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Abstract: This paper focuses on the development of a miniaturized mobile mapping platform with
advantages over current agricultural phenotyping systems in terms of acquiring data that facilitate
under-canopy plant trait extraction. The system is based on an unmanned ground vehicle (UGV) for
in-row, under-canopy data acquisition to deliver accurately georeferenced 2D and 3D products. The
paper addresses three main aspects pertaining to the UGV development: (a) architecture of the UGV
mobile mapping system (MMS), (b) quality assessment of acquired data in terms of georeferencing
information as well as derived 3D point cloud, and (c) ability to derive phenotypic plant traits using
data acquired by the UGV MMS. The experimental results from this study demonstrate the ability of
the UGV MMS to acquire dense and accurate data over agricultural fields that would facilitate highly
accurate plant phenotyping (better than above-canopy platforms such as unmanned aerial systems
and high-clearance tractors). Plant centers and plant count with an accuracy in the 90% range have
been achieved.

Keywords: unmanned ground vehicle (UGV); mobile mapping system (MMS); direct georeferencing;
LiDAR; RGB imagery; under-canopy mapping; field-based phenotyping

1. Introduction

The ever-increasing human population stipulates for a sustained supply of staple crops.
Compared to 2005, it is forecast that the global crop demand will increase at least 100%
by 2050 [1]. To meet this demand with minimal environmental impacts, the attainment
of high yields from existing croplands is of great importance. Genetic improvement of
staples has accounted for more than half of the past increase in yield [2]. The objective
of genetic breeding programs is producing genotypes that can succeed existing cultivars
on the market to increase crop resistance to pests and diseases, reduce the requirement
for water and nutrient uptake, and increase nutritional value and grain yield. The main
challenge for a genetic breeding program is correlating seed genotype and plant phenotypic
traits under field conditions [3]. More specifically, high-throughput phenotyping under
field conditions is the bottleneck influencing the success of any genetic breeding program.

Recent advances in near-surface remote sensing technologies are playing a crucial
role in advancing the domain of high-throughput phenotyping [4–6]. Airborne sys-
tems (unmanned aerial vehicles and manned aircrafts), wheel-based mapping platforms,
and ground-based static sensors are gaining wide recognition as efficient tools to non-
destructively capture plant traits [7–11]. Despite the increased geometric, spectral, and
temporal resolution of modern remote sensing platforms, they still struggle in providing
key phenotypic traits, such as stalk diameter, leaf angles, ear heights, silking stages, and
leaf area index (LAI), with high accuracy. This lack is mainly attributed to the following
limitations:
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(a) Temporal/spatial resolution: Unmanned aerial vehicles (UAVs) facilitate high tempo-
ral resolution since they can be flown multiple times throughout the growing season.
However, the spatial resolution, especially for light detection and ranging (LiDAR)
data, is low due to the flying height. On the contrary, close-range, wheel-based phe-
notyping tractors provide high spatial resolution but their temporal resolution relies
heavily on the weather conditions since they cannot be driven, for instance, until
several days following rain because of potential soil compaction.

(b) Platform mobility: Static terrestrial laser scanners (TLSs) can obtain high-density
point clouds, but the density drops quickly as the distance from the sensor increases.
The acquisition of data that adequately captures the entire field requires a setup of
multiple TLS stations. Furthermore, derived point clouds from different stations
need to be registered to align them to a common reference frame. However, the
absence of uniquely identifiable features in the individual scans makes the registration
process challenging. A potential solution to this problem is deploying artificial targets.
However, those targets are limited in terms of coverage and spatial distribution, not
to mention the practical challenge in the scalability of such a data acquisition strategy.

(c) Terrain navigation: UAVs are not affected by the terrain topography, whereas wheel-
based tractors cannot operate efficiently in rough terrain since they need to traverse
along the rows while being mindful of the interference with the crops. Moreover,
large and heavy wheel-based tractors will introduce soil compaction issues.

(d) Under-canopy scanning: Most UAVs and wheel-based platforms cannot acquire
reliable under-canopy data. LiDAR sensors onboard these platforms can penetrate
the canopy to some extent but in the later crop growth stages, penetration would be
further limited in capturing under-canopy characteristics, such as ear height and stalk
diameter. RGB imagery, on the other hand, suffers from occlusions by the canopy.

These limitations necessitate the development of a small, lightweight platform that would
ensure high temporal and spatial resolution and is easily deployable and maneuverable
within any agricultural field at varying growth stages, without introducing soil compaction.
Therefore, the focus of this paper is the development and evaluation of a new unmanned
ground vehicle (UGV) mobile mapping system (MMS) that overcomes the shortcomings of
UAVs, large wheel-based mobile platforms, and static TLSs. This problem is dealt with in
three stages, as illustrated by the flowchart in Figure 1.

(a) UGV MMS Development: First, the research addresses the platform architecture
design, sensor integration, and system calibration. The system architecture design
encompasses the choice of sensors as well as their configuration to maximize the
details captured by the sensors.

(b) UGV Data Quality Assessment: Once the sensor suite has been integrated and cali-
brated, the next step of this research is to conduct a comprehensive quality assessment
of the processed data, i.e., global navigation satellite system/inertial navigation sys-
tem (GNSS/INS) trajectory and derived point clouds from the LiDAR sensor. The
UGV trajectory is evaluated to understand the impact of the plant canopy on the
acquired data by the GNSS/INS unit. To the best of the authors’ knowledge, there
is no commercially available UGV system with comparable system specifications
and integration strategy that allow the derivation of centimeter-level accuracy point
clouds. Therefore, the quality of the UGV point cloud is analyzed by comparing its
level of detail and alignment with point clouds from UAV and large wheel-based
mobile mapping systems, whose absolute accuracy has been evaluated in prior re-
search [12,13].

(c) Plant Trait Derivation: The last stage of this research is to demonstrate the potential
of high-resolution, under-canopy data for deriving plant traits beyond plant height,
such as plant location and plant count. These traits are then visualized in 2D imagery
as well as 3D point clouds.
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Figure 1. Unmanned ground vehicle (UGV) development and data quality assessment workflow. MMS: mobile mapping
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The paper starts by providing an overview of prior related research in Section 2.
Next, Section 3 covers the first challenge, namely UGV MMS development. Section 4 then
provides details about the field over which the UGV, along with other systems—UAV
and wheel-based MMSs—are used to acquire experimental datasets for this research. It
also includes details about the various MMSs as well as the data acquisition missions.
In Section 5, the approaches adopted for quality assessment of the derived trajectory
and point cloud from GNSS/INS and LiDAR units, respectively, are introduced along
with experimental results to validate the claims of this research. Section 6 demonstrates
the potential of acquired under-canopy data for deriving plant traits. Finally, Section 7
discusses the conclusions drawn from this research along with future research directions in
the domain of UGV-based agricultural phenotyping.

