Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hyperspectral Library
2.3. Synthetic Image of the Historical Center of Venice
2.4. Evaluation of Spectral and Spatial Capabilities Using Linear Spectral Mixture Analysis and FAMs
3. Results
3.1. LSM Results
3.2. FAMs Calculated to Validate LSM Results
4. Discussion
4.1. Analysis of Fractional Abundance Images
4.2. The Percentages of Mixed Pixels
4.3. Ranking of the Capabilities of Most Remote Sensing Images
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Class | Slope | Intercept | R2 | |||
---|---|---|---|---|---|---|
Mean | σ | Mean | σ | Mean | σ | |
Old Tiles | −5.52% | 0.16% | 105.0% | 5.00% | 0.945 | 0.046 |
New Tiles | −5.43% | 0.14% | 102.0% | 2.00% | 0.936 | 0.009 |
Lead | −4.36% | 1.81% | 106.0% | 6.00% | 0.978 | 0.031 |
Concrete | −5.36% | 1.81% | 103.0% | 3.00% | 0.884 | 0.026 |
Trachyte | −11.90% | 5.10% | 105.0% | 5.00% | 0.796 | 0.049 |
Limestone | −24.00% | 4.00% | 101.0% | 1.00% | 0.704 | 0.172 |
Asphalt | −3.70% | 0.50% | 102.0% | 2.00% | 0.950 | 0.050 |
Pebbles | −20.10% | 4.10% | 101.0% | 1.00% | 0.921 | 0.085 |
Sand | −13.20% | 5.80% | 102.0% | 2.00% | 0.859 | 1.050 |
Wood | −24.20% | 4.00% | 108.0% | 0.10% | 0.822 | 2.050 |
Grass | −10.20% | 5.00% | 100.0% | 0.10% | 0.785 | 3.050 |
Trees | −13.00% | 4.30% | 100.0% | 0.00% | 0.799 | 4.050 |
Water | −1.75% | 0.60% | 100.0% | 0.10% | 0.947 | 5.050 |
Class | Slope | Intercept | R2 | |||
---|---|---|---|---|---|---|
Mean | σ | Mean | σ | Mean | σ | |
Old Tiles | −2.61% | 0.8% | 100.0% | 10.00% | 0.929 | 0.046 |
New Tiles | −3.16% | 0.65% | 101.0% | 1.00% | 0.976 | 0.000 |
Lead | −2.44% | 1.34% | 101.0% | 3.20% | 0.984 | 0.008 |
Concrete | −3.33% | 1.29% | 101.0% | 1.00% | 0.970 | 0.002 |
Trachyte | −7.11% | 3.24% | 101.0% | 5.00% | 0.935 | 0.018 |
Limestone | −17.03% | 7.25% | 103.0% | 3.00% | 0.920 | 0.011 |
Asphalt | −2.11% | 0.50% | 100.0% | 1.00% | 0.984 | 0.002 |
Pebbles | −14.4% | 4.75% | 100.0% | 1.00% | 0.984 | 0.015 |
Sand | −13.30% | 7.06% | 100.0% | 5.00% | 0.992 | 0.003 |
Wood | −10.46% | 5.04% | 99.0% | 5.00% | 0.863 | 0.019 |
Grass | −5.21% | 4.96% | 100.0% | 5.00% | 0.940 | 0.009 |
Trees | −4.69% | 4.46% | 100.0% | 6.00% | 0.925 | 0.079 |
Water | −0.51% | 0.79% | 100.0% | 0.40% | 0.965 | 0.041 |
Spatial Resolution (m) | ||||||
---|---|---|---|---|---|---|
1 | 5 | 10 | 50 | 100 | 250 | |
Old Tiles class | 15% | 26% | 47% | 100% | 100% | 100% |
New Tiles class | 22% | 31% | 41% | 100% | 100% | 100% |
Lead class | 14% | 25% | 42% | 100% | 100% | 100% |
Concrete class | 17% | 32% | 47% | 100% | 100% | 100% |
Trachyte class | 30% | 49% | 79% | 100% | 100% | 100% |
Limestone class | 26% | 43% | 68% | 100% | 100% | 100% |
Asphalt class | 8% | 22% | 43% | 100% | 100% | 100% |
Pebbles class | 12% | 44% | 79% | 100% | 100% | 100% |
Sand class | 18% | 49% | 85% | 100% | 100% | 100% |
Wood class | 19% | 49% | 90% | 100% | 100% | 100% |
Grass class | 17% | 49% | 95% | 100% | 100% | 100% |
Trees class | 13% | 42% | 95% | 100% | 100% | 100% |
Water class | 8% | 25% | 43% | 100% | 100% | 100% |
Impervious surfaces | 19% | 32% | 52% | 100% | 100% | 100% |
Pervious surfaces | 16% | 47% | 85% | 100% | 100% | 100% |
Vegetated surfaces | 15% | 45% | 95% | 100% | 100% | 100% |
References
- World United Nations. Word Urbanization Prospects, 2018 Highlights. United Nations, New York 2019. Available online: https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf (accessed on 17 July 2020).
