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Abstract: Vegetation height estimation plays a pivotal role in forest mapping, which significantly
promotes the study of environment and climate. This paper develops a general forest structure
model for vegetation height estimation using polarimetric interferometric synthetic aperture radar
(PolInSAR) data. In simple terms, the temporal decorrelation factor of the random volume over
ground model with volumetric temporal decorrelation (RVoG-vtd) is first modeled by random
motions of forest scatterers to solve the problem of ambiguity. Then, a novel four-stage algorithm
is proposed to improve accuracy in forest height estimation. In particular, to compensate for the
temporal decorrelation mainly caused by changes between multiple observations, one procedure of
temporal decorrelation adaptive estimation via Expectation-Maximum (EM) algorithm is added into
the novel method. On the other hand, to extract the features of amplitude and phase more effectively,
in the proposed method, we also convert Euclidean distance to a generalized distance for the first
time. Assessments of different algorithms are given based on the repeat-pass PolInSAR data of Gabon
Lope Park acquired in AfriSAR campaign of German Aerospace Center (DLR). The experimental
results show that the proposed method presents a significant improvement of vegetation height
estimation accuracy with a root mean square error (RMSE) of 6.23 m and a bias of 1.28 m against
LiDAR heights, compared to the results of the three-stage method (RMSE: 8.69 m, bias: 4.81 m) and
the previous four-stage method (RMSE: 7.72 m, bias: −2.87 m).

Keywords: vegetation height; forest vertical structure; PolInSAR; RVoG+vtd model; four-stage
algorithm; EM algorithm

1. Introduction

As the importance of forest in earth system attracts increasing attention, the inversion
of forest parameters is gradually becoming a research hotspot. In particular, polarimetric
interferometric synthetic aperture radar (PolInSAR) images are widely used in forest
height inversion because of its global coverage and low weather sensitivity as well as
its ability to extract scattering information and height information simultaneously [1,2].
In the ideal case, forest height can be reflected by the phase difference between the volume-
only and ground-dominant polarization states [3]. To extract the phase centers, optimal
polarimetric coherence algorithm [3], estimating signal parameter via rotational invariance
techniques (ESPRIT) algorithm [4], and model-based target scattering decomposition [5,6]
have been developed to effectively extract the phase centers. However, to some extent,
the forest vertical structure and wave extinction can affect the estimation of phase centers.
Based on the homogeneous hypothesis, Treuhaft et al. proposed a two-layer physical
model named the random volume over ground (RVoG) model [7,8]. The model contained
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some unknown parameters including forest height, wave extinction, ground phase, and
ground-volume ratio, which means a nonlinear optimization should be conducted for
this multi-parameter inversion. Based on the RVoG model, some refined models have
also been proposed to adapt to different situations. The S-RVoG model took the terrain
conditions into account [9,10] and Gaussian Vertical Backscatter (GVB) model focused
on the vertical heterogeneity of the wave-canopy interactions for low frequencies [11].
The inversion error model on polarimetric system parameters were established to correct
for systematic bias [12], and the uncertainties in canopy height estimation were estimated
in [13]. To reduce computational complexity of RVoG, the three-stage inversion method was
proposed and had achieved great effect [14–16]. Nevertheless, the interferometric height
precision is easily affected by the data acquisition modes, such as the band, the incidence
angle, the baseline length, and the interference pattern (single-pass pattern or repeat-pass
pattern) [3,17], which suggests multi-baseline, multi-frequency measurements, and LiDAR-
aided methods can promise more accurate estimations [18,19]. Considering this, the fusion
of multi-source data becomes a mainstream research [20,21] and some machine learning
methods such as support vector machine (SVM) and neural networks (NN) have a great
performance in this field [22].

Actually, when the RVoG model is applied to single-baseline repeat-pass PolInSAR
data, the uncertainty of temporal decorrelation can significantly reduce the accuracy of
height estimation [23]. Howard et al. analyzed multiple decorrelations in radar signals and
established a general model of temporal decorrelation [24]. Then Lavalle et al. proposed
the RMoG model, improving the estimation of temporal decorrelation by modeling the
motion of the scatterers [25,26]. An alternative method to compensate for the temporal
decorrelation is to scale the volume coherence by a real-valued temporal decorrelation
factor, which is adopted by RVoG-vtd model [27]. These two models both increase the
number of unknown parameters in RVoG model, making the parameter inversion problem
ambiguous. To deal with this problem, two methods are usually adopted, i.e., training
certain parameters or solving the global nonlinear least squares problem [27]. However,
Supervised training relies on considerable data and rarely achieves a general conclusion.
The prior information may also be misleading. The global nonlinear least squares problem
with constraints can be hard to solve and lead to higher time and space complexity. Re-
cently, a four-stage inversion algorithm was proposed to decrease the number of unknown
parameters in the RVoG-vtd model, which explored the relationship between the mean
extinction and the segmentation of the fitted line [28]. Although the height estimation
results are much better than three-stage inversion algorithm for RVoG model, it still needs
to be further improved. The proposed four-stage algorithm differs from the previous one
mainly in the following two aspects: (i) adaptive estimation of the temporal decorrela-
tion in the third stage, and (ii) distance metric transformation in the fourth stage. In this
framework, the temporal decorrelation is further modeled and estimated by EM algorithm
without the need for any prior information. Moreover, both the amplitude and the phase
of volume-only coherence are effectively used for distance metric.