2. Related Work

This section discusses prior work related to the domains of remote sensing techniques
and advancements in the development of unmanned ground vehicles for mapping in
various agricultural environments. Ongoing research in the field of agricultural mapping
has explored several remote sensing platforms for data acquisition, including static TLSs,
wheel-based mobile mapping platforms, and unmanned aerial vehicles. Malambo et al. [14]
used a TLS—Faro Focus X330—to acquire data over a sorghum field to estimate the
counts and individual dimensions of sorghum panicles (panicle length, width, and height).
They developed a density-based clustering strategy to derive the desired information and
validated the approach through experimental results that indicated an overall accuracy of
89.3% for panicle detection (or counting) with 10.7% omission and 14.3% commission rates.
However, they observed that TLS data are prone to occlusion by foliage, thus resulting
in the omission of some panicles. Su et al. [15] used a TLS to evaluate the performance
of LiDAR in monitoring time series maize phenotypes in field practices and analyzed the
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growth dynamics of different maize varieties under drought stress. The results showed
that terrestrial LiDAR data could estimate plant height, plant area index, and project leaf
area with an accuracy of 96%, 70%, and 92%, respectively. Again, occlusions caused by
objects within the field of view affected the final accuracy of the results.

A significant amount of research has also been conducted on the use of above-canopy,
ground-based MMSs for agricultural phenotyping applications. Milioto et al. [16] used
RGB imagery from a ground-based MMS for the real-time semantic segmentation of crops
and weeds with the help of a convolutional neural network (CNN) framework. The ground-
based MMS used in their study was the “Bosch Deepfield Robotics BoniRob UGV”, which
is a robotic high-clearance tractor intended for precision agriculture. Pérez-Ruiz et al. [17]
developed and evaluated a ground-based MMS for high-throughput phenotyping in
wheat breeding trials. They used 2D LiDAR, RGB imagery, and multispectral imagery
to derive traits such as plant height, normalized differential vegetation index (NDVI),
and photochemical reflectance index (PRI). Qiu et al. [18] conducted high-throughput
phenotyping, including the extraction of plant height and row spacing, using a wheel-
based system equipped with a 3D LiDAR unit. Jiang et al. [19] developed a ground-based
MMS for the multi-modal imaging of cotton fields. The system included an RGB-D camera,
a thermal camera, and a hyperspectral camera, along with an onboard GNSS/INS unit.
Ravi et al. [12] used a ground-based high-clearance tractor equipped with LiDAR and
imaging systems for the high-throughput phenotyping of sorghum fields to extract plant
height and canopy cover for early-stage biomass prediction.

UAVs are yet another type of remote sensing platform that are used for agricultural
applications. Malambo et al. [20] conducted a study using UAV-based imagery for auto-
mated panicle counting in sorghum fields based on a deep learning framework for semantic
segmentation. Their study indicated an overall detection accuracy of 94%. Ravi et al. [21]
introduced a multi-sensor UAV platform consisting of an RGB camera, a hyperspectral
camera, a LiDAR unit, and a GNSS/INS position and orientation system for data acqui-
sition over agricultural fields. The platform was used for plant height and canopy cover
estimation for sorghum fields. Zhou et al. [22] used UAV-based LiDAR data to analyze
plant height changes within lodged maize crops. Xu et al. [23] investigated the use of
multispectral imagery captured by a UAV platform for cotton plant phenotyping.

While above-canopy remote sensing platforms—ground-based and UAV-based plat-
forms—have been explored significantly for agricultural applications, the use of under-
canopy remote sensing platforms is a budding research domain. Exploring under-canopy
mapping entails the development of platforms with a choice of suitable onboard sensors,
the configuration of such sensors, and, lastly, comparison of these platforms relative to
existing above-canopy platforms. The development of novel mapping platforms along
with the associated challenges have been presented by Velas et al. [24] and Cong et al. [25]
for backpack and UGV scanning systems, respectively. Besides the integration of sensors
on mapping platforms, the acquired data (such as LiDAR, RGB cameras, GNSS, and INS)
have to be synchronized properly, followed by conducting an accurate calibration to ensure
the accuracy of the derived products. Among these challenges, Velas et al. [24] addressed
the problem of accurate trajectory estimation by developing an algorithm for odometry esti-
mation using dual LiDAR units onboard a backpack system. Cong et al. [25] addressed the
trajectory estimation using LiDAR-based simultaneous localization and mapping (SLAM)
for a UGV platform to map environments with moving targets. Pierzchała et al. [26] intro-
duced a UGV platform for mapping forests with the help of LiDAR along with graph-SLAM
to map tree positions and diameters.

Advancing the domain of UGV-based agricultural mapping is the basis for the pre-
sented research in this paper. More specifically, the presented research focuses on the
developmental aspects of a UGV platform for in-field high-throughput phenotyping. The
paper also presents a detailed comparison with existing platforms in terms of the resultant
quality of derived products and its potential towards extracting plant centers and plant
count automatically and efficiently.
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3. Platform Architecture, Sensor Integration, and System Calibration

The UGV in this study was developed as an agricultural platform for in-row, under-
canopy crop monitoring. Emphasis was placed on building a compact design to conve-
niently traverse in the narrow, mostly under a meter wide, row-to-row separation. At the
same time, to obtain semantic and positional information of various plant features, an RGB
camera and a 3D LiDAR sensor were used. The imagery data are also used to analyze
the environment when there are any GNSS signal reception issues. In this regard, a large
field of view RGB camera and a high measurement rate LiDAR sensor serve the purpose
of proximal object scanning very well. The developed platform (Figure 2) consists of a
base rover carrying a Sony α7R RGB camera, a Velodyne VLP-16 Hi-Res 3D LiDAR sensor,
and a Novatel SPAN-IGM GNSS/INS unit. The RGB camera, LiDAR, and GNSS/INS unit
are rigidly fixed relative to one another. The rover is an all-terrain four-wheeled race car,
which can be remotely controlled. The entire UGV has dimensions of about 0.6 m (length)
× 0.4 m (width). Knowing that most commercial and research fields have a row-to-row
separation of about 0.762 m (30 inches), one can argue that the UGV size, together with
its ruggedness, allows the platform to be easily maneuvered between rows during data
collection.
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The SPAN-IGM unit provides direct georeferencing information, i.e., the position
and orientation of the inertial measurement unit (IMU) body frame, at a rate of 125 Hz.
After GNSS/INS data post-processing, the expected positional accuracy is ±2 cm and
the accuracy for pitch/roll and heading is ±0.006◦ and ±0.019◦, respectively [27]. These
accuracy values, however, change depending on whether there has been a complete or
partial outage of the GNSS signal reception due to an obstruction by the canopy. Table 1
shows the manufacturer-specified position and attitude accuracy of the SPAN-IGM in case
of GNSS signal outage for certain durations.