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstand, M.; Seto, K.C.; et al. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer Open: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2013. [Google Scholar]
- Montgomery, M.; Stren, R.; Cohen, B.; Reed, H. Cities Transformed: Demographic Change and Its Implications in the Developing World; Earthscan: London, UK, 2004. [Google Scholar]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Ash, C.; Jasny, B.R.; Roberts, L.; Stone, R.; Sugden, A.M. Reimagining cities. Science 2008, 319, 739. [Google Scholar] [CrossRef] [Green Version]
- DeFries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Qiu, L. A comparative study on the quality of China’s eco-city: Suzhou vs. Kitakyushu. Habitat Int. 2015, 50, 57–64. [Google Scholar] [CrossRef]
- Commission of the European Communities. Communication from the Commission to the Council and the European Parliament on Thematic Strategy on the Urban Environment, 718 Final. Brussels, Belgium. 2005. Available online: https://eur-lex.europa.eu/ (accessed on 23 July 2020).
- Chelleri, L.; Schuetze, T.; Salvati, L. Integrating resilience with urban sustainability in neglected neighborhoods: Challenges and opportunities of transitioning to decentralized water management in Mexico City. Habitat Int. 2015, 48, 122–130. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Available online: http://www.unep.org/ (accessed on 18 May 2020).
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [Green Version]
- Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comput. Environ. Urban Syst. 2000, 24, 5–22. [Google Scholar] [CrossRef]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. Environ. 2003, 88, 170–186. [Google Scholar] [CrossRef]
- Priem, F.; Canters, F. Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping. Remote Sens. 2016, 8, 787. [Google Scholar] [CrossRef] [Green Version]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Segl, K.; Roessner, S.; Heiden, U.; Kaufmann, H. Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2003, 58, 99–112. [Google Scholar] [CrossRef]
- Heiden, U.; Roessner, S.; Segl, K.; Kaufmann, H. Analysis of spectral signatures of urban surfaces for their identification using hyperspectral HyMap data. In Proceedings of the IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas (Cat. No.01EX482), Rome, Italy, 8–9 November 2001; pp. 173–177. [Google Scholar] [CrossRef]
- Forzieri, G.; Tanteri, L.; Moser, G.; Catani, F. Mapping natural and urban environments using airborne multi-sensor ADS40–MIVIS–LiDAR synergies. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 313–323. [Google Scholar] [CrossRef]
- Demarchi, L.; Canters, F.; Chan, J.C.W.; Van de Voorde, T. Multiple endmember unmixing of CHRIS/Proba imagery for mapping impervious surfaces in urban and suburban environments. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3409–3424. [Google Scholar] [CrossRef]
- Zhang, C. Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 153–162. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Liu, K.; Li, Y.; Zhang, L. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification. Remote Sens. 2016, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth: Measurement, analysis and modeling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Tooke, T.R.; Coops, N.C.; Goodwin, N.R.; Voogt, J.A. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ. 2009, 113, 398–407. [Google Scholar] [CrossRef]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very high resolution multiangle urban classification analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Pesaresi, M.; Amason, K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Zhang, H.; Wang, T.; Lin, H. Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 177–189. