A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods to Estimate ET
2.3.1. Calculation of ETref
2.3.2. Ratio Correction of ETp
2.3.3. Gamma Distribution Correction of ETp
2.3.4. Uncertainty in Water Balance
2.3.5. Evaluation Criteria
3. Results
3.1. Evaluation of ETp
3.2. Correction of ETp
3.3. Spatial Distribution and Trend of ET over the Tibetan Plateau
4. Discussion
4.1. Uncertainty of ETref
4.2. The Monthly Coefficients of Ratio Bias Correction
4.3. Limitations
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 2010, 46, W09522. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. 2015, 93, 5–58. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wang, Y.; Liu, X.; Zhao, H.; Shao, R.; Wang, G. Evaluation of the rescaled complementary principle in the estimation of evaporation on the Tibetan Plateau. Sci. Total Environ. 2020, 699, 134367. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. 2011, 47, W00G07. [Google Scholar] [CrossRef]
- Allam, M.; Mhawej, M.; Meng, Q.; Faour, G.; Abunnasr, Y.; Fadel, A.; Xinli, H. Monthly 10-m evapotranspiration rates retrieved by SEBALI with Sentinel-2 and MODIS LST data. Agric. Water Manag. 2021, 243, 106432. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Applications. J. Irrig. Drain Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; D’Urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Meneti, M.; Feddes, R.A.; Holtslag, M. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 1: Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F. A remote sensing surface energy balance algorithm for land (SEBAL).: Part 2: Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Mhawej, M.; Nasrallah, A.; Abunnasr, Y.; Fadel, A.; Faour, G. Better irrigation management using the satellite-based adjusted single crop coefficient (aKc) for over sixty crop types in California, USA. Agric. Water Manag. 2021, 256, 107059. [Google Scholar] [CrossRef]
- Senay, G.B.; Gowda, P.H.; Bohms, S.; Howell, T.A.; Friedrichs, M. Evaluating the SSEBop approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid Texas High Plains. Hydrol. Earth Syst. Sci. 2014, 11, 723–756. [Google Scholar]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50, RG2005. [Google Scholar] [CrossRef]
- Chang, Y.; Wang, J.; Qin, D.; Ding, Y.; Zhao, Q.; Liu, F. Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China. PLoS ONE 2017, 12, e0189059. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Longuevergne, L.; Scanlon, B.R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 2014, 50, 1131–1151. [Google Scholar] [CrossRef] [Green Version]
- Xue, B.; Wang, L.; Li, X.; Yang, K.; Chen, D.; Sun, L. Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol. 2013, 492, 290–297. [Google Scholar] [CrossRef]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Chen, D.; Yang, K.; Wang, A. Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J. Geophys. Res. Atmos. 2014, 119, 13079–13095. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y.; Liu, W. Complementary-relationship-based modeling of terrestrial evapotranspiration across China during 1982–2012: Validations and spatiotemporal analyses. J. Geophys. Res. Atmos. 2019, 124, 4326–4351. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.; Reager, J.T.; Chandanpurkar, H.A.; Rodell, M. A 10 per cent increase in global land evapotranspiration from 2003 to 2019. Nature 2021, 593, 543–547. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Intercomparison and evaluation of three global high-resolution evapotranspiration products across China. J. Hydrol. 2018, 566, 743–755. [Google Scholar] [CrossRef]
- Jiménez, C.; Prigent, C.; Mueller, B.; Seneviratne, S.I.; McCabe, M.F.; Wood, E.F.; Rossow, W.B.; Balsamo, G.; Betts, A.K.; Dirmeyer, P.A.; et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 2011, 116, D02102. [Google Scholar] [CrossRef]