The study area of this paper is Lope National Forest Park, which is one of the four
test sites of AfriSAR campaign in Gabon, Africa. The AfriSAR campaign was a joint effort
between NASA and ESA which collected both PolInSAR and LiDAR airborne data sets in
the tropical areas covering different forest structures, biomass levels and disturbances, to
further support the BIOMASS mission which was selected as the seventh Earth Explorer
mission with the purpose to estimate forest biomass and height with full coverage over the
tropical areas. The PolInSAR and LiDAR data of UAVSAR as well as FSAR were widely
used to obtain estimations of forest biomass and height [22,29–31]. However, most of the
research focused on the multi-baseline case and the fusion of PolInSAR and LiDAR data.
The lack of the assessment for single-baseline case needs to be addressed because of the
fundamental role and the low complexity of single-baseline PolInSAR.

This paper focuses on height estimation of single-baseline repeat-pass PolInSAR data.
A general model and a novel four-stage inversion algorithm are separately proposed to
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improve accuracy and solve the problem of ambiguity. Section 2 introduces the new
model, in which the scatterer distribution and scatterer motion are modeled, respectively.
The novel four-stage algorithm with the additive temporal decorrelation estimation stage
and the modified height estimation stage is also presented. Section 3 assesses models and
algorithms by estimating forest height from the real single-baseline repeat-pass PolInSAR
data of Lope National Forest Park in Gabon, Africa, and comparing the results with
corresponding LiDAR data. The experiment results indicate the new method has a great
potential to compensate for the temporal decorrelation and obtain more accurate inversion
results. The discussion and conclusion are given in Sections 4 and 5, respectively.

2. Model-Based Inversion Algorithm
2.1. RVoG Model and Three-Stage Inversion Process
2.1.1. RVoG Model

With the following three hypotheses: the hypothesis of random volume scattering,
the hypothesis of numerous scatterers and the hypothesis of homogeneous distribution of
scatterers, Treuhaft et al. proposed the random volume (RV) model defined as follows [7]:

γv =
p1(ep2hv − 1))
p2(ep1hv − 1))

(1)

p1 =
2κecos(τc)

cos(θ − τc)
(2)

p2 = p1 + jkz (3)

where kz means the vertical wavenumber, which is depended on the wavelength λ, inci-
dence angle θ and incidence angle difference ∆θ. τc is range-facing terrain slope angle,
which can be useful in complex terrain case. hv and κe are unknown parameters indicating
vegetation height and wave extinction, respectively. The vertical wavenumber kz can be
calculated as follows in the bistatic repeat-pass case [27]:

kz =
4π∆θcos(τc)

λsin(θ − τc)
(4)

Based on the RV model, Treuhaft et al. modeled the ground scattering and the
interaction between ground and trunk in the forest area, and further obtained the RVoG
model, which is widely used in the field of forest height inversion. Its relationship with the
RV model can be expressed as [8]:

γ(ω) = ejφ0
µ(ω) + γv

µ(ω) + 1
(5)

where φ0 denotes the interferometric ground phase and different ω represents different
polarization modes. µ(ω) is the ground-to-volume backscattering ratio, which lies in the
range 0 ≤ µ(ω) ≤ ∞ in the ideal case, with limits representing pure surface scattering
(µ(ω) = ∞) and pure volume scattering (µ(ω) = 0). The increase of unknown parameters
in the RVoG model makes the nonlinear inversion process more complicated.

2.1.2. Three-Stage Inversion Process

The three-stage inversion method proposed by Cloude et al. [14] is based on the RVoG
model and greatly reduces the complexity of the inversion procedure. Therefore, it has
been commonly used and has achieved great effect in many cases. The characteristic that
the coherence under different polarization states are distributed on a straight line in the
complex unit circle (CUC) has been used effectively to obtain the ground phase φ0 and
volume coherence γv. The three-stage inversion process can be conducted as follows:

• Least squares line fit. Since Equation (5) indicates that coherence values in different
polarization states lie along a straight line in CUC, the first stage is to find the best-fit
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line of interferometric coherence values in different polarization modes, such as HH,
VV, HH-VV, HH+VV, and HV.

• Ground phase removal. In the second stage, ground phase must be determined and
removed from the coherence. The phases of two intersection points of the straight line
and the CUC are the candidates of ground phase. Generally, the relative location of co-
herence values in different polarization states along the best-fit line arranges according
to Figure 1, which becomes one criterion for distinguishing the real ground phase.

• Height and extinction estimation. The pre-calculate look up table (LUT) of volume-
only coherence is employed to estimate vegetation height and mean extinction in
last stage. The parameters are determined by minimizing the distance between the
calculated volume coherences and the observed volume coherence.

Figure 1. The relative location of coherence values in different polarization states along the best-
fit line.

2.2. RVoG-vtd Model and Four-Stage Inversion Algorithm
2.2.1. RVoG-vtd Model

The temporal decorrelation is a major source of decorrelation especially under the
repeat-pass case. When the RVoG model is adapted in repeat-pass case, dealing with
temporal decorrelation becomes an essential step. The RVoG-vtd model proposes the idea
of compensating for the effect of temporal decorrelation by adding a real-valued factor.
Then, the model becomes:

γvtd(ω) = ejφ0
µ(ω) + αvtγv

µ(ω) + 1
(6)

where αvt is the temporal decorrelation factor applied to the volume coherence. The rest of
the RVoG model equations are unaffected.

