there is a great improvement in the performance of HCEM-T when the number of bands is
reduced from 25 to 12. We also see similar phenomena in the work of other researchers. For
instance, Christian [35] pointed out that the principal component analysis (PCA) method
used fewer bands, but still obtaining better performance than using all bands. It is also
noted in the literature [36] that the improved sparse subspace clustering (ISSC) and linear
prediction (LP) methods also used fewer bands and yet obtained higher accuracy than
using all bands. However, we may need additional theoretical studies to fully explain the
above observations.
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Figure 11. The detection results of different methods for the ASRC-net in the BT scene with bands ranging from 4 to 25. All
the results are normalized to [0 ,1] for a fair comparison.

In the BF scene, the proposed method detects the complete target contour at differ-
ent distances, which demonstrates the robustness of the proposed method to variations
of distance.

3.7. Experimental Results in the UAV Scene

To verify the versatility of our proposed method, we used a UAV-mounted snapshot
multispectral camera to capture two camouflaged targets in a complex scene at an altitude
of 50 m. As shown in Figure 20a, the scene contains roads, trees, grass, a pool, and other
objects. The camouflaged tent (CT) is used to simulate illegal buildings, and the vehicle
covered with the camouflaged net is used to simulate camouflaged vehicles (CV). These
two targets are covered by the AIRC-net. In addition, the reference images of the two
targets are shown in Figure 20c,d. The previous experiments prove that the performance of
the CEM algorithm is better than the other two comparison algorithms (ACE and HCEM),
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so we only take the CEM algorithm as a comparison in this scenario. It should be noted
that in this scenario, the CEM algorithm is combined with a fixed threshold of 0.7, and the
value of the parameter t of the t-OTSU algorithm is set to 0.65.
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Figure 12. The detection results of different methods for the AIRC-net in the BT scene with bands ranging from 4 to 25. All
the results are normalized to [0, 1] for a fair comparison.
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Figure 13. The quantitative comparison of the ASRC-net detection results in the BT scene. (a) The curves of AC obtained
using different methods; (b) The curves of Fa obtained using different methods. (c) The histograms of F1 obtained using
different methods.
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Figure 14. The quantitative comparison of AIRC-net detection results in the BT scene. (a) The curves of AC obtained using
different methods; (b) The curves of Fa obtained using different methods; (c) The histograms of F1 obtained using different
methods.
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of AC obtained using different methods; (b) The curves of Fa obtained using different methods; (c) The histograms of F1

obtained using different methods.

The detection results of the two targets are shown in Figure 21a,b, respectively. Com-
pared with the previous scenes, such as the Lawn scene and the BT scene, the performance
of the CEM algorithm significantly declines in this scenario, and it is difficult to identify
the position of the camouflaged targets. In our method, the completeness of the contour
decreases as the bands decrease, but the position of the camouflaged targets can still be
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easily distinguished. When the number of bands reduces to four, the performance of the
proposed algorithm degrades greatly.
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Figure 22 shows that the performance of the proposed method is significantly better
than the CEM algorithm. In addition, the advantages of the t-OTSU algorithm gradually
become apparent as the number of bands decreases. Interestingly, the proposed method
has better detection results for the CV target than the CT targets. We analyze that the
reason may lie in the fact that the CT target is propped up, with a less flat surface and more
folds, which leads to an increase in spectral variability that reduces the target detection
performance [7]. The CT target surface is flatter and more regular in shape, which is more
favorable for our algorithm. When the number of bands is reduced to four, the detection
accuracy of the proposed algorithm decreases significantly, and we consider that it may
be caused by the unsuitability of the selected bands. Since these four common bands are
selected based on the previous experimental scenarios, the UAV scene varies considerably
relative to the previous scenes, and other more representative band subsets exist in the UAV
scene. In general, the proposed algorithm is more robust than other algorithms, showing
good detection performance in this complex UAV scene.
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In the Supplementary Materials, we also use the proposed algorithm to detect the
targets one by one in the same scene. The comparison with other algorithms further
illustrates the effectiveness and robustness of our algorithm.

3.8. Parameter Analysis

Regarding the choice of threshold, the threshold is usually set larger to improve the
accuracy of target detection in related applications of HSI [3]. However, as demonstrated
in the experiment, setting a larger fixed threshold in the MSI will lead to an incomplete
target contour, and the OTSU algorithm is greatly affected by the size of the target. In the
scene where the target is relatively small, the target segmentation accuracy of the OTSU
algorithm is worse. To address the problem, based on the analysis of the contour of the
camouflaged target, we proposed the t-OTSU algorithm and the ORE algorithm. As an
important parameter in the proposed t-OTSU algorithm, t greatly affects the performance
and robustness of the proposed method. Therefore, in order to determine the appropriate
value of t, experiments with different values of t are conducted to obtain the mean values
of evaluation metrics for several scenes.