- Liu, W.; Wang, L.; Zhou, J.; Li, Y.; Sun, F.; Fu, G.; Li, X.; Sang, Y.-F. A worldwide evaluation of basin-scale evapotranspiration estimates against the water balance method. J. Hydrol. 2016, 538, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Soni, A.; Syed, T. Analysis of variations and controls of evapotranspiration over major Indian River Basins (1982–2014). Sci. Total Environ. 2020, 754, 141892. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.B.; Guo, Z.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38, L06402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Leuning, R.; Chiew, F.; Wang, E.; Zhang, L.; Liu, C.; Sun, F.; Peel, M.; Shen, Y.; Jung, M. Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 2012, 13, 379–391. [Google Scholar] [CrossRef]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, L11501. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.; Bettadpur, S.; Ries, J.; Thompson, P.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Kuang, X.; Jiao, J.J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 2016, 121, 3979–4007. [Google Scholar] [CrossRef]
- Yin, Y.; Wu, S.; Zhao, D.; Zheng, D.; Pan, T. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. J. Geogr. Sci. 2013, 23, 195–207. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Yu, Z.; Ding, Y.; Xing, W.; Lu, W. Satellite retrieval of actual evapotranspiration in the Tibetan Plateau: Components partitioning, multidecadal trends and dominated factors identifying. J. Hydrol. 2018, 559, 471–485. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Ma, N.; Guo, Y.; Qiang, Y. Cryosphere evapotranspiration in the Tibetan Plateau: A review. Sci. Cold Arid. Reg. 2020, 12, 355–370. [Google Scholar]
- Feng, Y.; Liang, S.; Kuang, X.; Wang, G.; Wang, X.S.; Wu, P.; Wan, L.; Wu, Q. Effect of climate and thaw depth on alpine vegetation variations at different permafrost degrading stages in the Tibetan Plateau, China. Arct. Antarct. Alp. Res. 2019, 51, 155–172. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Lv, C.; Wang, G.; Feng, Y.; Wu, Q.; Wan, L.; Tong, Y. Vegetation phenology and its variations in the Tibetan Plateau, China. Int. J. Remote Sens. 2019, 40, 3323–3343. [Google Scholar] [CrossRef]
- Che, L.; Xu, J. Land Use Change and Its Impact of Ecosystem Service Value in Yarlung Zangbo River Basin in Southern of Qinghai-Tibet Plateau. J. Geosci. Environ. Prot. 2020, 8, 395–409. [Google Scholar] [CrossRef]
- Chen, X.; Su, Z.; Ma, Y.; Yang, K.; Wen, J.; Zhang, Y. An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan plateau. J. Appl. Meteorol. Clim. 2013, 52, 607–622. [Google Scholar] [CrossRef] [Green Version]
- NMIC. Assessment Report of China’s Ground Precipitation 0.5° × 0.5° Gridded Dataset (V2.0); National Meteorological Information Center: Beijing, China, 2012. [Google Scholar]
- Wang, J.; Zhang, M.; Wang, S.; Ren, Z.; Che, Y.; Qiang, F.; Qu, D. Decrease in snowfall / rainfall ratio in the Tibetan Plateau from 1961 to 2013. J. Geogr. Sci. 2016, 26, 1277–1288. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Climatol. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Meng, F.; Su, F.; Li, Y.; Tong, K. Changes in Terrestrial Water Storage During 2003–2014 and Possible Causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Wang, R.; Yu, G. Estimation of the Qinghai-Tibetan Plateau runoff and its contribution to large Asian rivers. Sci. Total Environ. 2020, 749, 141570. [Google Scholar] [CrossRef]
- Ljungqvist, F.C.; Seim, A.; Krusic, P.J.; González-Rouco, J.F.; Werner, J.P.; Cook, E.R.; Zorita, E.; Luterbacher, J.; Xoplaki, E.; Destouni, G.; et al. European warm-season temperature and hydroclimate since 850 CE. Environ. Res. Lett. 2019, 14, 084015. [Google Scholar] [CrossRef]
- Xu, Z.; Cheng, L.; Liu, P.; Makarieva, O.; Chen, M. Detecting and quantifying the impact of long-term terrestrial water storage changes on the runoff ratio in the head regions of the two largest rivers in China. J. Hydrol. 2021, 601, 126668. [Google Scholar] [CrossRef]
- Thom, H.C. A note on the gamma distribution. Mon. Weather Rev. 2021, 86, 117–122. [Google Scholar] [CrossRef]