2.2.2. Four-Stage Inversion Algorithm

Due to the addition of parameter, the solution is now ambiguous for single-baseline
data. In contrast to the methods such as supervised training and solving the global
nonlinear least squares problem mentioned above, a four-stage inversion algorithm is
adopted to solve the ambiguous problem and keep the calculation complexity at a low
level simultaneously. The volume scattering phase center moves to the top of the canopy
according to the higher mean extinction value, which indicates the relative position of the
observed volumetric coherence on the coherence line can be employed to limit the range of
mean extinction coefficient [15]. In this framework, an index was suggested to interpret the
relative location of the observed volume coherence, γHV , on the coherence line as [15]:

D.I =
A.L
V.L

(7)

wherein D.I is the distance ratio index of the ambiguous line length (A.L.) and the visible
line length (V.L.), as shown in Figure 2. With the expectation that the mean extinction
value and D.I. value is inversely related, Managhebi et al. defined the mean extinction
coefficient as the following linear function [28]:

κe = aD.I + b (8)

where κe is the mean extinction coefficient, D.I is the distance ratio index, a and b are
the model parameters computed by least squares method using real L-band PolInSAR
data pair.
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Figure 2. The ambiguous line segment and the visible line segment on the fitted line.

To summarize, the four-stage inversion process consists of the following four steps:

• Least squares line fit.
• Ground phase removal.
• Extinction estimation.
• Volume height and temporal decorrelation estimation.

The first two steps are similar to the three-stage inversion process. In the third step,
D.I and the mean extinction coefficient are calculated using Equations (7) and (8). Then the
fixed mean extinction coherence locus is determined to estimate the volume height and
the real temporal decorrelation multiplying factor from the intersection point between the
volume coherence loci and φ = φv.

2.3. GRVoG-vtd Model and a Novel Four-Stage Inversion Algorithm
2.3.1. GRVoG-vtd Model

Since more parameters make it hard to achieve a unique and precise solution, a direct
idea is to set wave extinction to a reasonable value for reducing variable. However, in the
RVoG model, it is assumed that the scatterer density of the forest from the surface to the
canopy is a constant, which can simplify the derivation process and the model function.
Therefore, the wave extinction values in the model are not necessarily indicative of the
actual extinction. In practice, the extinction parameter in the RVoG model is sensitive
to changes in the vertical structure [27], which means before fixing wave extinction, the
forest structure should be modeled carefully. Presently, the LiDAR data can provide a
profile of scatterer vertical distribution of forest [18], which varies from species to species.
Therefore, in this research, the generalized RVoG (GRVoG) model with general scatterer
vertical distribution is first introduced.

Start by the distribution of volume scatterer density ρ(z), the volume coherence in
GRVoG model can be derived in Appendix A as [7]:

γG
v =

∫ hv
0 exp(jkzz)ρ(z)exp(−2κe

∫ hv
z ρ(h)dh)
cosθ )dz∫ hv

0 ρ(z)exp(−2κe
∫ hv

z ρ(h)dh)
cosθ )dz

(9)

ρ(z) can reflect the vertical structure of the vegetation. The model degenerates to RVoG
when ρ(z) is set to a constant value. In practice, ρ(z) could vary with the species of trees,
crown depth and other physical conditions.

The GRVoG-vtd model compensates for temporal decorrelation with a real-value
factor similarly to the RVoG-vtd model as follows:

γG
vtd(ω) = ejφ0

µ(ω) + αG
vtγ

G
v

µ(ω) + 1
(10)
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To solve the ambiguous problem caused by adding parameter αG
vt, this paper also

explores the relationship between the temporal decorrelation and forest height. The tem-
poral decorrelation follows from physical changes and is closely related to the motion of
scatterers in a general view. Assuming Gaussian-statistic random motion, like [25], the
temporal decorrelation can be denoted in following form:

αG
vt(hv) =

∫ hv
0 ρ(z)exp(− 1

2 (
4π
λ )2σ2

r (z))dz∫ hv
0 ρ(z)dz

(11)

where σr(z) means the standard deviation of Gaussian distribution in the layer of height z.
To derive an explicit expression for αG

vt(hv), ρ(z) in this model is set to be a constant value ρ0
like RVoG model and a first-order approximation of the motion variance is considered [26]:

σ2
r (z) = σ2

g + β0z (12)

with σ2
g represents the motion variance of scatterers on the ground. Since σ2

g is independent
of height, it can be moved out of integration and estimated as a constant αg. The GRVoG-vtd
model can be derived as:

γG
vtd(ω) = ejφ0

µ(ω) + αG
vt(hv)γG

v (hv, κe)

µ(ω) + 1
(13)

αG
vt(hv) =

αg
∫ hv

0 exp(−βz)dz
hv

(14)

with β = − 1
2 (

4π
λ )2β0 is a constant corresponding to the assumption of σ2

r (z) which can be
empirically determined. It can be seen that GRVoG-vtd degenerates to RVoG-vtd when
β0 = 0 and ρ(z) is a constant function.

