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Abstract: The vertical motion of the Earth’s surface is dominated by the hydrologic cycle on a
seasonal scale. Accurate land deformation measurements can provide constructive insight into the
regional geophysical process. Although the Global Positioning System (GPS) delivers relatively
accurate measurements, GPS networks are not uniformly distributed across the globe, posing a
challenge to obtaining accurate deformation information in data-sparse regions, e.g., Central South-
East Asia (CSEA). Model simulations and gravity data (from the Gravity Recovery and Climate
Experiment (GRACE) and GRACE Follow-On (GRACE-FO)) have been successfully used to improve
the spatial coverage. While combining model estimates and GRACE/GRACE-FO data via the
GRACE/GRACE-FO data assimilation (DA) framework can potentially improve the accuracy and
resolution of deformation estimates, the approach has rarely been considered or investigated thus far.
This study assesses the performance of vertical displacement estimates from GRACE/GRACE-FO,
the PCRaster Global Water Balance (PCR-GLOBWB) hydrology model, and the GRACE/GRACE-FO
DA approach (assimilating GRACE/GRACE-FO into PCR-GLOBWB) in CSEA, where measurements
from six GPS sites are available for validation. The results show that GRACE/GRACE-FO, PCR-
GLOBWB, and GRACE/GRACE-FO DA accurately capture regional-scale hydrologic- and flood-
induced vertical displacements, with the correlation value and RMS reduction relative to GPS
measurements up to 0.89 and 53%, respectively. The analyses also confirm the GRACE/GRACE-FO
DA’s effectiveness in providing vertical displacement estimates consistent with GRACE/GRACE-FO
data while maintaining high-spatial details of the PCR-GLOBWB model, highlighting the benefits of
GRACE/GRACE-FO DA in data-sparse regions.

Keywords: GRACE; GRACE-FO; data assimilation; vertical displacement; GPS; MODIS; flood;
Central South-East Asia

1. Introduction

Land deformation is a response of (1) geophysical processes governed by, e.g., hy-
drology, atmosphere, ocean mass transports associated with the earth system, and (2)
anthropogenic impact associated with the human intervention [1,2]. Such processes cause
the Earth’s surface to subside or uplift, severely affecting the scientific and industrial
sectors [3,4]. Despite being affected by different Earth system drivers, land deformation is
dominated by the hydrology cycle at annual and interannual scales [1,5–7]. For instance,
vertical motions’ annual variations in Japan [8] and the Northwestern United States [9] are
induced by snow loadings. Similarly, seasonal variations in California are explained by
groundwater recharge and pumping activities [10]. In monsoon regions, significant terres-
trial water storage variation (∆TWS), influenced by exceptional annual precipitation (e.g.,
>1000 mm), is a primary driver of the land deformation’s annual variations (e.g., [11–13]).
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Monsoon flooding can also pose significant loads over inundated areas, causing rapid
vertical displacement changes (or land subsidence) of a few mm [5,14]. Despite considering
hydrologic loads as a signal or interference [1], accurate deformation measurements are
needed to gain constructive insight into regional geophysical processes.

Measuring land deformation using Global Positioning System (GPS) networks has
been used to achieve <1-cm measurement’s accuracy [6,15–17]. However, this technique
requires moderately dense GPS sites to operate continuously. This is impractical in many
parts of the world concerning, e.g., high operational/maintenance costs and limited ac-
cessibility (in remote areas), ending up with sparse GPS networks that can hardly be
used to monitor regional (large-scale) land deformation rigorously. In data-sparse regions,
satellite gravity data have been considered a primary measurement regarding multiple
advantages such as continuous time series, extended ground coverage, and no operational
cost required from users. The Gravity Recovery and Climate Experiment (GRACE [18])
and its successor, GRACE-Follow On (GRACE-FO [19]), satellite missions have provided
accurate monthly earth gravity field measurements in various applications, including water
resource, land deformation, and climate [17,20–23]. For convenience, the term GRACE is
used for both GRACE and GRACE-FO throughout this paper. The successful measuring
of large-scale land deformation by GRACE has been reported in various geographic and
climate conditions, e.g., the Himalayas and India [17], Africa [11], and Australia [24]. The
downside of GRACE data is the relatively coarse spatial resolution (i.e., ~300 × 300 km2)
that may degrade the derived local deformation’s accuracy [6].

Estimating land deformation from land surface or hydrology models can be alterna-
tively considered [5,25,26], particularly to achieve higher spatial resolution than GRACE
or improved data availability under an absent gravity data’s scenario. Models implement
sophisticated physics to represent the water cycle, which can provide an accurate TWS
estimate comparable with GRACE results [21]. However, despite the overall positive
impacts, model estimates commonly suffer from severe uncertainties associated with, e.g.,
inadequate physics representation, ineffective model configuration, or inaccurate metrolog-
ical forcing [27], leading likely to inaccurate or underestimated TWS [25,28]. GRACE data
assimilation (DA) can be used to improve model TWS estimates [27]. GRACE DA adopts a
sequential DA approach to assimilate GRACE observations into a model simulation accord-
ing to their relative errors [29], resulting in (updated) model TWS estimates consistent with
the assimilated observations [30,31]. This approach has been successfully used in several
hydrologic applications, e.g., drought assessment [31] and groundwater monitoring [32],
while its benefit to the land deformation estimate has only been considered recently [26].

