Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Field Survey
3.2. Multispectral UAV Data Processing
3.3. Automatic Detection of Submerged Areas Using ML Algorithm
- First, for every dataset, a composite orthophoto was built, merging together the RE and NIR bands, and grouped into a single composite orthophotos using a specific command in QGIS software called “Merge”.
- Second, the composite orthophotos were converted in point clouds and assigned the RE-NIR true values at each point. To realized it, we used the “Raster pixels to points” command, obtaining some representative clouds of the Salbertrand area. Additionally, longitude and latitude coordinates were assigned and set to the ETRF2000-UTM32N coordinates system. Then, we assigned at the clouds the RE-NIR values extracting the information by the stacked pixels of the composite orthomosaics using a specific plugin in QGIS software (Point Sampling tool).
- Finally, the test datasets generated were exported in text format with integer values.
- Importing and organizing training/test datasets. To organise a proof-reading ML algorithm, training and test datasets were imported into Python script. If the datasets were large, it was possible to toggle off the low_memory function (see the Pandas libraries for more detailed information at [69]). The training dataset was then split into RE-NIR feature columns and a labelled class through a proper expression, recalling and assigning them in Features and Labels subfolders. Moreover, the test dataset contained only the RE+NIR spectral features; thus, it was possible to call them into the script.
- Preprocessing of the training dataset. In order to improve classification accuracy, the training dataset was processed, setting the threshold affected by the minimum number of the points value of the classes (11, 22, and 33 in this paper) to obtain more balanced datasets [79,80]. Furthermore, the balanced training dataset was randomised [81,82].
- Model’s training and classification of test dataset. The random forest algorithm, comprising the RandomForestClassifier module [77], was chosen to classify the external test dataset. The optimal hyperparameters obtained during the GridSearchCV processing were set.
- Saving and exporting the test dataset. Finally, the classified test datasets were exported, assigning the points’ coordinates again to the resulting class itself (water, vegetation, and ground/gravel bars, respectively). The classified dense point clouds obtained are shown in Figure 7.
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.-P. A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1. Imagery. Remote Sens. 2018, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Westerhoff, R.S.; Kleuskens, M.P.H.; Winsemius, H.C.; Huizinga, H.J.; Brakenridge, G.R.; Bishop, C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013, 17, 651–663. [Google Scholar] [CrossRef] [Green Version]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.-P.; Bates, P.D.; Mason, D.C. A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2417–2430. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.; Lane, S.N. Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods. Earth Surf. Process. Landf. 2016, 42, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W. Fluvial and aquatic applications of Structure from Motion photogrammetry and unmanned aer-ial vehicle/drone technology. Wiley Interdiscip. Rev. Water 2019, 6, e1328. [Google Scholar] [CrossRef] [Green Version]
- Endres, F.; Hess, J.; Sturm, J.; Cremers, D.; Burgard, W. 3-D Mapping With an RGB-D Camera. IEEE Trans. Robot. 2013, 30, 177–187. [Google Scholar] [CrossRef]
- Chen, S.C.; Hsiao, Y.S.; Chung, T.H. Determination of landslide and driftwood potentials by fixed-wing UAV-borne RGB and NIR images: A case study of Shenmu Area in Taiwan. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; p. 2491. [Google Scholar]
- Dabove, P.; Manzino, A.M.; Taglioretti, C. The DTM accuracy for hydrological analysis. Geoing. Ambient. Min. 2015, 144, 15–22. [Google Scholar]