2.3.2. A Novel Four-Stage Inversion Algorithm

Based on the GRVoG-vtd model, this paper proposed a novel four-stage inversion
algorithm. The unknown parameters in GRVoG-vtd are the vegetation height hv, the mean
extinction coefficient κe, and the constant real-value decorrelation factor αg. According to
the form of the GRVoG-vtd model, one can see that the coherences in different polarization
states are still distributed on a straight line in the CUC with an intersection point ejφ0 .
Therefore, the first two stages of the method are still the least squares line fit and removal
of the ground phase similarly to the three-stage inversion process. The volume coherence
obtained after the first two steps actually includes the temporal decorrelation factor and
can be expressed as αG

vt(hv)γG
v (hv, κe). Since the sparse savannas and the dense forests

in vegetation area show a clear difference in volume coherence, the third stage uses EM
algorithm to classify these species and estimate the constant factor αg, simultaneously.

Assuming the distribution of volume coherence amplitude (ρ) is a Gaussian mixture
model (GMM) with K components, the probability of the coherence amplitude is:

p(ρ) =
K

∑
k=1

πkN (ρ|µk, σ2
k ) (15)

where µk, σ2
k represent the mean value and the variance of the k-th Gaussian distribution,

respectively. πk is the proportion of the k-th component. Let lnk denote the probability that
the n-th sample ρn belongs to the k-th components. The EM algorithm adopts alternate
iterations of the Expectation step and the Maximization step until convergence to divide
the samples into corresponding component without any prior information.
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E-step:

lnk =
πkN (ρn|µk, σ2

k )

∑K
k=1 πkN (ρn|µk, σ2

k )
(16)

M-step:

µnew
k =

1
Nk

N

∑
n=1

lnkρn (17)

σ2new

k =
1

Nk

N

∑
n=1

lnk(ρn − µnew
k )2 (18)

πnew
k =

Nk
N

(19)

where

Nk =
N

∑
n=1

lnk (20)

Since the height of sparse savannas mainly distributes under 3 m, the volume decorre-
lation is inconspicuous compared to temporal decorrelation. Accordingly, the amplitude
of coherence in savanna region reflects the real-value factor αg. Let the k-th component
represents sparse savannas, then

α̂g =
∑N

n=1 lnkρn

Nk
(21)

The fourth stage is to estimate the vegetation height and extinction coefficient. The LUT
of vegetation height, extinction coefficient, and volume coherence can be pre-calculated
similarly to three-stage inversion algorithm. The main difference is the generalized dis-
tance is used to replace the Euclidean distance in the original algorithm. The shortest
Euclidean distance criterion in the original algorithm does not consider the importance
and reliability of coherence amplitude and phase, which would significantly reduce the
precision of inversion since the distribution of volume coherence is inhomogeneity in
practice. This paper proposes a generalized distance to measure the similarity of amplitude
and phase respectively and obtain a more reasonable inversion result.

dij =
√

λ(ρi − ρj)2 + (1− λ)(φi − φj)2 (22)

where ρi, φi are the amplitude and the phase of the i-th coherence. For sparse savanna
region obtained in the third stage, the coherence amplitude is large, and the distribution is
concentrated, which indicates the height inversion result mainly depends on the phase of
the volume coherence. Therefore, in the generalized distance the parameter λ is relatively
small for this type. On the contrary, the coherence amplitude is small for dense forest and
the uncertainty of phase can cause more error. In this regard, the coherence amplitude
should occupy a larger proportion in the generalized distance measurement.

In summary, the following step-by-step outline describes the whole process.

1. Generate the coherence in different polarization states and fit the least square line in
the CUC.

2. Choose the ground underlying phase from the two intersection points between the
best fitted line and CUC. Calculate the volume coherence by removing the ground
phase and projecting the farthest coherence from the ground coherence point to the
fitted line.
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3. Classify sparse savannas and dense forest by the amplitude of the volume coherence
using EM algorithm. Determine the constant parameter αg by calculating the mean
value of the amplitude in sparse savanna region.

4. Estimate the vegetation height and mean extinction based on the pre-calculate LUT
of GRVoG-vtd model by minimizing the generalized distance between calculated
volume coherences and the observed volume coherence.

Figure 3 shows the flowchart of proposed four-stage algorithm. The pre-processing
and the first two stages are carried similarly to the three-stage algorithm. The main
difference is the addition of the third stage including vegetation classification and constant
factor estimation as well as the transformation of the distance form from the Euclidean
distance to the generalized distance. The extinction coefficient is determined by the length
of the segment line in the previous four-stage algorithm for RVoG-vtd model. Then the
coherence curve is selected by fixed extinction and the vegetation height is estimated based
on the phase of the coherence. In the novel four-stage algorithm for GRVoG, the order to
estimate parameters has changed. The temporal decorrelation factor is estimated first and
the coherence amplitude and phase are both used to get more precise vegetation height.
In the generalized distance, the ratio λ is set to assign weights of amplitude and phase
to reflect the reliability and importance of the two factors for the purpose of adapting to
different situations.

2.4. Analysis of Models and Corresponding Algorithms

The differences of different models, i.e., RVoG, RVoG-vtd, and GRVoG-vtd are visually
illustrated in Figure 4. For mean extinction coefficient κe varying from 0 to 0.9, the LUTs of
RVoG, RVoG-vtd with a fixed αvt and, GRVoG-vtd with a fixed αg are scattered on CUC,
respectively. Different colors represent different mean extinction values, and the curve
becomes more concentrated as the decrease of the mean extinction. Under the ideal case,
the coherence locates at the point (1, 0) when the vegetation height is 0. Consequently, the
curve of RVoG begins from the point (1, 0) and gradually shrink into the center of CUC
for the influence of temporal decorrelation factors is ignored. Correspondingly, the curves
of RVoG-vtd and GRVoG-vtd start from the points (αvt, 0) and (αg, 0) respectively. The
RVoG-vtd model provides a scale factor for the whole table, which has not changed the
shape of the curve. In contrast, the addition of the temporal decorrelation factor in the
GRVoG-vtd model makes the curve converge rapidly and the correspondence between
coherence and vegetation height has changed significantly.