This study aims to assess the performance of GRACE DA-derived vertical displace-
ment in data-sparse regions between April 2002 and December 2018. Central South-East
Asia (CSEA) is used as a tested region, considering its monsoon climate and frequently
experienced severe flooding that can be used to investigate the hydrologic- and flood-
induced land deformation behavior [12,33]. Importantly, ground measurements from
a few GPS stations in CSEA are available to validate the results. Data assimilation is
performed by assimilating GRACE observations into the PCRaster Global Water Balance
(PCR-GLOBWB [34]) model using the Ensemble Kalman Smoother (EnKS [30]) to improve
the TWS and vertical displacement estimates. PCR-GLOBWB simulates the TWS at five-
arcmins (~10 km) resolution, allowing much greater spatial details to be recovered. The
evaluation is performed by comparing vertical displacement estimates (from GRACE,
PCR-GLOBWB, and GRACE DA) with GPS measurements in terms of the correlation
coefficient (ρ), root mean square difference (RMSD), and RMS reduction [35] to assess the
benefits/limitations of different approaches.

The objectives of this study are threefold: (1) to estimate land deformation in data-
sparse regions (here is CSEA) using GRACE, PCR-GLOBWB, GRACE DA, and GPS data;
(2) to evaluate the GRACE DA’s performance (as well as GRACE and PCR-GLOBWB); and
(3) to verify the primary driver of land deformation in CSEA and quantify the vertical
displacement changes during flooding events. The presentation of this paper follows these
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objectives. Section 2 provides the details of the study area and data processing approaches.
Section 3 describes the methods for vertical displacement computation and GRACE DA.
The results are presented in Section 4, where the benefits of GRACE and GRACE DA in
data-sparse regions are elaborated. Section 5 benchmarks the GRACE DA’s performance,
and Section 6 concludes the findings of this paper.

2. Study Area and Data Processing
2.1. Study Area

This study focuses on Central South-East Asia (CSEA; 11◦ N–19◦ N, 97◦ E–106◦ E;
Figure 1). The study area stretches over 800,000 km2, encompassing five different countries
(i.e., Myanmar, Thailand, Laos, Cambodia, and Vietnam) and two major river basins (i.e.,
the Chao Phraya River and Tonlé Sap Basins). CSEA has a tropical wet climate with an
average temperature and annual rainfall of approximately 25◦C and 1800 mm, respectively.
Essential sources of water supply in most countries are lakes and reservoirs, in which
the surface water contributes significantly to regional water storage dynamics, e.g., >40%
over the Tonlé Sap Basin [36]. The region has experienced several episodes of extreme
monsoon rainfalls and flooding [37]. A recent severe flooding was seen in Thailand in
2011, where the inundated areas extended over 18,000 km2 [38]. Substantial hydrologic
mass variations in CSEA induce a seasonal vertical motion that can likely be measured
by a GPS network [33]. However, GPS measurements are very sparse in CSEA. Only six
GPS sites’ measurements have collected data for longer than three years, and only two of
them are still operational (see Table 1). This data-sparse problem limits the comprehensive
spatiotemporal deformation details to be observed. The use of satellite observations or
model estimates might help improve the deformation monitoring ability in CSEA.

Table 1. Characteristics of Global Positioning System (GPS) sites used in this study. The sites with an
asterisk (*) are still in operation. The evaluation sites represent the model grid cell location used in the
evaluation process. The measurements from GPS sites inside the same PCRaster Global Water Balance
(PCR-GLOBWB) model grid cell are averaged. The averaging process results in three (independent)
time series of S1–S3 sites (model grid); see, e.g., Figure 3a for their locations on the map.

Evaluation Sites GPS Sites Data Periods Latitude (deg) Longitude (deg)

S1
CHGM 2010–2012 18.803 98.950

CMUM * 2014–2018 18.761 98.932

S2
AITB 2010–2014 14.079 100.612
ATH2 2014–2017 14.082 100.613
NIMT 2005–2014 14.043 100.714

S3 CUSV * 2008–2018 13.736 100.534

2.2. GRACE Data

The GRACE and GRACE-FO Level 2 release 06 (RL06) products provided by the
Center for Space Research (CSR) at the University of Texas at Austin (http://www2.csr.
utexas.edu/grace/RL06.html and http://www.csr.utexas.edu/grace-fo) are used to derive
the ∆TWSs and of vertical displacement variations (∆r) between April 2002 and December
2018. The products contain monthly (geopotential) spherical harmonic coefficients (SHC)
up to a maximum degree and order of 96. The GRACE data are processed as follows. First,
degree 1 coefficients are restored using values provided by Swenson et al. [39]. C20 and
C30 coefficients are replaced by the value estimated from the satellite laser ranging [40].
Second, the long-term SHC mean (between April 2002 and December 2018) is computed
and removed from each monthly product to obtain monthly SHC variations. Third, de-
striping [41] and 300-km radius Gaussian smoothing filters [42] are applied to the SHC
variations to alleviate high-frequency errors. Fourth, the ∆TWS or ∆r is computed from the
filtered SHC variations (see also Section 3.1), and the Glacial Isostatic Adjustment correction
provided by Caron et al. [43] is applied. Finally, a signal restoration approach [36,44] is
performed to restore the damped signal caused by the applied filters. It is noteworthy that