- Guarnieri, A.; Masiero, A.; Vettore, A.; Pirotti, F. Evaluation of the dynamic processes of a landslide with laser scanners and Bayesian methods. Geomat. Nat. Hazards Risk 2014, 6, 614–634. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Rivera, J.P.; Estornell, J.; Ruiz, L.A.; Torralba, J.; Crespo-Peremarch, P. Classification of Uav-Based Photogram-metric Point Clouds of Riverine Species Using Machine Learning Algorithms: A Case Study in the Palancia River, Spain. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 659–666. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Han, F.; Zhang, J.; Jiang, P. Canopy Extraction and Height Estimation of Trees in a Shelter Forest Based on Fusion of an Airborne Multispectral Image and Photogrammetric Point Cloud. J. Sens. 2021, 2021, 5519629. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Z.; Yu, R.; Tian, Q.; Zhu, X. Extraction of Information about Individual Trees from High-Spatial-Resolution UAV-Acquired Images of an Orchard. Remote Sens. 2020, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Farfaglia, S.; Lollino, G.; Iaquinta, M.; Sale, I.; Catella, P.; Martino, M.; Chiesa, S. The Use of UAV to Monitor and Manage the Territory: Perspectives from the SMAT Project. In Engineering Geology for Society and Territory-Volume 5; Springer: Cham, Switzerland, 2015; pp. 691–695. [Google Scholar]
- Torrero, L.; Seoli, L.; Molino, A.; Giordan, D.; Manconi, A.; Allasia, P.; Baldo, M. The Use of Micro-UAV to Monitor Active Landslide Scenarios. In Engineering Geology for Society and Territory-Volume 5; Springer: Cham, Switzerland, 2015; pp. 701–704. [Google Scholar]
- Nishar, A.; Richards, S.; Breen, D.; Robertson, J.; Breen, B. Thermal infrared imaging of geothermal environments by UAV (un-manned aerial vehicles). J. Unmanned Veh. Syst. 2016, 4, 136–145. [Google Scholar] [CrossRef]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping landslide displacements using structure from motion (SfM) and image corre-lation of multi-temporal UAV photography. Prog. Phys. Geogr. 2013, 38, 97–116. [Google Scholar] [CrossRef]
- Eltner, A.; Baumgart, P.; Maas, H.-G.; Faust, D. Multi-temporal UAV data for automatic measurement of rill and interrill ero-sion on loess soil. Earth Surf. Process. Landf. 2015, 406, 741–755. [Google Scholar] [CrossRef]
- Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry. Earth Surf. Process. Landf. 2015, 4012, 1656–1671. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2009, 35, 136–156. [Google Scholar] [CrossRef]
- Dietrich, J.T. Riverscape mapping with helicopter-based Structure-from-Motion photogrammetry. Geomorphology 2016, 252, 144–157. [Google Scholar] [CrossRef]
- Flener, C.; Vaaja, M.; Jaakkola, A.; Krooks, A.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P. Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography. Remote Sens. 2013, 5, 6382–6407. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.S.; Austrums, R.; Maddock, I.; Habit, E. Drones and digital photogrammetry: From classifications to continuums for monitoring river habitat and hydromorphology. Wiley Interdiscip. Rev. Water 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Witek, M.; Jeziorska, J.; Niedzielski, T. An experimental approach to verifying prognoses of floods using an unmanned aerial vehicle. Meteorology Hydrology and Water Management. Res. Oper. Appl. 2014, 21, 3–11. [Google Scholar]
- Casado, M.R.; Gonzalez, R.B.; Kriechbaumer, T.; Veal, A. Automated identification of river hydromorphological features using UAV high resolution aerial imagery. Sensors 2015, 15, 27969–27989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langhammer, J.; Vacková, T. Detection and Mapping of the Geomorphic Effects of Flooding Using UAV Photogrammetry. Pure Appl. Geophys. 2018, 175, 3223–3245. [Google Scholar] [CrossRef]
- Miřijovský, J.; Langhammer, J. Multitemporal monitoring of the morphodynamics of a mid-mountain stream using UAS photogrammetry. Remote Sens. 2015, 7, 8586–8609. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, A.D.; Eaton, B.C.; Hugenholtz, C.H. UAS-based remote sensing of fluvial change following an extreme flood event. Earth Surf. Process. Landf. 2015, 40, 1464–1476. [Google Scholar] [CrossRef]
- Neumann, K.J. Trends for digital aerial mapping cameras. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. (ISPRS) 2008, 28, 551–554. [Google Scholar]
- Lejot, J.; Delacourt, C.; Piégay, H.; Fournier, T.; Trémélo, M.-L.; Allemand, P. Very high spatial resolution imagery for chan-nel bathymetry and topography from an unmanned mapping controlled platform. Earth Surf. Process. Landf. 2007, 32, 1705–1725. [Google Scholar] [CrossRef]
- Thumser, P.; Kuzovlev, V.V.; Zhenikov, K.Y.; Zhenikov, Y.N.; Boschi, M.; Boschi, P. Using structure from motion (SfM) technique for the characterization of riverine systems—case study in the headwaters of the Volga River. Geogr. Environ. Sustain. 2017, 10, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.ricercasit.it/Public/Documenti/1_Rapporto_satelliti_definitivo.pdf (accessed on 21 July 2021).