As Figure 4 demonstrates, the LUTs of the three models appear as high curvature
curves in the CUC, which cause great difficulties in subsequent estimation. However, the
curve has a potential to be manifold embedded. Taking the LUT of GRVoG-vtd as an
example, Figure 5 explores whether the amplitude-phase plane can better represent the
LUT. Compared to the CUC plane, the curve in the amplitude-phase plane shows more
linear characteristics and can be easier distinguished, which suggests that the distance in
the amplitude-phase plane is more efficient to measure the similarity and estimate vege-
tation heights. To further explain this statement and seek for a more reasonable criterion,
several basic approaches to estimate vegetation height are conducted and analyzed in
Figures 6 and 7.
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Figure 3. The flowchart of the novel four-stage algorithm.

Figure 4. The LUTs of (a) RVoG model, (b) RVoG-vtd model (fixed αvt) and (c) GRVoG-vtd model
(fixed αg) with different values of mean extinction coefficient κe.
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Figure 5. The LUTs in different planes: (a) the CUC plane and (b) the amplitude-phase plane.

Figure 6 shows the relationship between the regions in the CUC plane and the veg-
etation heights based on the Euclidean distance, the amplitude distance and the phase
distance respectively defined as follows:

dEuc
ij =

√
(xi − xj)2 + (yi − yj)2 (23)

damp
ij = |ρi − ρj| (24)

dpha
ij = |φi − φj| (25)

Figure 6. The mapping of vegetation height and coherence in the CUC plane using least distance
criterion with (a) the Euclidean distance, (b) the amplitude distance and (c) the phase distance.

In practice, using these three distances is not enough to truly reflect the similarity
between observed coherence and model-based coherence for effective estimation of veg-
etation height. Since the height discrimination is clearer in the amplitude-phase plane
as discussed above, we consider solving the estimation problem in this new plane. The
corresponding regions in the amplitude-phase plane for these three distances are also given
in Figure 7a–c diagrams, respectively. It can be seen that the least distance criterion in CUC
lead to an unexpected classification region which has poor interpretability referring to the
ideal curve and the amplitude of coherence plays an insignificant role under most condi-
tions. In this regard, the generalized distance is proposed to measure the similarity more
equitably for the amplitude and the phase. The typical corresponding regions are shown
in the diagram of Figure 7d which has stronger consistency with the calculated curve.
Nevertheless , the amplitude and phase are affected by varying degrees of noise which
should be considered carefully to reach higher accuracy. Consequently, the parameter λ is
set according to the situations.
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Figure 7. The mapping of vegetation height and coherence in the amplitude-phase plane using least
distance criterion with (a) the Euclidean distance, (b) the amplitude distance, (c) the phase distance
and (d) the generalized distance.

3. Results
3.1. Study Area

The study area is the Gabon Lope Park region which locates on the west coast of Africa
with the loci of 0◦30′00′′ S 11◦30′00′′ E and an area of 4910 km2 as Figure 8 shows. It covers
diverse habitats for its over 70 years history of being a wildlife reserve and therefore is
an ideal test site to estimate forest biomass and height. Here, the focus is on a small area
of interest in the northeastern Lope with the central longitude 11◦34′00′′ E and latitude
0◦13′30′′ S.

Figure 8. The location of experimental sites. (a) Gabon, (b) Lope National Park, (c) Study area
(Obtained in the Google Earth).

3.2. Data Set

The experimental data consists of the airborne single-baseline repeat-pass PolInSAR
data and corresponding LiDAR data in Lope National Park region.

The PolInSAR data was obtained by the 2-nd pass and the 4-th pass of the 11-th
flight in February2016 in the AfriSAR campaign by FSAR of the German Aerospace Center
(DLR). The frequency band is L-band, and the central frequency is 1.3 GHz. The range and
azimuth resolution of this SAR data are 1.92 m and 0.65 m, respectively. The campaign
introduction and data can be found in the European Space Agency (ESA) website (https:
//earth.esa.int/eogateway/campaigns/afrisar-2016).

The LiDAR data used in this study was collected by Land Vegetation and Ice Sensor
(LVIS). As in [10,18,22], the LVIS RH100 metrics were chosen to validate the PolInSAR forest
height estimations. The LiDAR-based vegetation height has been compared to TanDEM-X
DEM in AfriSAR Final Report [32] which found that the top of the canopy computed from
the LiDAR data is extremely close to the TanDEM-X data as expected. The LiDAR-based
height also has a strong consistency with the ground data in different plots which proved
its strong reliability in the previous work [22]. Therefore, in this work, we decided to
compare height estimations of PolInSAR via different algorithms with LVIS RH100 metrics
to verify their performance.

Although the height precision is high for LiDAR measurements, the horizontal resolu-
tion of LVIS is much lower, which is about 25 m, indicating that the LVIS RH100 metrics

https://earth.esa.int/eogateway/campaigns/afrisar-2016
https://earth.esa.int/eogateway/campaigns/afrisar-2016
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need to be interpolated to fit PolInSAR geometry. Consequently, the PolInSAR image show
more speckle characteristics and there will be a large deviation when using a single pixel to
do height estimation. Therefore, this paper uses 50× 50 pixels as a block in the subsequent
quantitative analysis, which is more reasonable considering LiDAR resolution.