http://www2.csr.utexas.edu/grace/RL06.html
http://www2.csr.utexas.edu/grace/RL06.html
http://www.csr.utexas.edu/grace-fo
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the signal restoration used in this study is applied to the TWS (not to displacements di-
rectly). The restoration approach searches for genuine GRACE signals through an iteration
process, and the determined SHCs are used to compute ∆TWS and ∆r (see Section 3 for
more detail).
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Figure 1. The Central South-East Asia (CSEA) region encompassing two major river basins, i.e., the
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In contrast to the GPS measurements, the GRACE Level 2 data do not include short-
term atmospheric and nontidal oceanic variations. Therefore, the de-aliasing atmospheric
and oceanic signals provided by the GRACE Atmosphere and Ocean De-aliasing RL06
product [45] are added to the GRACE-derived vertical displacement when comparing ∆r
estimates with GPS measurements.

2.3. Hydrology Model

The global distributed hydrological model, PCR-GLOBWB Version 2 [34,46], is a grid-
based hydrology model that can simulate various water storage components, e.g., soil
moisture, groundwater, surface water, and snow. The model has spatial and temporal
resolutions of five arcmins and one day, respectively. PCR-GLOBWB-simulated TWS
comprises 27 different water storage components, i.e., eight soil moisture, four interceptions,
eight snow, four inundated topwater, one surface water, and two groundwater. The
complete details of PCR-GLOBWB can be found in, e.g., [34,46–48].
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To perform a PCR-GLOBWB simulation, we use daily precipitation and 2-m air temper-
ature from the Integrated Multi-satellite Retrievals for Global Precipitation Measurement
Mission (IMERG) [49] and the hourly land product of the European Centre for Medium-range
Weather Forecasts Reanalysis Version 5 (ERA5; https://confluence.ecmwf.int/display/CKB/
ERA5-Land), respectively. Both products have a spatial resolution of 0.1◦, and they are
resampled to five arcmins to overlay with the model grid space. The ERA5′s hourly data
is resampled to a daily interval, consistent with the model temporal resolution. The daily
reference potential evapotranspiration is calculated using the Hamon method [50].

2.4. GPS Measurements

GPS data are obtained from the Nevada Geodetic Laboratory at the University of
Nevada, Reno (UNR) [51]. A final solution provides an hourly vertical motion associated
with the IGS14 reference frame. Multiple GPS sites are located in CSEA (see http://geodesy.
unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html) but most contain significant
data gaps, i.e., only a few records available in the time series. In total, only six GPS sites
have sufficiently long records (i.e., >3 years) for our analysis (Table 1). At each GPS site, the
hourly records of the up (vertical) component are averaged into a monthly averaged time
series, consistent with the GRACE temporal resolution. The long-term trend is removed
from the time series to reduce the plate tectonic effects [7]. The trend is estimated by fitting
the GPS time series using the least-squares adjustment associated with the offset, trend,
annual, and semi-annual parameters. Then, the long-term mean is subtracted from the
time series to obtain GPS position variations. Finally, the measurements of GPS sites inside
the same model grid cell (i.e., five-arcmins grid box) are averaged before performing the
validation. This averaging process results in three GPS time series associated with three
independent model grid cells (S1–S3; see Table 1).

2.5. Flood Extent

The flood extent is derived from surface reflectance measurements from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors onboard NASA’s Terra satellites.
The MOD09A1 collection 6 product [52] provides surface reflectance in 7 different frequency
bands at 500-m spatial resolution within an 8-day window. The combinations of specific
frequency bands can be used to identify open water bodies larger than 0.25 km2. In this
study, the multifrequency surface reflectance is extracted from two MODIS tiles, h27v07
and h28v07 (covering the entire study area), between April 2002 and December 2018. The
pixels with filled values or severe cloud cover are masked, using data quality control flags
provided with the MODIS product. The pixel associated with surface water can be classified
using the normalized difference water index (NDWI) computed using measurements from
green and near-infrared (NIR) channels as follows [53]:

NDWI =
green − NIR
green + NIR

(1)

The NDWI values are between −1 and 1, where positive values represent open water,
and zero or negative values represent clouds, vegetation canopy, or soil. The flooded extent
is computed by multiplying the total number of open water pixels (NDWI > 0) by 0.25 km2

(the spatial resolution of the surface reflectance dataset).

3. Methods

The computation and analysis follow three steps: (1) data preparation (see Section 2),
(2) vertical displacement computation, and (3) validation and accuracy assessment. Figure 2
illustrates the data processing diagram.

https://confluence.ecmwf.int/display/CKB/ERA5-Land
https://confluence.ecmwf.int/display/CKB/ERA5-Land
http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html
http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap.html
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3.1. Computation of Terrestrial Water Storage and Vertical Displacement Variations

The GRACE monthly geopotential spherical harmonic coefficients (SHC), together
with the load Love numbers [7], are used to compute the ∆TWS and ∆r as follows [54]:

∆TWS(θ, λ) = aρave
3ρw

Nmax
∑

n=1

n
∑

m=0
Pnm(cos θ)(∆Cnm cos(mλ)

+∆Snm sin(mλ)) 2n+1
1+kn

(2)