Table 1. Manufacturer-specified post-processed (PP) performance of the SPAN-IGM during GNSS
outages [27].

Outage Duration (s) Position Accuracy (m) Attitude Accuracy (◦)
Horizontal Vertical Roll Pitch Heading

0 ±0.01 ±0.02 ±0.006 ±0.006 ±0.019
10 ±0.02 ±0.02 ±0.007 ±0.007 ±0.021
60 ±0.22 ±0.10 ±0.008 ±0.008 ±0.024

The Velodyne VLP-16 Hi-Res consists of 16 radially oriented laser rangefinders with a
360◦ horizontal field of view and a 20◦ vertical field of view (±10◦ from the optical center
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line). This sensor can generate 300,000 points per second with a maximum range of 100 m at
an accuracy of ±3 cm [28]. The LiDAR unit is mounted on the back of the platform with an
upward tilt of about 30◦ from the horizontal plane. This directs the scan window to survey
the ground as well as plants on both sides of the platform. Moreover, the tilt prevents
any radio frequency (RF) interference with the GNSS antenna. The Sony α7R camera is a
36.4 MP full-frame camera with a 7360 × 4912 complementary metal–oxide–semiconductor
(CMOS) sensor array [29]. It uses a super-wide field of view fisheye lens with an 8 mm
nominal focal length that captures highly detailed images of the surroundings, effectively
eliminating the need for multiple cameras to capture imagery on both sides of the UGV.
The camera is mounted at the front of the platform facing forward at an inclination of about
20◦ relative to the horizontal plane to keep the fisheye lens clear of any obstruction. It is
synchronized to capture RGB imagery at a rate of one frame every 1.5 second. The computer
used to activate the sensors and log the collected data is a single-board Raspberry Pi 4
module. Its low-cost user-interactive interface provides the ability to modify data-logging
parameters and verify acquired data in the field.

The system integration architecture is summarized in Figure 3. The Velodyne VLP-16
LiDAR conforms to the industry standard protocol for time-tagging its observed points.
It accepts two types of signal sent from the GNSS/INS unit—a pulse per second (PPS)
and a time-stamp message such as the GPS satellite recommended minimum navigation
sentence C (GPRMC) [28,30]. The PPS is short, under 20 microsecond (µs) wide pulse that
synchronizes the second mark of the LiDAR internal clock with that of the GNSS receiver.
Concurrently, the GPRMC message assigns a precise timestamp to the measured LiDAR
points. The PPS and the GPRMC signals are usually sent through different wiring channels
since they have different polarities. The shutter of the RGB camera is programmatically
triggered through the onboard computer. However, due to a delay in the actual shutter
action from the trigger time, the latter is not considered as the exposure time. Instead,
the camera hotshoe-based time-tagging proposed by Elbahnasawy et al. [10] is employed,
where the feedback from the hotshoe is sent to the GNSS/INS unit to mark the time of
shutter action. This approach simplifies the data acquisition flow since all the time-related
information is handled by the precise GNSS/INS clock, thus minimizing any time offset
between the exposure and marked event.
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Having rigidly mounted and integrated the sensors onboard the platform, the next
step is to conduct a system calibration to estimate the intrinsic sensor parameters as well
as the relative mounting parameters among the sensors. The coordinate systems for the
GNSS/INS, camera, and LiDAR units are shown in Figure 4. The system calibration
is crucial to ensure the accuracy of the resultant georeferenced information from the
LiDAR and RGB camera. The camera calibration process estimates the interior orientation
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parameters (IOPs), which comprise principal point coordinates, principal distance, and lens
distortions. The IOP estimates are derived using the proposed procedure by Choi et al. [31]
for cameras with a fisheye lens. Then, the mounting parameters—lever arm and boresight
angles—relating the onboard GNSS/INS to the RGB camera and LiDAR unit are estimated
using the in situ calibration strategy proposed by Ravi et al. [32]. The system calibration
estimates the mounting parameters by minimizing discrepancies among conjugate points,
planes, and linear features extracted from LiDAR point clouds and images from different
tracks. The joint calibration results in a properly aligned image and LiDAR data. For the
LiDAR unit, the standard deviation of the estimated lever arm components along both the
X and Y directions is ±1.1 cm, and those of the boresight angles are ±0.059◦, ±0.027◦, and
±0.025◦ for roll, pitch, and heading, respectively. The lever arm component along the Z
direction was manually measured and fixed during the calibration as it would not cause
any discrepancy between corresponding features in different tracks [33]. The accuracy
of the final ground coordinates evaluated using the LiDAR error propagation calculator
developed by Habib et al. [34] is in the range of ±1.5–2 cm at a sensor-to-object distance
of 1 m. In the case of the RGB camera, the standard deviations of the estimated lever arm
components along the X, Y, and Z directions are ±5.5 cm, ±5 cm, and ±5 cm, respectively,
and those of the boresight angles are all ±0.1◦ for roll, pitch, and heading.
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Once the mounting parameters are estimated, the reconstructed point cloud and RGB
images are directly georeferenced to a common reference frame. Thus, the data from
the two sensor modalities can be forward and backward projected using the estimated
parameters. This projection will map a particular point from the LiDAR point cloud to
images where the corresponding point is visible. Similarly, a point visible in two or more
images can be used to derive the corresponding 3D coordinates. As an advantage, features
that are unidentifiable in the point cloud or imagery can be looked up in the other modality.
Figure 5 illustrates an example of the projection where the red dot in a LiDAR point cloud is
projected onto the corresponding image, shown as a magenta-colored circle. In this figure,
both the original image and its corresponding rectified image are shown. The rectified
image is derived through conversion of the fisheye projection to a perspective projection
using an effective focal length of 4 mm.
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4. Dataset Acquisition and Description