- Easterday, K.; Kislik, C.; Dawson, T.E.; Hogan, S.; Kelly, M. Remotely Sensed Water Limitation in Vegetation: Insights from an Experiment with Unmanned Aerial Vehicles (UAVs). Remote Sens. 2019, 11, 1853. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.C.; Gómez, J.A.D.; Martín, J.D.; Sánchez, B.A.H.; Arango, J.L.C.; Tuya, F.A.C.; Díaz-Varela, R. An UAV and Satellite Multispectral Data Approach to Monitor Water Quality in Small Reservoirs. Remote Sens. 2020, 12, 1514. [Google Scholar] [CrossRef]
- Li, N.; Martin, A.; Estival, R. An automatic water detection approach based on Dempster-Shafer theory for multi-spectral images. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Belcore, E.; Wawrzaszek, A.; Wozniak, E.; Grasso, N.; Piras, M. Individual Tree Detection from UAV Imagery Using Hölder Exponent. Remote Sens. 2020, 12, 2407. [Google Scholar] [CrossRef]
- Woodget, A.S.; Carbonneau, P.E.; Visser, F.; Maddock, I.P. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Surf. Process. Landf. 2014, 40, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Langhammer, J.; Hartvich, F.; Kliment, Z.; Jeníček, M.; Bernsteinová, J.; Vlček, L.; Su, Y.; Štych, P.; Miřijovský, J. The impact of disturbance on the dynamics of fluvial processes in mountain landscapes. Silva Gabreta 2015, 21, 105–116. [Google Scholar]
- Langhammer, J.; Lendzioch, T.; Miřijovský, J.; Hartvich, F. UAV-based optical granulometry as tool for detecting changes in structure of flood depositions. Remote Sens. 2017, 9, 240. [Google Scholar] [CrossRef] [Green Version]
- Şerban, G.; Rus, I.; Vele, D.; Breţcan, P.; Alexe, M.; Petrea, D. Flood-prone area delimitation using UAV technology, in the areas hard-to-reach for classic aircrafts: Case study in the north-east of Apuseni Mountains, Transylvania. Nat. Hazards 2016, 82, 1817–1832. [Google Scholar] [CrossRef]
- Emanuele, P.; Nives, G.; Andrea, C.; Carlo, C.; Paolo, D.; Maria, L.A. Bathymetric Detection of Fluvial Environments through UASs and Machine Learning Systems. Remote Sens. 2020, 12, 4148. [Google Scholar] [CrossRef]
- Carbonneau, P.E.; Dugdale, S.J.; Breckon, T.P.; Dietrich, J.T.; Fonstad, M.A.; Miyamoto, H.; Woodget, A.S. Adopting deep learning methods for airborne RGB fluvial scene classification. Remote Sens. Environ. 2020, 251, 112107. [Google Scholar] [CrossRef]
- Chabot, D.; Dillon, C.; Shemrock, A.; Weissflog, N.; Sager, E.P.S. An Object-Based Image Analysis Workflow for Monitoring Shallow-Water Aquatic Vegetation in Multispectral Drone Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 294. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Sun, W.; Chen, J.; Gong, P. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. Int. J. Remote Sens. 2012, 33, 6854–6875. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Wang, L. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens. Environ. 2011, 115, 3220–3236. [Google Scholar] [CrossRef]
- Chollet, F. Deep Learning with Python; Simon and Schuster: New York, NY, USA, 2017. [Google Scholar]
- Pouliot, D.; Latifovic, R.; Pasher, J.; Duffe, J. Assessment of Convolution Neural Networks for Wetland Mapping with Landsat in the Central Canadian Boreal Forest Region. Remote Sens. 2019, 11, 772. [Google Scholar] [CrossRef] [Green Version]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, C.; Valerio, A.D.M.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Liu, Y.; Zhang, S.; Cheng, L.; Guo, Y.; Ding, A. Vegetation Properties in Human-Impacted Riparian Zones Based on Unmanned Aerial Vehicle (UAV) Imagery: An Analysis of River Reaches in the Yongding River Basin. Forests 2020, 12, 22. [Google Scholar] [CrossRef]
- Van Iersel, W.; Straatsma, M.; Middelkoop, H.; Addink, E. Multitemporal Classification of River Floodplain Vegetation Using Time Series of UAV Images. Remote Sens. 2018, 10, 1144. [Google Scholar] [CrossRef] [Green Version]
- Carbonneau, P.; Piégay, H. (Eds.) Fluvial Remote Sensing for Science and Management; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Demarchi, L.; Van De Bund, W.; Pistocchi, A. Object-Based Ensemble Learning for Pan-European Riverscape Units Mapping Based on Copernicus VHR and EU-DEM Data Fusion. Remote Sens. 2020, 12, 1222. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Meng, Q.; Liu, M.; Zou, Y.; Wang, X. Crop Classification Based on Red Edge Features Analysis of GF-6 WFV Data. Sensors 2021, 21, 4328. [Google Scholar] [CrossRef]
- Nitze, I.; Schulthess, U.; Asche, H. Comparison of machine learning algorithms random forest, artificial neural network and support vector machine to maximum likelihood for supervised crop type classification. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; Volume 35. [Google Scholar]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 8811, 2783–2792. [Google Scholar] [CrossRef]
- Lefebvre, G.; Davranche, A.; Willm, L.; Campagna, J.; Redmond, L.; Merle, C.; Guelmami, A.; Poulin, B. Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sens. 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Agarwal, S.; Curless, B.; Seitz, S.M. Multicore bundle adjustment. In Proceedings of the CVPR 2011, Washington, DC, USA, 20–25 June 2011; pp. 3057–3064. [Google Scholar]
- Seitz, S.M.; Curless, B.; Diebel, J.; Scharstein, D.; Szeliski, R. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 1, pp. 519–528. [Google Scholar]
- Servizio di Posizionamento Interregionale GNSS di Regione Piemonte, Regione Lombardia e Regione Autonoma Valle d’Aosta. Available online: https://www.spingnss.it/spiderweb/frmIndex.aspx (accessed on 21 July 2021).