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Fusilli, L.; Pascucci, S.; Pignatti, S.; Santini, F. Hyperspectral sensor data capability for retrieving complex urban land cover in comparison with multispectral data: Venice city case study (Italy). Sensors 2008, 8, 3299–3320. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Sexton, J.O.; Huang, C.; Channan, S.; Townshend, J.R. Characterizing the magnitude, timing and duration of urban growth from time series of Landsat-based estimates of impervious cover. Remote Sens. Environ. 2016, 175, 1–13. [Google Scholar] [CrossRef]
- Luo, X.; Tong, X.; Hu, Z.; Wu, G. Improving Urban Land Cover/use Mapping by Integrating A Hybrid Convolutional Neural Network and An Automatic Training Sample Expanding Strategy. Remote Sens. 2020, 12, 2292. [Google Scholar] [CrossRef]
- Banzhaf, E.; Grescho, V.; Kindler, A. Monitoring urban to peri-urban development with integrated remote sensing and GIS information: A Leipzig, Germany case study. Int. J. Remote Sens. 2009, 30, 1675–1696. [Google Scholar] [CrossRef]
- Tran, T.D.B.; Puissant, A.; Badariotti, D.; Weber, C. Optimizing spatial resolution of imagery for urban form detection—the cases of France and Vietnam. Remote Sens. 2011, 3, 2128–2147. [Google Scholar] [CrossRef] [Green Version]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Arino, O.; Gross, D.; Ranera, F.; Leroy, M.; Bicheron, P.; Brockman, C.; Bourg, L. GlobCover: ESA service for global land cover from MERIS. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 2412–2415. [Google Scholar]
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, C. The integrated use of DMSP-OLS nighttime light and MODIS data for monitoring large-scale impervious surface dynamics: A case study in the Yangtze River Delta. Remote Sens. 2014, 6, 9359–9378. [Google Scholar] [CrossRef] [Green Version]
- Mertes, C.M.; Schneider, A.; Sulla-Menashe, D.; Tatem, A.J.; Tan, B. Detecting change in urban areas at continental scales with MODIS data. Remote Sens. Environ. 2015, 158, 331–347. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. The use of single-date MODIS imagery for estimating large-scale urban impervious surface fraction with spectral mixture analysis and machine learning techniques. ISPRS J. Photogramm. Remote Sens. 2013, 86, 100–110. [Google Scholar] [CrossRef]
- Korzybski, A. Science and Sanity; Science Press Printing: Lancaster, PA, USA, 1958. [Google Scholar]
- Milella, M. Esplorare le Frontiere verso una Interculturalitá Formative; Edizione Ateneo: Perugia, Italy, 2007. [Google Scholar]
- Potere, D.; Schneider, A.; Angel, S.; Civco, D.L. Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? Int. J. Remote Sens. 2009, 30, 6531–6558. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Abrams, M.; Cavalli, R.M.; Pignatti, S. Intercalibration and fusion of satellite and airborne multispectral data over Venice. In Proceedings of the 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Berlin, Germany, 22–23 May 2003. [Google Scholar]
- Meher, S.K.; Pal, S.K. Rough-wavelet granular space and classification of multispectral remote sensing image. Appl. Soft Comput. 2011, 11, 5662–5673. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, L. Sub-pixel mapping based on artificial immune systems for remote sensing imagery. Pattern Recognition 2013, 46, 2902–2926. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, Y.; Stein, A.; Li, S.; Hu, J. Enhanced subpixel mapping with spatial distribution patterns of geographical objects. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2356–2370. [Google Scholar] [CrossRef]