Several outdoor data collection experiments were conducted to: (a) assess the quality
of the derived trajectory from the GNSS/INS unit and point cloud from the LiDAR sensor
onboard the UGV and (b) investigate the potential of deriving phenotypic attributes, such
as plant centers and plant count, from the UGV point cloud. Datasets for this purpose were
acquired over two maize fields at Purdue’s Agronomy Center for Research and Education
(ACRE). The two fields are denoted as ACRE-9D and ACRE-12 hereafter. Figure 6 displays
UAV-based orthophotos of the two fields. Field ACRE-9D consisted of 25 rows with
19 alleys, with an approximate row spacing of 0.762 m (30 inches). The planting orientation
was approximately along the east–west direction. Field ACRE-12 had 44 rows with no
alleys, and the row spacing was also 0.762 m. The planting orientation was approximately
along the north–south direction.
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While both LiDAR point cloud and camera images are affected by georeferencing
problems, the focus of the subsequent discussion is evaluating the quality of the LiDAR
point cloud since the manifestation of georeferencing artifacts within LiDAR data is more
pronounced than for imagery. The quality assessment of the LiDAR point cloud is carried
out through a comparison with point clouds obtained from other well-established, above-
canopy phenotyping platforms, including UAV-based and wheel-based systems. The
UAV-based system (shown in Figure 7a) consists of a Velodyne VLP-32C LiDAR unit, a
Sony α7R III RGB camera, and a Trimble APX-15 UAV v3 integrated GNSS/INS unit for
direct georeferencing. The range accuracy of the VLP-32C is ±3 cm, with a maximum
measurement range of 200 m [35]. For the APX-15 unit, the post-processing positional
accuracy is ±2–5 cm and the accuracy for the roll/pitch and heading is ±0.025◦ and ±0.08◦,
respectively [36]. The expected accuracy of the derived point cloud is estimated using the
LiDAR error propagation calculator developed by Habib et al. [34]. At a flying height of
50 m, the calculator suggests that the horizontal and vertical accuracy values are in the
±5–6 cm range at the nadir position. At the edge of the swath, the horizontal accuracy
would be about ±8–9 cm and the vertical accuracy would be ±5–6 cm. The wheel-based
high-clearance tractor MMS (shown in Figure 7b), hereafter denoted as “PhenoRover”,
carries a Velodyne VLP-16 Hi-Res laser scanner, a Velodyne HDL-32E laser scanner, two
FLIR Grasshopper3 RGB cameras, a Headwall Machine Vision push-broom hyperspectral
scanner, and an Applanix POSLV 125 GNSS/INS unit for direct georeferencing. The range
accuracy of the VLP-16 Hi-Res and HDL-32E is ±3 cm and ±2 cm, respectively [28,37].
For the POSLV 125, the post-processing positional accuracy is ±2–5 cm, and the attitude
accuracy is ±0.025◦ and ±0.08◦ for the roll/pitch and heading, respectively [38]. The
horizontal and vertical accuracy according to the LiDAR error propagation calculator
developed by Habib et al. [34] is in the ±2–5 cm range, at a sensor-to-object distance of 5 m.
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A total of five datasets were collected over the two maize fields. Datasets A-1 and
A-2 were collected in ACRE-9D; and datasets B-1, B-2, and B-3 were acquired in ACRE-12.
The data acquisition missions in ACRE-9D consisted of 4 ground tracks for the UGV and
3 aerial tracks for the UAV, both in the east–west direction. The number of tracks for the
UGV, PhenoRover, and UAV over ACRE-12 were 8, 10, and 4, respectively. Table 2 lists
the flight/drive-run configuration for each dataset. The small size of the UGV allowed
it to traverse rows under the plant canopy with sufficient clearance on the sides. The
drive-run configuration for the UGV was designed to have different track-to-track lateral
distances to study its impact on the point density. Figure 8 shows the UGV making its
way under the canopy along the rows of maize plants. Sample RGB images captured
by the onboard camera during data acquisition in ACRE-9D and ACRE-12 are shown in
Figure 9a,b, respectively. The two datasets were collected almost a month apart in the late
season. The canopy cover was moderate to low depending on the growth stage at the time
of data acquisition—the A-1 dataset has greener plants, whereas those in B-1 are senesced.
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Table 2. Field datasets used in this study.

Dataset Field Data Acquisition Date System Number of Tracks Sensor-to-Object
Distance

Track-to-Track
Lateral Distance

A-1 ACRE-9D 2020/09/29 UGV 4 0.5–100 m 4–7.5 m
A-2 ACRE-9D 2020/09/22 UAV 3 40 m 8 m

B-1 ACRE-12 2020/11/03 UGV 8 0.5–100 m 2.5–7 m
B-2 ACRE-12 2020/11/05 PhenoRover 10 4–10 m 2.5–4 m
B-3 ACRE-12 2020/11/03 UAV 4 40 m 8 m
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Figure 9. Sample images from the camera onboard the UGV, showing canopy coverage for: (a) A-1
and (b) B-1 datasets. The A-1 dataset has low to moderate canopy cover, whereas in the B-1 dataset,
the coverage is mostly low due to plant senescence late in the season.

Figures 10 and 11 present the reconstructed point cloud (colored by height from blue
to red) and corresponding trajectory of the mobile mapping system (shown in black) for
datasets collected at ACRE-9D and ACRE-12, respectively. The varying track-to-track
lateral distances for the UGV can be observed in Figures 10a and 11a. The point clouds
collected by different systems are georeferenced to the Universal Transverse Mercator
(UTM) coordinate system with NAD83 as the datum using the GNSS/INS trajectory
information. One can observe that both ground-based systems were driven along the
row to achieve non-destructive data acquisition. For the UAV, however, there is no such
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limitation on the flight line configuration. The UAV tracks depicted in Figures 10b and 11c
indicate that the former has tracks parallel to the rows, whereas the latter has tracks
perpendicular to the rows.
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5. Quality Assessment of Derived Trajectory and Point Clouds

This section investigates the quality of information derived from the UGV sensors.
First, the quality of the GNSS/INS post-processed trajectory is assessed. Then, while
considering the challenges with georeferencing, the relative accuracy of the derived point
cloud is evaluated by comparing its level of detail as well as its horizontal and vertical
alignment with point clouds from other platforms.