∆r(θ, λ) = a
Nmax

∑
n=1

n

∑
m=0

Pnm(cos θ)(∆Cnm cos(mλ) + ∆Snm sin(mλ))
hn

1 + kn
(3)

where (θ, λ) are the colatitude and east longitude, (kn, hn) are the load Love numbers of
degree n, Pnm is the normalized associated Legendre function of the first kind of degree
n and order m, (ρave, ρw) are the average density of the Earth and freshwater, a is the
radius of the Earth, and

(
∆Cnm, ∆Snm

)
are the SHC variation, computed by removing a

long-term mean SHC (e.g., calculated between April 2002 and December 2018) from the
monthly

(
Cnm, Snm

)
. The load Love numbers computed from the Preliminary Reference

Earth Model (PREM) [55] are used in this study.
Vertical displacement associated with model-simulated ∆TWS can also be computed

using Equation (3). However, the model provides ∆TWS in a geographical gridded format
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(instead of SHC), and the conversion from the gridded data to the geopotential SHC is
firstly performed as follows [56]:

{
∆Cnm
∆Snm

}
=

3ρw
4πaρave

1 + kn

2n + 1

π∫
θ=0

2π∫
λ=0

∆TWS(θ, λ)Pnm(cos θ)
{

cos mλ
sin mλ

}
sin θ dθdλ (4)

In this study, the maximum harmonic degree (Nmax) is approximated by Nmax =
180

◦
/ψ1/2 [57], where ψ1/2 is a half-wavelength of a field (in degrees), i.e., a sampling

distance of model-simulated ∆TWS. The atmospheric and oceanic signals from the atmo-
spheric and oceanic de-aliasing (AOD) product (see Section 2.2) are then added to the
vertical displacement estimate to obtain signals consistent with the GPS measurements.

3.2. GRACE Data Assimilation

GRACE-derived ∆TWS is assimilated into PCR-GLOBWB using the ensemble Kalman
smoother (EnKS) [30]. Comprehensive details on the DA configurations are given in
Appendix A, while this section describes the core processing concepts. The EnKS comprises
two-step runs, a forward run, and a repeat run. In GRACE DA, a forward run is performed
to obtain the monthly average TWS states (consistent with a GRACE or GRACE-FO time
window), and a repeat run is used to distribute the update evenly throughout the month.
A repeat run acts like a smoother to smooth the simulation’s trajectory and reduce the time
series’ spurious discontinuity. The DA process begins with a model propagation (F ) of
each ensemble i (at time step t) as follows:

xi
t = F

(
xi

t−1, fi
t, ui

)
(5)

where x is a vector containing the state variables, f is a vector of meteorological forcing
data, and u represents the model parameters. The ensemble generation process is described
in Appendix A. The number of ensembles used in this study is 100. A forward run is
performed for approximately one month (T) to obtain the monthly TWS state variables.
When GRACE observation is available, the model states are updated as follows:

Xi
T+ = Xi

T− + KT

[
yi

T −HTXi
T−

]
(6)

where X contains 27 monthly average TWS variables (e.g., soil moisture, groundwater,
and snow; see [30] for more details); y is an observation vector; H is a measurement
operator relating the state to the observation vector, and K is a Kalman gain representing
the weighting factor that determines the contribution of observation in the state variable’s
adjustment. The subscript signs (−,+) indicate the update status: before (−) and after (+)
the update, respectively. The Kalman gain is expressed as

K = CXH(CH + Cv)
−1 (7)

where CH is the covariance matrix of model TWS predictions (HTXi
T−), Cv is the error

covariance matrix of the GRACE observation, and CXH is the cross-covariance matrix
computed between model TWS states and model TWS predictions. The covariance matrices
can be computed empirically from the ensemble members [29]. The daily TWS update is
then computed by dividing the monthly update values (from Equation (6)) by the number
of days in that month. Next, a repeat run is performed by repeating a forward run (Equation
(5)) but adding the daily TWS update to the initial states (associated with TWS variables)
at the beginning of each day. The repeated run is skipped when GRACE or GRACE-FO
observation is absent.
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4. Results
4.1. The Estimations of TWS and Vertical Displacement Variations

The methods described in Section 3.1 are used to compute the monthly ∆TWS and
∆r associated with the GRACE data, PCR-GLOBWB model, and GRACE DA estimate
between April 2002 and December 2018. The estimated time series are least-squares-
fitted and the ∆TWS annual amplitude estimates are shown in Figure 3. Note that only
available GRACE/GRACE-FO data are used in the amplitude computation. The PCR-
GLOBWB ∆TWS estimate (Figure 3b) exhibits much greater spatial details than the GRACE
estimate (Figure 3a). Strong TWS variations are seen in river and lake areas, implying a
significant contribution of surface water to the hydrological dynamics in CSEA. Although
a direct comparison between GRACE and PCR-GLOBWB estimates is difficult due to the
inconsistency in their spatial resolution, some distinct differences between them can still
be seen, particularly in Central and Eastern Thailand, where PCR-GLOBWB has smaller
annual amplitudes by approximately a factor of two (see Figure 3a vs. Figure 3b). The
model errors associated with (but not limited to), e.g., the inadequate representation of
physical processes, uncalibrated model parameters, or inaccurate forcing data, likely lead
to underestimated ∆TWS [27]. After assimilating GRACE into PCR-GLOBWB, the ∆TWS
annual amplitude estimate is closer to the GRACE result (Figure 3c). The GRACE DA’s
application also preserves the high-spatial details of the ∆TWS (from PCR-GLOBWB), and
the ∆TWS features over lakes/reservoirs are still clearly seen.
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Figure 3. Annual amplitude estimates of the terrestrial water storage variations (∆TWS) (first row; a–c) and vertical
displacement variations (∆r) (second row; d–e) derived from the GRACE (first column; a,d), PCRaster Global Water Balance
(PCR-GLOBWB) model (second column; b,e), and GRACE DA (data assimilation) estimates (third column; c,f). The
evaluation sites (S1–S3) are shown as green triangles (see the site’s name in (a)). The red oval in (d) illustrates the location
where the atmospheric and oceanic loadings are prominent.