- Bouraoui, F.; Vachaud, G.; Li, L.Z.X.; Le Treut, H.; Chen, T. Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim. Dyn. 1999, 15, 153–161. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Han, Z.; Scanlon, B.R.; Sun, Z.; Han, P.; Hou, A. Evapotranspiration Estimation for Tibetan Plateau Headwaters Using Conjoint Terrestrial and Atmospheric Water Balances and Multisource Remote Sensing. Water Resour. Res. 2019, 55, 8608–8630. [Google Scholar] [CrossRef]
- Gao, G.; Chen, D.; Xu, C.; Simelton, E. Trend of estimated actual evapotranspiration over China during 1960–2002. J. Geophys. Res. 2007, 112, D11120. [Google Scholar] [CrossRef] [Green Version]
- Haario, H.; Laine, M.; Mira, A.; Saksman, E. DRAM: Efficient adaptive MCMC. Stat. Comput. 2006, 16, 339–354. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.G.; Armstrong, R.L. Application of Satellite Remote Sensing Techniques to Frozen Ground Studies. Polar Geogr. 2004, 28, 163–196. [Google Scholar] [CrossRef]
Sub-Basin | Area (104 km2) | P (mm/Month) | R (mm/Month) | Main Vegetation Types |
---|---|---|---|---|
Yellow | 21.4 | 40.6 | 3.3 | Meadow/Shrub |
Yangtze | 43.5 | 54.5 | 9.8 | Meadow/Shrub |
Yarlung Zangbo | 25.3 | 73.9 | 21.3 | Meadow/Steppe/Forest/Alpine vegetation |
Salween | 10.8 | 59.1 | 13.2 | Meadow/Shrub |
Menkon | 8.1 | 53.6 | 6.7 | Meadow/Shrub |
Qaidam | 24.7 | 13.8 | / | Sparse vegetation |
Inner Plateau | 69.3 | 20.6 | / | Steppe/Meadow |
Datasets | Category | Spatial Resolution | Time Range | Frequency | References |
---|---|---|---|---|---|
P | Interpolation with observations | 0.1° | 1980–2019 | Monthly | [42] |
R | Land surface model | 0.25° | 2000–2016 | Monthly | [2] |
TWS | Remote sensing | 1° | 2003–2017 | Monthly | [30] |
MET | Penman–Monteith | 0.05° | 2000–2015 | Monthly | [3] |
GIET | Modified Penman-Monteith | 8 km | 1982–2015 | Monthly | [4] |
SET | Surface energy balance system | 0.1° | 2001–2015 | Monthly | [41] |
GET | land surface model | 0.25° | 1948–2015 | Monthly | [2] |
Sub-Basin | σPre (mm/Month) | σR (mm/Month) | σΔTWS (mm/Month) | σETref (mm/Month) | ||||
---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Mean | ||||
Yellow | ±0.22 | ±2.70 | ±2.58 | ±0.37 | ±1.47 | ±0.16 | ±1.4 | ±2.0 |
Yangtze | ±0.52 | ±4.98 | ±2.73 | ±0.25 | ±2.12 | ±0.51 | ±1.7 | ±2.8 |
Yarlung Zangbo | ±1.08 | ±6.33 | ±3.55 | ±0.36 | ±2.83 | ±1.13 | ±2.8 | ±4.1 |
Salween | ±0.80 | ±5.40 | ±2.75 | ±0.29 | ±2.31 | ±0.68 | ±2.5 | ±3.5 |
Mekong | ±0.43 | ±3.44 | ±3.42 | ±0.49 | ±1.95 | ±0.36 | ±1.9 | ±2.7 |
Qaidam | ±0.12 | ±1.36 | ±0.62 | ±0.07 | ±0.54 | / | ±2.0 | ±2.1 |
Inner Plateau | ±0.25 | ±1.03 | ±1.42 | ±0.18 | ±0.72 | / | ±2.1 | ±2.2 |
Correction Method | Product ET | Gamma | Monthly Ratio | |
---|---|---|---|---|
Criteria | ||||
DE | −13.61 | −0.03 | 0.01 | |
RMSE | 17.6 | 14.2 | 10.1 | |
CR | 0.95 | 0.91 | 0.97 |
Sub-Basin | ETp (mm/yr) | ETref (mm/yr) | Corrected ET (mm/yr) | |||
---|---|---|---|---|---|---|
GET | GIET | MET | SET | |||
Yellow | 440 | 604 | 498 | 330 | 445 ± 24 | 438 |
Yangtze | 506 | 638 | 540 | 462 | 535 ± 20.4 | 528 |
Yarlung Zangbo | 389 | 563 | 584 | 411 | 664 ± 33.6 | 650 |
Salween | 369 | 556 | 498 | 426 | 571 ± 30 | 550 |
Mekong | 465 | 623 | 506 | 466 | 574 ± 22.8 | 552 |
Qaidam | 137 | 161 | / | 90 | 124 ± 24 | 150 |
Inner Plateau | 310 | 331 | / | 163 | 83 ± 25.2 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Kuang, X.; Liang, S.; Liu, S.; Yao, Y.; Xie, Y.; Zheng, C. A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau. Remote Sens. 2021, 13, 3958. https://doi.org/10.3390/rs13193958
Feng Y, Kuang X, Liang S, Liu S, Yao Y, Xie Y, Zheng C. A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau. Remote Sensing. 2021; 13(19):3958. https://doi.org/10.3390/rs13193958
Chicago/Turabian StyleFeng, Yuqing, Xingxing Kuang, Sihai Liang, Suning Liu, Yingying Yao, Yueqing Xie, and Chunmiao Zheng. 2021. "A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau" Remote Sensing 13, no. 19: 3958. https://doi.org/10.3390/rs13193958
APA StyleFeng, Y., Kuang, X., Liang, S., Liu, S., Yao, Y., Xie, Y., & Zheng, C. (2021). A Simple and Efficient Method for Correction of Basin-Scale Evapotranspiration on the Tibetan Plateau. Remote Sensing, 13(19), 3958. https://doi.org/10.3390/rs13193958