5.1. Impact of Canopy on GNSS/INS-Derived Trajectory

Given that the UGV in this study is designed for under-canopy mapping, there is
a high probability of interruptions in the satellite signal received by the GNSS antenna
while driving within the crop rows. Hence, a comprehensive review of the post-processed
GNSS/INS trajectory is essential to identify factors that may affect its positional accuracy.
In this section, the approach used for the GNSS data quality assessment is introduced.
Then, the experimental datasets A-1 and B-1 are used to evaluate the vehicle’s trajectory
derived from the GNSS/INS unit.

5.1.1. GNSS Data Quality Assessment: Approach

The measurements obtained from SPAN-IGM consist of raw GNSS and inertial mea-
surement unit (IMU) data. These raw GNSS/IMU data are differentially post-processed
to get position estimates that can be accurate to within ±1–2 cm [27]. While the quality
of raw IMU measurements depends on the grade of the IMU unit itself, the raw GNSS
data quality is affected by several extrinsic factors, such as antenna obstruction, bouncing
of signal from nearby objects (also known as multipath), and interference from other RF
sources. Moreover, factors related to reference base stations used in post-processing, such
as their GNSS data type/quality and distance from the MMS, may also impact the derived
GNSS/INS trajectory. Of all the factors affecting signal quality, obstructions to antenna
reception, such as during data acquisition in a challenging GNSS environment, is the most
common cause of degradation in the positional accuracy. It is well known that without
good GNSS updates, the IMU prediction deviates from the true position [39,40].

The GNSS/INS post-processing software used in this work is Novatel’s Inertial Ex-
plorer (IE) 8.70 [41]. The software allows users to manually adjust the process input
parameters to achieve a high-quality trajectory. These parameters include several options
such as signal-to-noise threshold, elevation cut-off value for the satellites, and GNSS base
stations selected during the differential processing. Knowing that issues with GNSS data
quality arising from obstructions and multipath are difficult to mitigate, to achieve an opti-
mal result from post-processing, we heuristically analyze the software-generated quality
reports to identify key input parameters that influence the GNSS/INS estimation accuracy
the most. The report includes several metrics, out of which the position accuracy, combined
separation, and float/fixed ambiguity are the ones that form the basis for the investiga-
tion in this paper. These metrics are explained below and are utilized as an indication of
the processing parameter that should be modified to achieve the best possible positional
accuracy from the available GNSS data.

(a) Position accuracy: The predicted standard deviation of the position estimate. For
differentially processed GNSS data from the UGV, this value should be as small as
possible.

(b) Combined separation: Inertial Explorer implements a bidirectional Kalman filter that
allows the software to run the algorithm chronologically in forward and backward
directions. Then, the estimates from the two directions are averaged to obtain the
result. Ideally, the difference between the forward and backward filter estimates
should be as small as possible. However, any issue with the signal received by the
UGV GNSS antenna or base station can increase this separation.

(c) Float/fixed ambiguity: Whether the processing resulted in a fixed or float integer
solution, with the former being an indicator of high accuracy [41,42]. On the other
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hand, a float solution indicates a poor accuracy estimate, which occurs often due to
intermittent signal reception or a complete outage for several seconds.

5.1.2. Experimental Results for GNSS Data Quality Assessment

The two experiments conducted with the UGV in this study were carried out in
ACRE-9D and ACRE-12 at a late stage of the growing season when the crop canopy was
low to moderate. The raw GNSS/INS data collected from these experiments were then
imported for tightly coupled (TC) processing in Inertial Explorer. At the same time, the
three closest reference base stations from the NOAA/National Geodetic Survey (NGS)-
managed Continuously Operating Reference Stations (CORS) network, required for error
correction, were added to the project. Table 3 lists the three base stations used along with
their baseline length from the test site.

Table 3. Base stations and available GNSS signal type. All base stations are located near West
Lafayette, Indiana.

Dataset Base Station Code Baseline Distance
from Test Site (km) Available Signal Type

A-1
P775 0.6 GPS

INWL 6.0 GPS+GLONASS
PRDU 8.5 GPS+GLONASS

B-1
P775 0.9 GPS

INWL 5.3 GPS+GLONASS
PRDU 7.8 GPS+GLONASS

Although the low to moderate canopy cover in both missions did not introduce
significant satellite reception issues for the most part, the GNSS signal at certain locations
proved to be unreliable, and thus affected the positional estimate for that part of the
trajectory. A careful review of the post-processing reports was therefore needed to achieve
optimum position/orientation estimates for the vehicle trajectory. From the reports, it was
observed that among all input parameters, the choice of the base stations had a major impact
on the resulting accuracy estimate when all other software parameters were kept the same.
Figure 12 shows the position accuracy, forward–backward separation, and float/fixed
ambiguity charts for four (among other possible) post-processing settings applied for the
A-1 dataset. Although any combination of the three base stations could be used for this
purpose, using the three stations individually and all together demonstrated the extent of
differences in the quality metrics of the trajectory. From Figure 12, among all four options,
using all base stations at once (option-d) results in the smallest standard deviation of about
0.05 m, while its combined separation, though not the smallest, is comparable to other
options. Similarly, the float/fixed ambiguity charts show that option-d has the longest
duration of fixed integer solution in both directions. On the other hand, option-a, with
its large standard deviation and combined separation, each over a decimeter, is the worst.
One possible reason behind the poor performance of option-a could be the absence of the
Global Navigation Satellite System (GLONASS) signal type at this base station, unlike
others, meaning there were fewer satellites to track and hence less redundancy. Figure 13
examines the float/fixed ambiguity chart from option-d for the A-1 dataset against images
from various parts of the mission. The figure indicates that the float/fixed ambiguity status
is correlated to the extent of the canopy cover. The rightmost image shows the amount
of cover that resulted in a float solution, whereas the image in the middle has more than
half of the sky open, achieving a fixed ambiguity solution for that part of the mission. On
the other hand, the leftmost image is a sample from locations where the canopy coverage
changes rapidly, switching the solution between float and fixed. At this point, it is possible
that only one of the processing directions has a fixed solution, shown in Figure 13 by
light or dark blue bars. Similar charts for the B-1 dataset were generated, as shown in
Figure 14. In this case, option-b using the INWL base station produced the best result. The
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low canopy coverage in this dataset resulted in a fixed integer solution for almost the entire
mission. Altogether, the position accuracy of the trajectories in both datasets was found to
be within the GNSS/INS sensor-specified range of ±2 cm, neglecting the part where the
GNSS reception was degraded.