- Manzino, A.M.; Dabove, P.; Gogoi, N. Assessment of positioning performances in Italy from GPS, BDS and GLONASS constellations. Geod. Geodyn. 2018, 9, 439–448. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Musci, M.A.; Dabove, P. New photogrammetric sensors for precision agriculture: The use of hyperspectral cameras. Geoing. Ambient. Min. 2020, 160, 12–16. [Google Scholar] [CrossRef]
- QGIS 3.16.1 Hannover. Available online: https://qgis.org/it/site/forusers/download (accessed on 25 August 2021).
- Python Version 3.9.1. Available online: https://www.python.org/downloads/ (accessed on 25 August 2021).
- nbsp;NumPy. Available online: https://numpy.org/ (accessed on 21 July 2021).
- nbsp;Pandas. Available online: https://pandas.pydata.org/ (accessed on 21 July 2021).
- Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. Available online: http://www.scipy.org/ (accessed on 1 November 2012).
- MatPlotLib. Available online: https://matplotlib.org/ (accessed on 21 July 2021).
- Scikit-Learn. Scikit-Learn: Machine Learning in Python. 2020. Available online: https://scikit-learn.org/stable/ (accessed on 15 July 2021).
- Cross_Val_Score Module. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html (accessed on 25 August 2021).
- GridSearchCV Module. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html (accessed on 25 August 2021).
- Sklearn. Model Selection. Train Test Split—Scikit-Learn 0.24.0 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html (accessed on 3 January 2021).
- ScikitLearn.Metrics Module. Available online: https://scikit-learn.org/stable/modules/model_evaluation.html. (accessed on 25 August 2021).
- RandomForestClassifier. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 25 August 2021).
- GitHub Repository. Available online: https://github.com/EmanueleP1991/ML_fluvial_detection.git (accessed on 21 July 2021).
- Groupby Function. Available online: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.groupby.html (accessed on 25 August 2021).
- LabelEncoder. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html, (accessed on 25 August 2021).
- Coo_Matrix Function. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html (accessed on 25 August 2021).
- Shuffle Function. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.utils.shuffle.html (accessed on 25 August 2021).
- Belcore, E.; Piras, M.; Pezzoli, A.; Massazza, G.; Rosso, M. Raspberry pi 3 multispectral low-cost sensor for uav based remote sensing. case study in south-west niger. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Horning, N. Selecting the Appropriate Band Combination for an RGB Image Using Landsat Imagery Version 1.0. American Museum of Natural History, Center for Biodiversity and Conservation. 2004. Available online: http://biodiversityinformatics.amnh.org. (accessed on 3 September 2021).