Remote Sens. 2021, 13, 235 9 of 18

The GRACE ∆r estimate’s annual amplitude exhibits a similar spatial pattern to
the GRACE ∆TWS result, showing more significant variations in the northwestern and
southeastern parts of CSEA (Figure 3d). Relative to the ∆TWS result (Figure 3a), the ∆r
spatial pattern is slightly shifted toward Cambodia’s coastal areas (see, e.g., the red oval in
Figure 3d), attributed to significant atmospheric and oceanic loading effects in these semi-
enclosed bay regions (see later discussions). The PCR-GLOBWB ∆r estimate agrees with
the GRACE result in, e.g., Northern Thailand and Laos (Figure 3e). However, the model
underestimates ∆r in Central Thailand and Cambodia, consistent with underestimated
∆TWS seen in Figure 3b. Significant annual ∆r are also seen in the reservoir and lake
areas (Figure 3e), confirming the large surface water seasonality in CSEA. In line with the
∆TWS estimate, applying GRACE DA leads to an improved agreement between the ∆r and
GRACE estimates and maintains the relatively high spatial resolution of the PCR-GLOBWB
model (Figure 3f).

Land deformation is governed by multiple mass loading sources, i.e., land, atmo-
sphere, and ocean. While the land component dominates the ∆r in CSEA, atmospheric and
oceanic loadings are found to play a crucial role in certain parts of the region, seen from
their notable contributions to total vertical displacement (Figure 4). The signal contribution
associated with different components is computed as the ∆rC/∆r, where ∆rC is the annual
amplitude of vertical displacement induced by an individual mass loading component (i.e.,
land and ocean/atmosphere), and ∆r is the amplitude of the total vertical displacement
estimate (i.e., the integration of all components). Figure 4 suggests that the land water
storage variation is the primary driver of ∆r (see Figure 4a vs. Figure 4b), while the contri-
bution of atmospheric and oceanic loadings is relatively small (~20%) in the inland areas
(Figure 4c). However, large atmospheric and oceanic variations are found near Thailand
and Cambodia coasts (see, e.g., a red oval in Figure 4c), influenced by a strong seasonality
of ocean bottom pressure variations in the Gulf of Thailand [58], which contributes up to
60% to the ∆r annual amplitude in the coastal regions.
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4.2. The Impact of Flooding on Vertical Displacement Estimates

CSEA has experienced several flood events induced by extreme monsoon rainfalls.
Figure 5 illustrates the MODIS-derived NDWI during the flood event in 2011 (Figure 5a;
the most severe flood since 2002) compared with the average NDWI value computed
between 2002 and 2018 (Figure 5b). The positive NDWI values reveal approximate surface
water extents in the region, in which the lake, reservoir, and flooding features are clearly
seen. During the flood event in 2011 (July–December 2011; Figure 5a), the surface water
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areas of CSEA were increased by a factor of 2.5 relative to the regionally average value
(Figure 5b). The flooding severities were apparent in the Chao Phraya River Basin, Tonlé
Sap Basin, and most of Southeastern Cambodia, where several major cities were inundated
for more than one month [38].
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Figure 5. The averaged Moderate Resolution Imaging Spectroradiometer (MODIS)-derived normalized difference water
index (NDWI) during the monsoon season, July–December. (Left; a) The averaged NDWI during the flooding in 2011,
July–December 2011. (Right; b) The averaged NDWI of all July–December data between 2002 and 2018. For visualization,
the NDWI < 0.05 are shown in black. The evaluation sites (S1–S3) are shown as green triangles (see the site’s name in (a)).

The basin-averaged ∆TWS and ∆r time series over the Chao Phraya River and Tonlé
Sap Basins are analyzed together with the precipitation and flood extent (Figure 6). The
PCR-GLOBWB ∆TWS and ∆r estimates depict a significant agreement with the GRACE
estimates (Figure 6a–d) in terms of seasonal variation (with ρ > 0.85; see Table 2). The
discrepancy between PCR-GLOBWB and GRACE is seen in the annual amplitude estimates,
particularly in the Tonlé Sap Basin, where the model underestimates the ∆TWS and ∆r by
>10% (Figure 6b; see also Table 2). After applying the GRACE DA, both the ∆TWS and ∆r
estimates move toward the GRACE observations, and the ρ and RMSD estimates (with
respect to GRACE) are improved by up to 9% and 44%, respectively (see Table 2). Figure
6 also illustrates that the ∆TWS and ∆r seasonal variations are governed mainly by the
precipitation seasonality (Figure 6e,f). Exceptionally low or high ∆TWSs correspond to
extreme precipitation and flooding (see, e.g., ∆TWS in 2011; Figure 6a,e,g), which results in
noticeable land subsidence (negative ∆r) as a response to the increased water mass.
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Figure 6. The basin-averaged ∆TWS (first row; a,b), ∆r (second row; c,d), Integrated Multi-satellite Retrievals for Global
Precipitation Measurement Mission (IMERG)-derived precipitation (third row; e,f), and MODIS-derived surface water
extent (fourth row; g,h) in the Chao Phraya River (first column) and Tonlé Sap (second column) Basins between April 2002
and December 2018. The gray background indicates the flood period of 2011.