For the two datasets mentioned above, the position accuracy and combined separation
plots are directly correlated with the float/fixed ambiguity status of the solution, as in
Figures 12 and 14. However, sometimes the post-processing software may compute an
incorrect integer ambiguity. For example, in Figure 14d, the first half of the mission appears
to have fixed integer solution, but on careful observation, one can notice a large magnitude
of combined separation, in the order of 0.5 m, in all three directions—east, north, and
height. It is likely that an incorrect ambiguity fix was obtained from one or more base
stations in either the forward or backward processing direction due to unreliable GNSS data
(more details on integer ambiguity errors and their detection can be found in [41,43,44]).
Whenever multiple base stations are involved in the differential processing, as in option-d,
the software assigns different weights to the solution from each base station by comparing
the standard deviation of their position estimates without distinguishing whether a correct
or an incorrect ambiguity fix was established. This can result in an inaccurately averaged
trajectory estimate. For this reason, in the case of the B-1 dataset, the optimal choice of
the base stations is anything but option-d, implying that additional information does not
always result in a good estimation. Hence, it is crucial that the GNSS/INS post-processing
for the UGV is carefully checked to achieve the best possible georeferencing of various
sensors on the platform.

1 
 

    

(a) (b) (c) (d) 

Figure 12. 
 
 
  

Figure 12. Position accuracy, combined separation, and float/fixed ambiguity status charts for the A-1 dataset with different
base station options: (a) P775, (b) INWL, (c) PRDU, and (d) P775+INWL+PRDU. Option-d produced the best estimate in
this case.
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Figure 13. Option-d: Effect of different extents of canopy cover on the float/fixed ambiguity status
for the A-1 dataset. 

3 

    

(a) (b) (c) (d) 

Figure 14. 
 
  

Figure 14. Shown above are the position accuracy, combined separation, and float/fixed ambiguity status charts for the B-1
dataset with different base station options: (a) P775, (b) INWL, (c) PRDU, and (d) P775+INWL+PRDU. Note that, in this
case, option-b produced the best result, whereas option-d was the worst.
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5.2. Point Cloud Quality Assessment

While the underlying GNSS reception issue cannot be completely mitigated through
GNSS/INS data processing, the previous section discussed the approach to obtain the
best possible post-processing accuracy for the trajectory. The best trajectory is used to
assess the quality of the derived point cloud acquired from the UGV system as opposed to
other above-canopy platforms, i.e., UAVs and wheel-based high clearance tractors. The
comparison is conducted to draw conclusions about the density of the captured point cloud
and its relative positional accuracy, which is a direct reflection of the trajectory and system
calibration accuracy.

5.2.1. Comparative Point Cloud Quality Assessment: Approach

The quality of the UGV point cloud is evaluated through a comparison against derived
LiDAR data from UAV and wheel-based systems. The comparative quality assessment
investigates the point density as well as relative vertical and planimetric alignment between
point clouds collected by different systems.

The point density is defined as the number of points within a given area. Due to the
irregular nature of the LiDAR scanning mechanism, point density can vary greatly across
the surveyed area. To illustrate the variation over the surveyed area, the point density is
evaluated by establishing a uniform grid and deriving the number of points per unit area,
which is then visualized as a color map. In this study, we used a 5 cm × 5 cm grid for all
the point clouds. One should note that changing the grid size would not affect the ratio
between the point densities for the point clouds acquired by different systems. The point
density map shows the distribution of the points along the XY plane. It also illustrates the
dependency of the point distribution on the flight/drive-run configuration. In addition
to the point density map, several profiles along and across the plant rows are manually
extracted from the point clouds. These profiles are used to qualitatively examine: (a) the
point distribution, noise level, and level of fine details along the vertical direction and (b)
the alignment between point clouds collected by different systems.

The vertical and planimetric alignment between two-point clouds is quantitatively
evaluated using the approach proposed by Lin and Habib [45]. Specifically, the assessment
of relative accuracy between two-point clouds quantifies the degree of consistency among
conjugate points/features. Features extracted from the acquired data—terrain patches and
plant row/alley locations, as illustrated in Figure 15—are utilized and, therefore, no target
deployment is required. First, a ground filtering algorithm is applied to separate bare earth
points (representing the terrain) and above-ground points (representing the crops). The
bare earth point cloud is then segmented into patches with a pre-determined size. These
terrain patches are used as planar features for evaluating the relative vertical accuracy.
Next, the plant rows/alleys are extracted from the LiDAR point cloud and used as linear
features for evaluating the relative planimetric accuracy. Figure 16 illustrates the procedure
of plant row/alley detection, which can be summarized in five steps:

(a) Identify the field boundary by detecting sudden changes in the elevation difference
between the digital surface model (DSM) and bare earth point cloud, and determine
the planting orientation.

(b) Rotate the point cloud to a local coordinate system (UV) so that the plant rows and
alleys lie along the V and U axes, respectively.

(c) Create 2D cells along the UV plane and evaluate the sum of elevations of all points
within a cell—this metric is based on the hypothesis that we will have higher point
density and elevations at plant locations.

(d) Compute the column sum and row sum of the established accumulated elevations
within the individual cells.

(e) Detect the local peaks of the column sum and the local valleys of the row sum: the
former would provide the plant row locations while the latter would specify the alley
locations.



Remote Sens. 2021, 13, 276 17 of 32

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 35 
 

 

(e) Detect the local peaks of the column sum and the local valleys of the row sum: the 
former would provide the plant row locations while the latter would specify the alley 
locations. 

 
Figure 15. Illustration of plant rows and alley locations. 

 
Figure 16. Illustration of the coordinate systems involved in plant row/alley detection. 

To quantify the net discrepancy between two-point clouds, a least squares adjust-
ment (LSA) with a modified weight matrix is adopted to cope with the fact that we are 
dealing with non-conjugate points along corresponding features (i.e., linear and planar 
features). The LSA model estimates the X, Y, and Z shifts between two-point clouds using 
the mathematical model in Equation (1). In this equation, the observations ሾ𝑑௫_௦ 𝑑௬_௦ 𝑑௭_௦ሿ் are observed discrepancies between non-conjugate points along 
corresponding features; the unknowns ሾ𝑑௫ 𝑑௬ 𝑑௭ሿ்  denote the net discrepancy be-
tween two point clouds; the random noise vector ሾ𝑒௫ 𝑒௬ 𝑒௭ሿ் has a mean of zero and 
variance–covariance matrix Σ. For feature-based pairings, only the random component of 
the discrepancy along the normal direction(s) to the plane/line—one normal direction for 
planar features, two normal directions for 3D linear features, and one normal direction for 
2D linear features—should be minimized through the LSA model. The non-random dis-
crepancy—arising from the use of non-conjugate points—along planar/linear feature is 

Figure 15. Illustration of plant rows and alley locations.