- Adams, J.B.; Smith, M.O.; Gillespie, A.R. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Englert, C.M., Englert, P., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Cavalli, R.M. Local, daily, and total bio-optical models of coastal waters of Manfredonia gulf applied to simulated data of CHRIS, Landsat TM, MIVIS, MODIS, and PRISMA Sensors for Evaluating the Error. Remote Sens. 2020, 12, 1428. [Google Scholar] [CrossRef]
- Plaza, A.; Martínez, P.; Pérez, R.; Plaza, J. A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 650–663. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Vane, G.; Solomon, J.E.; Rock, B.N. Imaging spectrometry for earth remote sensing. Science 1985, 228, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Pascucci, S.; Cavalli, R.M.; Palombo, A.; Pignatti, S. Suitability of CASI and ATM airborne remote sensing data for archaeological subsurface structure detection under different land cover: The Arpi case study (Italy). J. Geophys. Eng. 2010, 7, 183–189. [Google Scholar] [CrossRef]
- Abbate, G.; Cavalli, R.M.; Pascucci, S.; Pignatti, S.; Poscolieri, M. Relations between morphological settings and vegetation covers in a medium relief landscape of Central Italy. Ann. Geophys. 2006, 49, 153–165. [Google Scholar]
- Cavalli, R.M.; Pascucci, S.; Pignatti, S. Optimal spectral domain selection for maximizing archaeological signatures: Italy case studies. Sensors 2009, 9, 1754–1767. [Google Scholar] [CrossRef] [Green Version]
- Morel, A. Optical Properties of Pure Water and Pure Sea Water. In Optical Aspects of Oceanography; Jerlov, N.G., Neelsen, E.S., Eds.; Academic Press: New York, NY, USA, 1974; pp. 1–24. [Google Scholar]
- Cavalli, R.M.; Betti, M.; Campanelli, A.; Cicco, A.D.; Guglietta, D.; Penna, P.; Piermattei, V. A methodology to assess the accuracy with which remote data characterize a specific surface, as a Function of Full Width at Half Maximum (FWHM): Application to three Italian coastal waters. Sensors 2014, 14, 1155–1183. [Google Scholar] [CrossRef] [PubMed]
Sensors | Optical Spectral Bands | Optical Spectral Cover (nm) | ||||
---|---|---|---|---|---|---|
Data Spatial Resolution | Panchromatic | Multispectral | Hyperspectral | References | ||
Urban cover mapping at urban scale | ||||||
High (<10 m) | IRS-1C | 1 | 500–750 | [29] 1 | ||
IKONOS | 1 | 530–930 | [17] 1; [26] 1; [29] 1; [31] 1,2 | |||
QuickBird | 1 | 405–1053 | [35] 1,2 | |||
WorldView-2 | 1 | 450–800 | [28] 1,2 [30] 1,2 | |||
IKONOS | 4 | 450–860 | [17] 1; [26] 1; [29] 1 | |||
QuickBird | 5 | 403–918 | [27] 1,2; [35] 1,2 | |||
WorldView-2 | 8 | 400–1040 | [28] 1,2 [30] 1,2 | |||
APEX | 288 | 372–2540 | [18] 1 | |||
AVIRIS | 244 | 365–2500 | [19] 1 | |||
DAIS | 72 | 400–2500 | [20] 1,2 | |||
HyMap | 128 | 400–2500 | [21] 1,2 | |||
MIVIS | 92 | 430–2478 | [31] 1,2; [22] 1,2 | |||
Moderate (10 m–100 m) | SPOT | 1 | 450–750 | [34] 1,2; [35] 1,2 | ||
ALI | 9 | 433–2350 | [31] 1,2 | |||
Landsat TM | 6 | 450–2350 | [32] 1,2; [34] 1,2; [36] 1,2 | |||
Landsat ETM+ | 6 | 450–2350 | [31] 1,2; [32] 1,2; [35] 1,2; [36] 1,2; [37] 1,2; [38] 1,2 | |||
Sentinel 2a | 12 | 443–2200 | [33] 1,2 | |||
SPOT | 4 | 450–890 | [34] 1,2 | |||
CHRIS | 19–150 | 410–1050 | [23] 1,2 | |||
Hyperion | 242 | 400–2500 | [24] 1,2; [25] 1; [31] 1,2 | |||
TG-1 | 128 | 400–2500 | [25] 1 | |||
Urban cover mapping at country and global scale | ||||||
Coarse (>100 m) | DMSP-OLS | 2 | 400–1100 | [39] 1,2; | ||
MERIS | 15 | 390–1040 | [37] 1,2 | |||
MODIS | 19 | 405–2155 | [36] 1,2; [40] 1,2; [41] 1,2 |
Land Cover Material | ||
---|---|---|
1 | Old Tiles | Old lateritic tiles cover most buildings (i.e., 89%). |
2 | New Tiles | New lateritic tiles. |
3 | Lead | Lead tiles were used as covering material for the public buildings and domes. |
4 | Concrete | Concrete was primarily used in the western side of the city and in the harbor areas. |