Table 2. Annual amplitude and statistical values (correlation coefficient (ρ) and root mean square difference (RMSD)) com-
puted from the Gravity Recovery And Climate Experiment (GRACE), PCR-GLOBWB, and GRACE DA (data assimilation)-
derived terrestrial water storage variation (∆TWS) and vertical displacement variation (∆r) time series in the Chao Phraya
River and Tonlé Sap Basins. The ρ and RMSD values are computed with respect to the GRACE estimates. The percentage
given in the GRACE DA results represents the improvement with respect to the PCR-GLOBWB estimate.

∆TWS ∆r

Amp (mm) ρ (-) RMSD (mm) Amp (mm) ρ (-) RMSD (mm)

The Chao Phraya River Basin
GRACE 197.35 - - 9.16 - -

PCR-GLOBWB 171.76 0.96 50.93 7.70 0.89 115.63
GRACE DA 187.84 0.99 (3%) 29.76 (42%) 8.71 0.97 (9%) 64.41 (44%)

The Tonlé Sap basin
GRACE 236.51 - - 8.07 - -

PCR-GLOBWB 139.15 0.89 3.99 6.89 0.86 3.33
GRACE DA 185.51 0.93 (4%) 2.82 (29%) 7.78 0.93 (8%) 2.51 (25%)
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The correlation analysis shown in Figure 7 reveals that the flood extent has a stronger
connection with the ∆TWS than precipitation. The precipitation–flooding relationship is
affected by several factors, e.g., climate conditions, land cover (urbanization), and catchment
characteristics [59], which likely lessen the correlation between the two. On the other hand,
the ∆TWS reflects a saturated soil and groundwater storage condition, which is an essential
factor controlling flood occurrence. When soil or groundwater storage is saturated (e.g., a
high ∆TWS), the throughfall cannot infiltrate through the soil but exits the system as surface
runoff or a flood. This land process mechanism also leads to a phase delay of flood occurrence
(relative to, e.g., the ∆TWS), where the maximum flood extent is observed after the ∆TWS
peak by about one month (see, e.g., the Chao Phraya River Basin in 2011; Figure 6g). It is
noteworthy that the ∆r estimates’ anticorrelations reflect the nature of vertical displacement
responses to water mass loads, which results in about one cycle (π) phase difference between
∆r and ∆TWS (and, also, the flood extent) (see, e.g., Figure 6a vs. Figure 6c).
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Figure 7. Correlation coefficients between the MODIS-derived surface water extent and different datasets; the ∆TWS
(GRACE, PCR-GLOBWB, and GRACE DA); the ∆r (GRACE, PCR-GLOBWB, and GRACE DA); and precipitation (IMERG)
in the Chao Phraya River (left; a) and Tonlé Sap Basins (right; b).

4.3. Validation with GPS Measurements

The ∆r estimates are evaluated against the GPS measurements at the S1–S3 sites
(Figure 8). The long-term mean of vertical displacement estimates (GRACE, PCR-GLOBWB,
and GRACE DA) with respect to the GPS data period is removed from the time series
prior to the comparison. The GRACE, PCR-GLOBWB, and GRACE DA ∆r estimates depict
consistent seasonal variability with the GPS time series in all three evaluated locations.
Discrepancies are seen during extreme events (e.g., the flood event in 2011), where GPS
measurements exhibit higher variability than that observed from the GRACE and model
estimates (see, e.g., the blue ovals in Figure 8b). The higher ∆r variations are likely
associated with local signals that coarse spatial resolution satellite observations (~300 km)
or model estimates (~10 km) cannot effectively capture [6,60]. At S2 and S3 (see Figure 8c,e),
the excessive land subsidence (negative ∆r) during the flood event in 2011 is clearly seen.
The subsidence magnitude in July–December 2011 is increased by up to 90% compared
with the average subsidence computed from all July–December ∆r estimates (see, e.g.,
Figure 8d,f). The S1 location is located beyond the flood zone (see the S1 location in, e.g.,
Figure 5b), and no noticeable land subsidence feature is detected in 2011 (Figure 8a).
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Figure 8. (Left column) The ∆r estimates from the GPS, GRACE, PCR-GLOBWB, and GRACE DA at the three evaluation
sites: S1 (a), S2 (c), and S3 (e). Note that the evaluation period (horizontal axis) is different for different evaluated sites
regarding GPS measurement availability. In (c), the blue ovals demonstrate the periods where the GPS ∆r is more significant
than the GRACE or model estimates. (Right column) The average land subsidence (negative ∆r) computed during the great
flood of 2011, July–December 2011 (orange) estimated from the GPS, GRACE, PCR-GLOBWB (PCR-G), and GRACE DA
(DA) at three evaluation sites: S1 (b), S2 (d), and S3 (f). For comparison, the average land subsidence computed from all
July–December (2002–2018) values is also shown (blue).