Remote Sens. 2021, 13, x FOR PEER REVIEW 19 of 35 
 

 

(e) Detect the local peaks of the column sum and the local valleys of the row sum: the 
former would provide the plant row locations while the latter would specify the alley 
locations. 

 
Figure 15. Illustration of plant rows and alley locations. 

 
Figure 16. Illustration of the coordinate systems involved in plant row/alley detection. 

To quantify the net discrepancy between two-point clouds, a least squares adjust-
ment (LSA) with a modified weight matrix is adopted to cope with the fact that we are 
dealing with non-conjugate points along corresponding features (i.e., linear and planar 
features). The LSA model estimates the X, Y, and Z shifts between two-point clouds using 
the mathematical model in Equation (1). In this equation, the observations ሾ𝑑௫_௦ 𝑑௬_௦ 𝑑௭_௦ሿ் are observed discrepancies between non-conjugate points along 
corresponding features; the unknowns ሾ𝑑௫ 𝑑௬ 𝑑௭ሿ்  denote the net discrepancy be-
tween two point clouds; the random noise vector ሾ𝑒௫ 𝑒௬ 𝑒௭ሿ் has a mean of zero and 
variance–covariance matrix Σ. For feature-based pairings, only the random component of 
the discrepancy along the normal direction(s) to the plane/line—one normal direction for 
planar features, two normal directions for 3D linear features, and one normal direction for 
2D linear features—should be minimized through the LSA model. The non-random dis-
crepancy—arising from the use of non-conjugate points—along planar/linear feature is 

Figure 16. Illustration of the coordinate systems involved in plant row/alley detection.

To quantify the net discrepancy between two-point clouds, a least squares adjustment
(LSA) with a modified weight matrix is adopted to cope with the fact that we are dealing
with non-conjugate points along corresponding features (i.e., linear and planar features).
The LSA model estimates the X, Y, and Z shifts between two-point clouds using the mathe-
matical model in Equation (1). In this equation, the observations

[
dx_obs dy_obs dz_obs

]T

are observed discrepancies between non-conjugate points along corresponding features;
the unknowns

[
dx dy dz

]T denote the net discrepancy between two point clouds; the

random noise vector
[

ex ey ez
]T has a mean of zero and variance–covariance matrix

Σ. For feature-based pairings, only the random component of the discrepancy along the
normal direction(s) to the plane/line—one normal direction for planar features, two normal
directions for 3D linear features, and one normal direction for 2D linear features—should
be minimized through the LSA model. The non-random discrepancy—arising from the use
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of non-conjugate points—along planar/linear feature is eliminated from the LSA model
by incorporating a modified weight matrix [46]. The modified weight matrix is derived
such that it retains only the component of the discrepancy along the normal direction(s)
for the planar/linear feature in question. In agricultural fields, the terrain patches are
mostly flat or have mild slope, and thus provide discrepancy information only along the
vertical direction. The plant rows/alleys, on the other hand, are 2D straight lines and
provide discrepancy information along the XY directions. Consequently, the vertical and
planimetric discrepancies between two-point clouds are estimated independently—the
former is based on terrain patches, whereas the latter relies on plant rows/alleys.

y =

 dx_obs
dy_obs
dz_obs

 =

 dx
dy
dz

+

 ex
ey
ez

, e ∼ (0, Σ) (1)

5.2.2. Experimental Results for Point Cloud Quality Assessment

To evaluate the overall quality and level of detail captured by the UGV, a compari-
son against data acquired by sensors onboard the UAV and PhenoRover platforms was
performed in terms of point density and visual inspection of selected profiles, as well as
relative horizontal and planimetric alignment among these point clouds. Datasets A-1, A-2,
B-1, B-2, and B-3 were used for this analysis. For each dataset, the point density map was
generated, bare earth was extracted, and plant row/alley locations were identified. Then,
the relative vertical and planimetric discrepancies between point clouds from different
systems were evaluated.

ACRE-9D—Comparison between UGV and UAV

The UGV point cloud (A-1 dataset) in field ACRE-9D was compared against the UAV
point cloud (A-2 dataset). Figure 17 shows the point density maps derived based on the
UGV and UAV point clouds for these datasets. The statistics of point density, including
the 25th percentile, median, and 75th percentile, together with the number of points in the
surveyed area, are reported in Table 4. The result indicates that with a very short sensor-to-
object distance, the UGV produced a much denser point cloud compared to that from the
UAV. Looking into the spatial pattern shown in Figure 17a, the point density of the UGV is
very high near the tracks, and it decreases drastically as the distance from the trajectory
increases. This is mainly related to the sensor-to-object distance and occlusion caused by
plants. In contrast, for the UAV, the sensor-to-object distance (i.e., flying height) was almost
constant throughout the data collection. Therefore, the variation in point density across the
field is much smaller.

Table 4. Number of points in the surveyed area and statistics of the point density for A-1 (UGV) and
A-2 (UAV) datasets.

Dataset
Number of Points

(Millions)
Point Density (Point/m2)

25th Percentile Median 75th Percentile

A-1 (UGV) 85.0 1200 9600 38,400
A-2 (UAV) 4.7 1200 2000 2800
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Figure 17. Point density maps along with the trajectory (black lines) for: (a) A-1 dataset (captured by UGV), and (b) A-2
dataset (captured by UAV).

To gain more insight about the point distribution, noise level, and level of information
acquired by the UGV and UAV systems, three profiles were selected and manually extracted
from the point clouds (Figure 18a shows the profile locations):

• P1: along the first plant row next to the track of the UGV.
• P2: along the second plant row next to the track of the UGV.
• P3: across the plant rows.

Figure 18b,c show side views of P1 and P2 profiles, respectively. The images on the
left visually illustrate the alignment between the UGV profile (in blue) and UAV profile
(in red). Through these figures, one can see that the terrain and plants are well aligned,
indicating good agreement between UGV and UAV point clouds. To illustrate the level
of detail, the middle and right images in Figure 18b,c depict the UGV and UAV profiles,
respectively. The UGV point cloud demonstrates a much higher level of detail compared to
that from the UAV. While the UAV LiDAR produces limited points over the plants, UGV
LiDAR captures detailed information over each plant. Comparing P1 and P2 from the
UGV point cloud, one can see that the first plant row next to the track (Figure 18b) has a
higher point density but also a higher noise level. The second plant row next to the track
(Figure 18c) exhibits a better balance between point density and noise level, resulting in
a reasonable level of detail for capturing the plants. Figure 18d shows a side view of the
profile across the plant rows, where one can observe the point density variation for the
UGV according to the distance from the vehicle.
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90.40°. The point cloud was rotated to a local coordinate system (UV), where the V axis is 
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and (d) P3 side view.