In this data set, the overlapped region of PolInSAR and LiDAR covers a size of about
7000× 1000 pixels in the PolInSAR image. However, there are some small pieces with
missing values. We intercept an interested area with the size of 3000× 1000 pixels from the
whole image which contains few missing values and large fluctuations. The Pauli image
and LVIS RH100 height image of the interested area are showed in Figure 9, which consists
of sparse savannas and dense forests of varying heights up to 60 m.

Figure 9. (a) The Pauli image and (b) the LVIS RH100 height image of the interested region.

3.3. Experimental Results

The observed coherences attained in the first two stages can be clearly divided into
two vegetation species for the coherence amplitude shows a distinct bimodal distribution as
demonstrated in Figure 10. The two-component GMM is reasonably assumed and EM algo-
rithm is adopted to adaptively distinguish these categories without any prior information.

The calculated coherences represented by the curve in Figure 5 illustrates the LUT in
the amplitude-phase plane is closer to straight lines. To verify this statement, the observed
coherences sampled at the rate of 0.02% with varying heights are scattered in the CUC
plane and the amplitude-phase plane respectively as Figure 11 shows. As expected, the
distribution of coherence in the amplitude-phase plane is obviously more linear, which
brings great convenience to the subsequent height discrimination. However, we can also
see that the coherence is greatly affected by the noise, which indicates the block of 50× 50
pixels is necessary.
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Figure 10. The distribution of observed coherence amplitude.

Figure 11. The distribution of observed coherence in the (a) CUC plane and (b) amplitude-
phase plane.

The visualized height estimation results of these three models are all shown in
Figure 12. The inversion results show the characteristics of each algorithm in a macro-
scopic way. The RVoG model does not compensate for the temporal decorrelation, which
results in the high calculated coherence amplitude. Nevertheless, due to the influence
of temporal decorrelation, the observed coherence amplitude is low, which makes the
algorithm overestimate in most areas. After the estimation of the extinction coefficient, the
height is only relative to the phase in RVoG-vtd model. The lack of the information of coher-
ence amplitude leads to decreased accuracy in areas with high vegetation. The GRVoG-vtd
model further models the temporal decorrelation and distinguishes the vegetation types.
The temporal decorrelation factor is estimated by regions with low volume decorrelation
adaptively and the coherence amplitude and phase are comprehensively used. Therefore,
the estimated height has stronger consistency with the corresponding LVIS RH100 height.
Still, there are some areas with large estimation errors because it is difficult to accurately
estimate the vegetation with large range of height distribution only by using single-baseline
data. The accuracy of the three models all depends on kz to some extent. For the area
with large kz, the maximum value of inversion height is limited due to the wrapped phase,
which cannot accurately reflect the tree height. From the view of detail, since the LiDAR
image has been interpolated, it is relatively smooth and uniform, the PolInSAR-based
results show more speckle characteristics because of the susceptibility to noise and the
random fluctuations of the forest.
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Figure 12. The vegetation height results of (a) the RVoG model, (b) the RVoG-vtd model, (c) the
GRVoG-vtd model, and (d) LiDAR measurements.

To obtain intuitive results, we selected three vertical lines distributed in the left,
middle and right parts of the image respectively as Figure 13 shows. Each line contains 60
consecutive blocks with significant fluctuations. It can be seen that RVoG overestimates
tree height in most areas, especially in low vegetation height area. In contrast, the RVoG-
vtd model generally underestimates vegetation height because of the lack of amplitude
information. The GRVoG-vtd model maintains strong consistency with the LiDAR-based
height in a large range of variation and has a stronger adaptability.

Figure 13. The line views of the estimation of vegetation heights. (a–c) are three vertical lines
distributed in the left, middle and right parts of the image with the column number 25, 500 and
975, respectively.

A more detailed quantitative analysis is based on dividing the whole map into several
small pieces. The whole image is divided into 1200 pieces and each piece has a size of
50 × 50 pixels. The height estimation results of RVoG, RVoG-vtd and GRVoG-vtd are
assessed versus LiDAR height, respectively. As shown in Figure 14, each point represents
one piece of the image. The scatter plot also illustrates that the RVoG model overestimates
most of the block regions. The GRVoG-vtd model and RVoG-vtd model both have a great
potential to effectively compensate for the effect of temporal decorrelation and have a more
reasonable output. Compared to RVoG-vtd, GRVoG-vtd is more elaborate and can take full
advantage of the amplitude and phase of volume coherence, hence the heights estimated
are more reliable. Since kz has a significant influence on the output for single-baseline
data [33], the phase will be wrapped when tree height is too high, hence the errors of
inversion results will be larger for vegetations with height over 30 m.
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Figure 14. Validation of the inversion results of (a) the RVoG model, (b) the RVoG-vtd model and
(c) the GRVoG-vtd model versus LiDAR-based height.

The quantitative comparison of the employed methods with respect to LiDAR mea-
surements are listed in Table 1, which include bias, RMSE and R2. As expected, the RVoG
model has an overestimation of 4.81 m averagely and its RMSE is the highest. Both RVoG-
vtd and GRVoG-vtd have a significant improvement compared to RVoG. From the three
indicators, we can also see the superiority of the GRVoG-vtd model in this experiment.