The notable agreement between ∆r estimates and GPS measurements is also seen
in the annual amplitude and phase estimates (Table 3). The annual amplitude estimates
from GRACE, PCR-GLOBWB, and GRACE-DA agree with the GPS measurements within
~1 mm, which is reasonable, considering the 1-cm accuracy of the GPS data in the up
component [16]. Similarly, the phase estimates agree within ~0.3 months, consistent with
the evaluated time interval (one month). The GRACE results show the highest agreement
with the GPS estimates, providing a ~17% closer annual amplitude than the PCR-GLOBWB
results (e.g., 9.11 mm vs. 7.64 mm with respect to 8.67 mm; see Table 3). As seen in
Section 4.2, the GRACE DA updates the ∆TWS estimates toward the GRACE observations,
resulting in an improved agreement with the GPS data compared with the model estimates
alone (e.g., the GRACE DA increases the agreement in the annual amplitude by 8%).
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Table 3. The annual amplitude and phase estimates from the GPS, GRACE, PCR-GLOBWB, and
GRACE DA-derived ∆r at three evaluated sites (S1–S3). The average amplitude and phase values are
also given in the right column (Avg).

Amplitude (mm) Phase (month)

S1 S2 S3 Avg S1 S2 S3 Avg

GPS 10.26 7.37 8.39 8.67 4.23 4.60 4.57 4.47
GRACE 10.00 8.63 8.71 9.11 4.15 4.54 4.54 4.41

PCR-GLOBWB 9.23 6.72 6.96 7.64 4.06 4.19 4.07 4.11
GRACE DA 9.83 7.51 7.56 8.30 4.11 4.22 4.11 4.15

Validating against the GPS measurements, the GRACE DA ∆r estimates provide ρ
and RMSD values of approximately 0.7 and 5 mm, respectively (Table 4). The RMSD is
smaller than the GRACE errors by a factor of two to three [61], denoting the effectiveness
of GRACE data usage in data-sparse regions. Like previous analyses, the ∆r estimates
associated with GRACE observations (GRACE and GRACE DA) outperform the model
estimate, i.e., by providing higher ρ and RMSD values by ~3%. The model, however, still
presents one advantage in providing a continuous time series, in which ∆r can still be
estimated despite the absence of GRACE, GRACE-FO, or GPS data (see, e.g., Figure 8a).

Table 4. The ρ, RMSD, and RMS reduction values (with respect to GPS data) estimated from the GRACE, PCR-GLOBWB,
and GRACE DA-derived ∆r at three evaluated sites (S1–S3). The statistical values associated with the inclusion (top part)
and exclusion (bottom part) of atmospheric and oceanic loadings are shown. The average amplitude and phase values are
also given in the right column (Avg).

ρ (-) RMSD (mm) RMS Reduction (%)

S1 S2 S3 Avg S1 S2 S3 Avg S1 S2 S3 Avg

Including atmospheric and oceanic signals
GRACE 0.77 0.78 0.89 0.81 5.70 4.57 3.60 4.62 39.33 36.70 53.44 43.16

PCR-GLOBWB 0.75 0.75 0.84 0.78 5.86 4.77 4.26 4.96 36.56 33.11 44.16 37.94
GRACE DA 0.77 0.77 0.86 0.80 5.76 4.64 4.06 4.82 37.33 34.78 49.97 40.69

Excluding atmospheric and oceanic signals
GRACE 0.72 0.72 0.85 0.76 6.30 4.98 4.11 5.13 30.83 28.92 46.79 35.51

PCR-GLOBWB 0.72 0.66 0.74 0.71 6.33 5.29 4.93 5.52 29.62 22.08 32.63 28.11
GRACE DA 0.74 0.67 0.77 0.73 6.22 5.19 4.67 5.36 32.02 24.56 34.91 30.50

Our final analysis investigates the impact of atmospheric and oceanic loadings on
the vertical displacement accuracy. The assessment is performed by comparing two ∆r
estimate scenarios, including and excluding atmospheric and oceanic loadings in the ∆r
computation. Table 4 illustrates that excluding atmospheric and oceanic signals from ∆r es-
timates worsens the ρ, RMSD, and RMS reduction estimates by ~10%. This analysis reveals
that, although land hydrology explains about 90% of the ∆r accuracy, the result is likely
suboptimal when considering the land component alone. The inclusion of atmospheric
and oceanic signals should be considered to achieve an accurate ∆r estimate.

5. Discussion

The performances of GRACE, PCR-GLOBWB, and GRACE DA-derived ∆r in data-
sparse regions (here is CSEA) are assessed in this study. GRACE provides the most accurate
∆r estimates, closest to the GPS measurements, with ρ and RMSD values of > 0.8 and ~5 mm,
respectively. A similar agreement is seen in most monsoon regions [7,11,13,33]. GRACE
fails to capture local signals, due likely to the gravity data’s limited spatial resolution (e.g.,
~300 km), causing a noticeable mismatch between the GRACE and GPS time series [60].
However, the mismatch is negligible compared with GPS uncertainties [16] and does not
significantly affect the GRACE’s overall performance in CSEA. A notable agreement in
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annual amplitude and phase estimates is also found. Previous studies (e.g., [11,33,62])
discussed the difficulty of aligning the amplitude or phase between GRACE and GPS data,
which was caused by ineffective implementations of earth models. Such an issue is not
observed here, likely due to the use of the PREM model, which was found to be the optimal
earth model in the Southeast Asia region [33].