5 | Trachyte | Trachyte rock came from quarries of Euganean Hills (Italy) and was used for paving pedestrian streets. |
6 | Limestone | Limestone rock came from quarries of Pietra d’Istria (Italy) and was used for decoration in the urban paving. |
7 | Asphalt | Asphalt was primarily used in the western side of the city and in the harbor areas. |
8 | Pebbles | |
9 | Sand | |
10 | Wood | Wood was used for paving some bridges, jetty, and swings. |
11 | Grass | |
12 | Trees | |
Water | Water of the channels and streams. |
Spectral Cover Range (nm) | FWHM (nm) | Spatial Resolution (m) |
---|---|---|
365–2500 | 3; 10; 30; 50; 100 | 1; 5; 10; 50; 100; 250 |
400–1100 | 3; 10; 30; 50; 100 | 1; 5; 10; 50; 100; 250 |
Images at Spectral Range of | ||||
---|---|---|---|---|
365–2500 nm with Mixed Pixel Percentages | 400–1100 nm with Mixed Pixel Percentages | |||
Less than 50% | More than 50% | Less than 50% | More than 50% | |
Impervious surfaces | 0.49 | −0.02 | 0.24 | −0.37 |
Pervious surfaces | 0.45 | −1.83 | 0.36 | −8.85 |
Vegetated surfaces | 0.54 | 0.16 | 0.48 | −0.17 |
Water class | 0.23 | −2.87 | 0.04 | −4.24 |
Spatial Resolution (m) | Images at Spectral Range of 365–2500 nm | Images at Spectral Range of 400–1100 nm | ||||||
---|---|---|---|---|---|---|---|---|
Impervious Surfaces | Pervious Surfaces | Vegetated Surfaces | Water Endmember | Impervious Surfaces | Pervious Surfaces | Vegetated Surfaces | Water Endmember | |
1 | 0.41 | 0.41 | 0.48 | 0.05 | 0.13 | 0.29 | 0.36 | 0.15 |
5 | 0.50 | 0.49 | 0.59 | 0.28 | 0.20 | 0.42 | 0.61 | 0.26 |
10 | 0.56 | 0.24 | 0.13 | 0.36 | 0.38 | 0.13 | 0.13 | −0.29 |
50 | −0.05 | −0.40 | 0.09 | −1.11 | −0.26 | −0.18 | 0.08 | −1.77 |
100 | 0.10 | −4.10 | 0.32 | −3.60 | −0.54 | −32.53 | 0.39 | −5.35 |
250 | −0.11 | −3.06 | 0.10 | −3.91 | −0.30 | −2.84 | −1.29 | −5.61 |
Spectral Resolution (nm) | Images at Spectral Range of 365–2500 nm | Images at Spectral Range of 400–1100 nm | ||||||
---|---|---|---|---|---|---|---|---|
Impervious Surfaces | Pervious Surfaces | Vegetated Surfaces | Water Endmember | Impervious Surfaces | Pervious Surfaces | Vegetated Surfaces | Water Endmember | |
3 | 0.31 | −0.97 | 0.29 | −0.98 | 0.10 | −5.47 | 0.02 | −1.43 |
10 | 0.22 | −1.10 | 0.29 | −0.91 | 0.03 | −5.50 | 0.00 | −1.51 |
30 | 0.26 | −1.10 | 0.30 | −1.08 | −0.06 | −5.51 | 0.04 | −1.67 |
50 | 0.22 | −1.09 | 0.28 | −1.12 | −0.25 | −5.58 | 0.03 | −3.27 |
100 | 0.17 | −1.08 | 0.26 | −2.53 | −0.14 | −6.86 | 0.15 | −2.62 |
Image with Spectral Range of | ||
---|---|---|
365–2500 nm | 400–1100 nm | |
Impervious surfaces | 0.24 | −0.06 |
Pervious surfaces | −1.07 | −5.78 |
Vegetated surfaces | 0.28 | 0.05 |
Water class | −1.32 | −2.10 |
The Capability Loss of Remote Sensing Images to Distinguish the Urban Surface Materials Due to | ||||
---|---|---|---|---|
Increase in Pixed Pixel Percentage | Decrease in Spatial Resolution | Decrease in Spectral Resolution | Decrease in Spectral Range | |
Impervious surfaces | 0.30 | 0.25 | 0.08 | 0.30 |
Pervious surfaces | 3.56 | 6.85 | 0.19 | 4.71 |
Vegetated surfaces | 0.19 | 0.38 | 0.03 | 0.24 |
Water class | 0.78 | 1.05 | 0.52 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavalli, R.M. Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City. Remote Sens. 2021, 13, 3959. https://doi.org/10.3390/rs13193959
Cavalli RM. Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City. Remote Sensing. 2021; 13(19):3959. https://doi.org/10.3390/rs13193959
Chicago/Turabian StyleCavalli, Rosa Maria. 2021. "Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City" Remote Sensing 13, no. 19: 3959. https://doi.org/10.3390/rs13193959
APA StyleCavalli, R. M. (2021). Capability of Remote Sensing Images to Distinguish the Urban Surface Materials: A Case Study of Venice City. Remote Sensing, 13(19), 3959. https://doi.org/10.3390/rs13193959