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
Phantom 4 Multispectral | ||
Optical sensors specifications | ||
Sensors: CMOS 1/2.9″–2.08 MP Images Res.: 1600 × 1300 Focal lengths: 5.74 mm | Filters | |
B: 450 nm ± 16 nm | ||
G: 560 nm ± 16 nm | ||
R: 650 nm ± 16 nm | ||
RE: 730 nm ± 16 nm | ||
NIR: 840 nm ± 26 nm |
Iteration 1 | Iteration 2 | Iteration 3 | Iteration 4 | |
---|---|---|---|---|
Accuracy | 0.98 | 0.98 | 0.98 | 0.98 |
Precision | 0.97 | 0.96 | 0.96 | 0.96 |
Recall | 0.97 | 0.97 | 0.97 | 0.97 |
F1-score | 0.97 | 0.97 | 0.97 | 0.97 |
Standard deviation | 0.0000992 | |||
Time (mm:ss) | 7:18 |
RF Hyperparameters | Value 1 | Value 2 | Value 3 | Best_Params_ | Best_Score | Time (hh:mm) |
---|---|---|---|---|---|---|
n_estimators | 10 | 25 | 50 | criterion: ‘gini’ | ||
criterion | Gini | entropy | - | max_features: ‘auto’ | ||
max_features | Auto | Log2 | - | min_samples_leaf: 10 | ||
min_samples_split | 5 | 7 | 10 | min_samples_split: 10 | ||
min_samples_leaf | 4 | 6 | 10 | n_estimators: 50 | ||
random_state | None | 0 | 42 | random_state: None |
Water [11] | Vegetation [22] | Gr_Gb [33] | TOT | |
---|---|---|---|---|
RGB accuracy score | - | - | - | 0.905 |
RE+NIR accuracy score | - | - | - | 0.987 |
RGB precision | 1.00 | 0.98 | 0.60 | 0.86 |
RE+NIR precision | 0.99 | 0.99 | 0.99 | 0.99 |
RGB recall | 0.74 | 0.99 | 0.90 | 0.88 |
RE+NIR recall | 0.99 | 1.00 | 0.93 | 0.97 |
RGB F1-score | 0.85 | 0.99 | 0.72 | 0.85 |
RE+NIR F1-score | 0.99 | 0.99 | 0.96 | 0.98 |
Water [11] | Vegetation [22] | Gr_Gb [33] | TOT | |
---|---|---|---|---|
RGB accuracy score | - | - | - | 0.934 |
RE+NIR accuracy score | - | - | - | 0.953 |
RGB precision | 0.93 | 0.99 | 0.72 | 0.89 |
RE+NIR precision | 0.90 | 0.98 | 0.89 | 0.92 |
RGB recall | 0.79 | 0.98 | 0.88 | 0.89 |
RE+NIR recall | 0.97 | 0.99 | 0.77 | 0.91 |
RGB F1-score | 0.85 | 0.99 | 0.80 | 0.88 |
RE+NIR F1-score | 0.93 | 0.99 | 0.83 | 0.91 |
Water’s Area (m2) | Vegetation’s Area (m2) | Ground/Gravel Bars (m2) | TOT (m2) | |
---|---|---|---|---|
Second cloud: | 10,991.67 | |||
RGB | 1447.57 | 7213.11 | 2250.98 | |
RE-NIR | 2233.18 | 7020.49 | 1657.99 | |
Third cloud: | ||||
RGB | 2750.87 | 11,923.27 | 4727.61 | 19,361.75 |
RE-NIR | 3872.98 | 12,006.93 | 3491.84 |
Water’s Classified Points (%) | Vegetation’s Classified Points (%) | Ground/Gravel Bars Classified Points (%) | |
---|---|---|---|
Second cloud: | |||
RGB | 13.26 | 66.10 | 20.64 |
RE-NIR | 20.46 | 64.34 | 15.20 |
Third cloud: | |||
RGB | 14.05 | 61.65 | 24.3 |
RE-NIR | 19.99 | 61.98 | 18.02 |
Water’s Area Error (m2) | Vegetation’s Area Error (m2) | Ground/Gravel Bars Area Error (m2) | |
---|---|---|---|
Second cloud: | |||
RGB | 376.37 | 72.13 | 900.39 |
RE-NIR | 22.33 | 70.2 | 16.58 |
Third cloud: | |||
RGB | 577.68 | 112.24 | 1323.73 |
RE-NIR | 116.34 | 120.07 | 384.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontoglio, E.; Dabove, P.; Grasso, N.; Lingua, A.M. Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data. Remote Sens. 2021, 13, 3983. https://doi.org/10.3390/rs13193983
Pontoglio E, Dabove P, Grasso N, Lingua AM. Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data. Remote Sensing. 2021; 13(19):3983. https://doi.org/10.3390/rs13193983
Chicago/Turabian StylePontoglio, Emanuele, Paolo Dabove, Nives Grasso, and Andrea Maria Lingua. 2021. "Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data" Remote Sensing 13, no. 19: 3983. https://doi.org/10.3390/rs13193983
APA StylePontoglio, E., Dabove, P., Grasso, N., & Lingua, A. M. (2021). Automatic Features Detection in a Fluvial Environment through Machine Learning Techniques Based on UAVs Multispectral Data. Remote Sensing, 13(19), 3983. https://doi.org/10.3390/rs13193983