As shown in Table 3, the values of AC, Fa, and F1 of the proposed method show a
decreasing trend. This indicates that the performance of the proposed algorithm decreases
as the value of t increases from 0.3 to 0.6. When t is set to 0.2 and 0.3, there is an unobvious
change in the performance of the algorithm. In order to improve the accuracy of target
detection in most scenes, the parameter t is set to 0.3.
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Table 3. Experimental results with different parameters t. The best results are bolded.

t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6

SCENE AC Fa F1 AC Fa F1 AC Fa F1 AC Fa F1 AC Fa F1

LAWN 0.9970 0.0017 0.9212 0.9970 0.0016 0.9222 0.9970 0.0012 0.9215 0.9957 0.0008 0.8952 0.9919 0.0005 0.8057
BT 0.9923 0.0028 0.9300 0.9923 0.0028 0.9300 0.9923 0.0028 0.9300 0.9909 0.0021 0.9080 0.9891 0.0014 0.8863
BF 0.9980 0.0011 0.9746 0.9980 0.0011 0.9746 0.9980 0.0011 0.9746 0.9980 0.0010 0.9728 0.9980 0.0009 0.9723

4. Discussion

In our experiments, the band selection method was utilized to obtain MSI containing
only a few bands and thus reduce the computational effort. Experimental results show
that as the number of bands decreases, the performance of the comparison algorithms also
declines [37]. Interestingly, we noticed that different methods show different sensitivities
to changes in the number of bands. The ACE algorithm is the most sensitive in that its
performance declines the most as the number of bands decreases. The reduction of bands
also leads to an improvement in the performance of specific algorithms, which means that
more but redundant spectral bands may be more harmful than fewer but non-redundant
bands [21].

In addition, an important influencing factor in the practical applications of spectral
image target detection is the lighting conditions. Experiments prove that the combination
of a few bands and poor illumination conditions is a disaster for the target detection
applications in MSI. The performance of the recently proposed HCEM algorithm is even
worse than the original CEM algorithm. The main reason may be that the reweighted
target spectrum in each layer gradually deviates from the real target spectrum due to the
interference of the background noise caused by the poor lighting condition. It also suggests
that the algorithms that perform well in the laboratory may not necessarily be superior in
real-world applications [5].

Combined with the subsequent UAV experiments, it can be found that the proposed
algorithm has a better detection capability for the camouflaged targets with regular shapes
and flat surfaces. For irregularly shaped targets, the spectral inconsistency brought by their
surface shadows or folds weakens the performance of the algorithms.

At the same time, we compare the UAV experiment with the results of the previous
three experiments and find out that the performance of the algorithm slightly declines.
The reason is that the UAV scenario is more complex than the other three experimental
scenarios, and the original waveband subset is not fully suitable for this scenario. This also
shows that in order to achieve excellent target detection with fewer bands, it is necessary
to select different subsets of bands for different scenarios [13,14].

The flow chart of the proposed algorithm (Figure 1) shows that the CEM detector plays
a key role in distinguishing the camouflaged nets and vegetation, and the ORE algorithm
plays a critical role in obtaining an accurate and complete target contour. Although the
results show that the performance of CEM-T is better than that of CEM-t-OTSU in simple
scenarios, the t-OTSU algorithm showed its advantages when the scene becomes more
complicated, such as the last UAV scene. In summary, the t-OTSU algorithm is mainly used
to adaptively segment out the complete target contour, contributing to the robustness of
the proposed algorithm in different scenarios. Meanwhile, the ORE algorithm is used to
accurately obtain the target region, playing a significant role in improving the performance
of our algorithm. For the application of camouflaged targets detection, these two algorithms
are both indispensable in our study. In general, this algorithm can overcome influencing
factors such as low spectral resolution and poor lighting conditions and is more suitable
for fast and high-precision detection of unoccluded targets within 100 m. However, when
the light intensity in the scene is lower than 800 lux, the detection performance of our
algorithm is significantly reduced. Meanwhile, it should be noted that this algorithm is
not suitable for the detection of unknown camouflaged targets, which is also a common
problem of algorithms such as CEM and HCEM.
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5. Conclusions

In this work, we introduce a rapid and accurate camouflaged targets detection method
by using a snapshot multispectral camera. Firstly, we screen several general-purpose
bands used for the detection of the camouflaged targets based on snapshot multispectral
imaging technology and band selection methods. Additionally, a method based on the
constrained energy minimization (CEM) algorithm and improved OTSU algorithm is
proposed to adaptively segment the camouflaged target region in MSIs. The CEM detector
is used to obtain the initial detection results. Then, the improved OTSU algorithm adds a
minimum threshold t to segment the target region. In order to eliminate the interference
of misjudged areas and obtain a complete camouflaged target contour, the object region
extraction (ORE) algorithm is proposed. The experimental results of two different targets in
four typical urban scenes show that our proposed algorithms achieve better performance
of camouflaged target detection using only four bands as compared to other algorithms
that using all 25 multispectral bands, which is of great importance in practical applications.
The proposed method achieves AC over 0.99, Fa while remains under 0.002, and F1 is over
0.9. In addition, the proposed method also exhibits the best robustness in experiments
using multiple focal length lenses to simulate a variation in imaging distances.

A snapshot multispectral camera is a relatively new imaging device in recent years. It
is extremely limited to the select matched spatial resolution and band range of a snapshot
multispectral camera. In the future, the snapshot camera could be customized so that it is
more suitable for target detection according to the proposed algorithm. Meanwhile, we
will build a data set of camouflaged targets based on the snapshot multispectral camera,
using deep learning-based algorithms to detect unknown camouflaged targets in complex
scenes under long-distance, poor lighting conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13193949/s1, Figure S1: Detection results of the two camouflaged nets in different scenarios
with bands ranging from 4 to 25. (a) The detection results of two targets in the Lawn scene. (b) The
detection results of two targets in the BT scene. (c) The detection results of two targets in the UAV
scene, Figure S2: The quantitative comparison of the detection results of two targets in different
scenes. (a) The curves of AC using different methods for the two targets. (b) The curves of Fa using
different methods for the two targets. (c) The histograms of F1 using different methods for the
two targets.
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