Table 1. Quantitative comparisons of the employed methods with respect to LiDAR measurements.

Model Bias RMSE R2

RVoG 4.8123 8.6904 0.8699
RVoG-vtd −2.8665 7.7168 0.8438

GRVoG-vtd 1.2764 6.2341 0.8783

4. Discussion

This section further analyzes the inversion errors of different algorithms, and discusses
their performances on different vegetation types.

4.1. Analysis of Inversion Error

As can be seen from Table 1, the proposed four-stage inversion method for GRVoG-
vtd model has stronger consistency with LiDAR-based data. To more intuitively reflect
the errors of each algorithm, the error distribution functions are given in Figure 15. The
expectation values of the error distribution functions are the biases in Table 1. Combined
with the scatter diagram of the inversion results in Figure 14, it can be indicated from
the error distribution curves that most of the estimation errors of RVoG are distributed
on the positive axis for the influence of temporal decorrelation. Due to the lack of effec-
tive application for coherence amplitude, more errors of RVoG-vtd are distributed in the
negative axis. The overall error distribution of the GRVoG-vtd model proposed in this
paper is more concentrated. The standard deviation of the distribution is σ = 2.67 m,
which is slightly lower than that of the first two methods, which are 2.69 m and 2.68 m,
respectively. The expectation value µ = 1.28 m, which is also closer to 0 simultaneously.
The errors distributed on positive and negative semiaxes are relatively balanced, and most
of the errors are distributed in µ± 3 σ range, which is 1.28 m ± 7.9 m. Therefore, a better
vegetation estimation result can be obtained.
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Figure 15. The error distributions of employed algorithms compared to LVIS RH100 heights.

Table 2 divides the vegetation height into three intervals, which represent the sparse
savanna (0–15 m), low forest (15–25 m), and high forest (25–60 m) respectively. It can be
seen from the table that the RVoG-vtd model performs best in the region with vegetation
less than 15 m, followed by the GRVoG-vtd model. The RVoG model performs better in
the region of 15–25 m vegetation and GRVoG-vtd is slightly lower than RVoG. In dense
forest region, the GRVoG-vtd model shows a better performance due to the adaptive
classification of vegetation types and estimation of temporal decorrelation. The proposed
method shows high stability in the overall three intervals, and the error distribution is
relatively concentrated, which also reflects the conclusion of Figure 15. It can be indicated
from Table 2 that for low vegetation, the coherence phase is more effective, while for dense
forest, the coherence amplitude should be emphasized to obtain more reasonable results,
which shows the rationality of the proposed four-stage inversion algorithm in this paper.

Table 2. Hight estimation error comparisons of three models for different vegetation types. The bold
numbers mean the least RMSE and least bias in each row.

Model
RVoG RVoG-vtd GRVoG-vtd

RMSE Bias RMSE Bias RMSE Bias

Sparse Savanna 10.66 10.28 3.56 2.60 5.20 3.94
Low Forest 5.40 2.20 8.32 −5.62 5.78 −1.03
High Forest 7.91 −6.21 10.64 −8.62 7.41 −5.82

4.2. Discussions of Inversion Results

As Figure 13 demonstrated, in the areas with vegetation less than 25 m, the RVoG-
vtd and GRVoG-vtd models are more consistent with LiDAR-based vegetation height,
while RVoG model has obvious overestimation. However, in the regions with over 25 m
vegetation, RVoG and GRVoG-vtd models perform better, and RVoG-vtd underestimates
significantly. The RVoG model has a best effect when the vegetation height is about 25 m,
but its weakness is the resolution of height. Generally, the inversion results of RVoG model
are concentrated around 25 m for high forest. The GRVoG-vtd model has higher inversion
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accuracy and higher resolution, which can reflect the height fluctuation obviously. The
reason is the coherence points are very close in the CUC plane when the amplitude is
small, but in the amplitude-phase plane, the distances between the coherence points are
more affected by coherence phase which can still be distinguishable, promising a higher
resolution. However, the inversion will be more easily affected by noise correspondingly,
so the inversion variance will be slightly larger. Although the RMSE of GRVoG-vtd is the
smallest on the whole, it will also be slightly worse locally. In practice, when the coherence
amplitude is small, the influence of coherence phase can be regarded as floating in a
relatively small range, which results in the small difference between RMSEs of GRVoG-vtd
and RVoG in dense forest regions as Table 2 presented.

From Figure 14 we can arrival at a similar conclusion. The estimations of RVoG-vtd
and GRVoG-vtd are relatively accurate when the vegetation height is less than 25 m. In
addition, for the regions with vegetation height greater than 25 m, the height estimation
errors of all the three methods increase in different degrees. The RVoG model estimations
gradually converge to a certain height, while RVoG-vtd and GRVoG-vtd models show
relatively divergent estimations. The average vertical wavenumber kz is about 0.12 for the
PolInSAR data. When the vegetation height is greater than π/kz, i.e., 27 m in this case, the
determination of ground phase would depend entirely on the distribution of coherences
in different polarization states on the fitted line. The errors of ground phase extraction
in the first two stages will be relatively large. Consequence, the inversion errors of these
algorithms based on single-baseline PolInSAR data will be larger in the corresponding
region. At the same time, kz also affects the resolution of vegetation height inversion. It
can be seen from Figure 5 that with the increase of vegetation height, the corresponding
coherence distribution becomes more concentrated. Therefore, when the vegetation height
is too large, the small deviation of the complex coherences will cause a large error in the
estimation of the vegetation height, which can be called the ill problem. In this regard,
multi-baseline fusion is recommended to further solve the problem that different values of
kz have different height precision for varying height intervals.