The PCR-GLOBWB model can also deliver an accurate ∆r estimate, despite its infe-
rior performance to GRACE. The model underestimates the ∆r annual amplitudes but
provides greater spatial details than the GRACE estimates. Underperformed ∆r is at-
tributed in part to incorrect model ∆TWS estimates associated with, e.g., imperfect model
physics, ineffective parameter calibration, or inaccurate meteorological forcing input [27].
Assimilating GRACE into PCR-GLOBWB apparently improves ∆r estimates (compared
to PCR-GLOBWB results). It is noticed that GRACE DA does not outperform GRACE
observations in terms of achieving a high ∆r accuracy. This behavior can be explained
by the GRACE DA’s nature that optimizes the contributions from the model and obser-
vation [29], resulting in the ∆r accuracy falling between the model and GRACE results.
However, GRACE DA estimates present one clear advantage (over that of GRACE ob-
servations) in providing high spatiotemporal resolution ∆r estimates (e.g., ~10 km daily).
In particular, accurate vertical deformation can always be obtained from GRACE DA,
despite the GRACE observation absence. The GRACE DA’s effectiveness found from this
study also supports the concept of Springer et al. [26] in utilizing DA estimates to isolate
high-frequency hydrologic signals from GPS measurements.

The GPS, GRACE, PCR-GLOBWB, and GRACE DA results depicted elevated land
subsidence during flood events, particularly in 2011, where the subsidence intensity was
increased by up to 90%. During flooding, saturated soil and groundwater conditions appear
to cause large-scale land subsidence that can be detected from ground, model, and satellite
data. Additionally, we found that the CSEA flood extent had a much stronger relationship
to the ∆TWS than precipitation. This finding is in line with Tangdamrongsub et al. [36],
who utilized such a robust connection for predicting the ∆TWS (from the MODIS-derived
surface water extent) in the Tonlé Sap Basin. This study’s analysis may underline the
potential usage of ∆TWS estimates in large-scale flood monitoring applications.

It is important to include atmospheric and oceanic loadings in the ∆r computation.
Omitting such components leads to an accuracy reduction of about 10%. The impact of
neglecting the ocean loading component may be intensified in the semi-enclosed bay regions,
e.g., the Gulf of Thailand, where the ocean bottom pressure effect is significant [58,63]. Note
that this study obtains the atmosphere and ocean signals from the AOD product consistent
with GRACE Level-2 processing while using different de-aliasing products or geophysical
models, e.g., [64], which may have a different impact on the ∆r estimate. The performance
comparison is beyond the scope of this study but can be considered in future analyses.

6. Conclusions

This study assessed large-scale land deformation in CSEA using GRACE/GRACE-FO,
PCR-GLOBWB, GRACE/GRACE FO DA, and GPS data. It was found that the ∆r estimate
in CSEA is primarily governed by hydrologic variations and extreme events (i.e., monsoon
flooding), which can be detected by the GRACE/GRAE-FO satellites, hydrology model,
and ground measurements. The flooding analysis associated with MODIS data illustrated
a significant impact of extreme weather conditions on the ∆r estimates, where a degree of
land subsidence can be intensified by almost 100% during flooding. Evaluating against
the GPS data, the GRACE/GRACE-FO, PCR-GLOBWB, and GRACE/GRACE-FO DA
effectively observed regional ∆r annual variations (e.g., spatial resolution > 10 km), while
only the GPS measurements could capture local ∆r signals. The evaluation also exhibited
the advantage of GRACE/GRACE-FO DA in improving ∆r estimates and maintaining
great spatiotemporal details. A similar GRACE DA performance can likely be expected
in other data-sparse regions, particularly ones with similar monsoon climates like CSEA.
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Future experiments in different regions can be performed to confirm the GRACE DA’s
effectiveness in ∆r computations.
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Appendix A. The Configuration of GRACE Data Assimilation

In the GRACE DA process, the ensemble sets of forcing data, model parameters, and
observations are first generated by adding random noise to the nominal value. For forcing
data, the precipitation is perturbed with lognormal noise with 30% of the nominal values
range, while the temperature is perturbed with 2 ◦C Gaussian noise. For the model parameters,
14 TWS-related parameters are perturbed using Gaussian noise with 20% of the nominal
values range. The parameters include the saturated conductivity of the upper and lower soil
layers, the storage capacity of the upper and lower soil layers, the minimum and maximum
soil depth fractions, the groundwater recession coefficient, and the minimum crop coefficient
(see [30] for more details). The error magnitudes are selected through trial and error, mainly
to allow ensemble growth between two consecutive updates in the DA process. For the
GRACE observations, the temporal mean value of the TWS (April 2002–December 2018)
from the PCR-GLOBWB estimate is first added to the GRACE-derived ∆TWS to obtain the
absolute TWS prior to the assimilation process. This process is to alleviate the systematic
mean difference between the model TWS estimate and the GRACE data. The GRACE data is
perturbed with 2-cm (and a 3◦ spatial correlation error) Gaussian noise [61].
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