5. Conclusions

The RVoG model does not compensate for temporal decorrelation, hence the observed
coherence amplitude will be substantially less than the theoretical calculation result. As
a result, the vegetation height will be overestimated in most areas. When the three-stage
inversion method is directly applied to the RVoG-vtd model, the phenomenon that one
coherence point corresponds to multiple heights will appear which is also called ambiguous
problem. The previous four-stage inversion algorithm was proposed to solve this problem
while maintaining a low computational complexity. The height will be underestimated in
some areas because only the coherence phase is used for estimation after the extinction
coefficient is fixed. In the conventional three-stage process, the Euclidean distance in
the CUC plane is used as the similarity measurement. However, in the CUC plane, the
theoretical distribution curve of coherence is a high curvature manifold, so it is misleading
to use Euclidean distance for the measurements of the similarity. Although the Euclidean
distance between the two points is very close, they may be far away from each other on the
manifold, and the corresponding vegetation height is also very different. Therefore, the
Euclidean distance is not enough to truly reflect the similarity between the observed
coherence and the theoretical coherence.

In view of the above problems, this paper extended the GRVoG-vtd model and the
corresponding novel four-stage inversion algorithm. The GRVoG-vtd model focused on the
random motion of scatterers to compensate for temporal decorrelation and took the random
scatterer density distribution into account. The novel four-stage method extended the
conventional three-stage method by an additional stage for vegetation species classification
and real-value factor estimation. The vegetation height estimation stage was also modified
by converting the Euclidean distance to the generalized distance, which provided a new
idea to estimate heights in the amplitude-phase plane instead of the CUC plane. The height
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inversion experiments were conducted using PolInSAR image of Lope National Park,
where the sparse savannas and dense forests are the dominant vegetations. The inversion
results were illustrated by qualitative analysis and quantitative comparison. Through a
series of experiments, this paper proved the rationality of the models and the feasibility of
the inversion process. The comparison between the new model and the traditional models
also showed the superiority of the GRVoG-vtd model.
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The following abbreviations are used in this manuscript:

PolInSAR Polarimetric interferometric synthetic aperture radar
LiDAR Light detection and ranging
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EM Expectation-Maximum
DLR German Aerospace Center
CUC Complex unit circle
LUT Look up table
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Appendix A. The Derivation of the GRVoG Model Function

This section listed the main steps of the derivation of the GRVoG model function
which have significant differences from the RVoG model. The article [7] can provide more
details for readers really interested in the derivation. As in [7], the average field incident
on the j-th scatterer

〈
E(Rj, ω; 1)

〉
satisfies:

〈
E(Rj, ω; 1)

〉
= Aexp(ik|Rj − R1|) +

∫
ρ(R)〈E(R, ω; 1)〉

〈
f (R̂1,R; R̂R,j)

〉 exp(ik|Rj − R|)
|Rj − R| d3R (A1)

where Rj and R1 represent the locations of the j-th scatterer and the transmitting radar,
respectively. f (R̂1,R; R̂R,j) means the normalized, medium-ensemble-averaged scattering
amplitude [34]. ρ(R) is the scatterer density distribution function. ω and k are the frequency
and the wavenumber.

https://earth.esa.int/eogateway/campaigns/afrisar-2016
https://earth.esa.int/eogateway/campaigns/afrisar-2016
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Assuming the distribution of volume scatterer density is ρ(h), the solution of the
equation can be obtained by the stationary phase method [35]:

〈
E(Rj, ω; 1)

〉
= Aexp

(ik|Rj − R1|) +
2πi
〈

f (R̂1,R; R̂R,j)
〉 ∫ hv

hv−dj
ρ(h)dh

k cos θj

 (A2)

where hv is the height of the forest in the area, dj is the depth of the j-th scatterer relative to
the height of the tree, and θj is the angle between the line connecting the transmitting radar
R1 and the scatterer position Rj and the vertical direction, i.e., the depression angle.

According to the same method, we can get:

〈E(R1, ω; j)〉 = A2 f j(R̂1,j; R̂j,1)exp

2(ik|R1 − Rj|) +
4πi
〈

f (R̂j,1; R̂j,1)
〉 ∫ hv

hv−dj
ρ(h)dh

k cos θj

 (A3)

After obtaining the single-frequency echo from single scatterer, it is necessary to
integrate the response of the single scatterer over the entire bandwidth to obtain the overall
echo signal of the scatterer. Furthermore, we add up the echoes of all the scatterers to get
the expression:

〈E(R1)E∗(R2)〉 ≈ A4ejφ0

∫ hv

0
exp(ikzz)ρ(z) exp

[
−2κe

∫ hv
z ρ(h)dh

cos θ

]
dz (A4)

with κe is the vegetation extinction coefficient defined as:

κe =
4πρ0 Im〈 f 〉

k
(A5)

Finally, the complex coherence is normalized, i.e.:

〈E(R1)E∗(R2)〉√
|E(R1)|2|E(R2)|2

= ejφ0

∫ hv
0 exp(jkzz)ρ(z)exp(−2κe

∫ hv
z ρ(h)dh)
cosθ )dz∫ hv

0 ρ(z)exp(−2κe
∫ hv

z ρ(h)dh)
cosθ )dz

(A6)
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