Having examined the point density, data alignment, and level of detail captured by
the UGV and UAV systems, the next step is to quantitatively evaluate the vertical and
planimetric alignment between point clouds captured by these systems. The planting
orientation in ACRE-9D was approximately aligned in the east–west direction, as indicated
by the estimated azimuth of the field boundaries parallel to the plant row direction being
90.40◦. The point cloud was rotated to a local coordinate system (UV), where the V axis is
along the plant row direction. Figure 19 shows the plant row/alley detection result, where
the peaks and valleys are prominent throughout the field for both systems. As expected,
the column/row sum of the accumulated elevations in the individual cells for the UGV is
much higher than those for the UAV. Another pattern that can be observed from Figure
19b is that the magnitude of the row sum for the UGV decreases as the distance to the UGV
track increases—this is also due to the variation in point density.
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Figure 19. Peak/valley detection results for the A-1 (UGV) and A-2 (UAV) datasets: (a) plant row
locations where the gray dotted lines indicate the UGV tracks, and (b) alley locations.

The vertical discrepancy between the UGV and UAV point clouds is evaluated using
terrain patches and is visualized in Figure 20a to investigate the presence of spatial patterns.
The highlighted region by the red rectangle corresponds to a location where the trajectory
accuracy for the UGV is predicted to be low as per the analysis of the GNSS/INS-derived
trajectory in Section 5.1. This low accuracy is the result of the float solution type observed
in this part of the mission. Consequently, the UGV point cloud over the corresponding area
is of low quality, resulting in a larger vertical discrepancy compared to other areas in the
field (blue region in Figure 20a). The shift in the vertical direction can also be observed from
the side view of the two-point clouds within the selected region, as shown in Figure 20b.
Table 5 reports the estimated overall vertical discrepancy, where 2118 terrain patches were
used for the evaluation. The result shows that the vertical discrepancy (dz) is in the range
of ±1 cm. The planimetric discrepancy between the UGV and UAV point clouds was
estimated using 19 alleys and 25 plant rows and is reported in Table 6. The planimetric
discrepancy (dx and dy) is in the range of ±2–5 cm. The result suggests that both point
clouds exhibit a good degree of agreement with an overall precision of ±5 cm. The result
suggests that the UGV point cloud can achieve similar accuracy to that from the UAV; the
absolute accuracy of the latter was verified to be ±3–5 cm in a previous study [47]. In other
words, even though part of the UGV trajectory was affected by GNSS signal reception
issues, the overall quality of the point cloud from this system is comparable to that from
the UAV.
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Figure 20. Impact of trajectory accuracy on the point cloud visualized as: (a) a map showing Z-
difference between UGV and UAV point clouds based on extracted terrain patches, for ACRE-9D. A
selected region where the solution type was float is also shown, highlighted by the red box. (b) A side
view of the two-point clouds for the selected region showing discrepancy in the ground elevation.

Table 5. Estimated vertical discrepancy and square root of a posteriori variance factor using A-1
(UGV) and A-2 (UAV) datasets.

Reference Source Number of Observations ^
σ0 (m)

dz (m)
Mean Std. Dev.

A-1 (UGV) A-2 (UAV) 2118 0.048 −0.013 0.001

Table 6. Estimated planimetric discrepancy and square root of a posteriori variance factor using A-1 (UGV) and A-2 (UAV)
datasets.

Reference Source Number of Observations ^
σ0 (m)

dx (m) dy (m)
Mean Std. Dev. Mean Std. Dev.

A-1 (UGV) A-2 (UAV) 19 alleys and 25 plant rows 0.072 0.050 0.017 −0.016 0.014

ACRE-12—Comparison between UGV, PhenoRover, and UAV Datasets

Comparative analysis between point clouds from the UGV, PhenoRover, and UAV
were carried out using B-1, B-2, and B-3 datasets. For a fair comparison, among the LiDAR
sensors onboard the PhenoRover, only the data acquired by the VLP-16 Hi-Res was used.
One should note that the HDL-32E provides more laser beams as compared to the VLP-16
Hi-Res. Hence, it is expected that the HDL-32E would produce a higher point density,
but the pattern of results would be similar. The point density maps for each system are
shown in Figure 21. The 25th percentile, median, and 75th percentile of the point density,
together with the number of points in the surveyed area, are reported in Table 7. For
both ground-based systems, the point density is highly correlated to the distance from the
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platform track. For the UGV, the point density drops significantly as the distance from the
track increases due to the occlusion caused by under-canopy scanning. This result signifies
the importance of mission planning to have a complete and adequate capture of the field.
On the other hand, the UAV produced fewer points, thus resulting in a lower point density.
However, like the results for the A-2 dataset, the distribution of the points from the UAV
along the XY plane is more uniform throughout the field.
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Table 7. Number of points in the surveyed area and statistics of the point density for B-1 (UGV), B-2
(PhenoRover), and B-2 (UAV) datasets.

Dataset Number of Points (Millions)
Point Density (Point/m2)

25th Percentile Median 75th Percentile

B-1 (UGV) 53.0 4400 17,200 50,800
B-2 (PhenoRover) 78.8 23,200 49,200 92,000

B-3 (UAV) 6.7 2800 3600 4400

A profile, P1, along the second plant row next to the track of the UGV was manually
extracted from the point clouds. Figure 22 depicts the profile location and shows the side
view of the profile. The leftmost image in Figure 22b shows the profiles from the UGV
(in blue), PhenoRover (in red), and UAV (in green), where one can visually ascertain the
alignment of these datasets. In contrast to the UGV acquisition in field ACRE-9D (A-1
dataset), the B-1 dataset shows good alignment with the UAV and PhenoRover datasets
throughout the field. This should come as no surprise as the GNSS/INS trajectory was
deemed to be acceptable for the entire B-1 dataset acquisition due to better GNSS signal
reception. In terms of the level of detail, both ground-based systems captured much more
points over the plants when compared to the UAV. Between the ground-based systems, the
UGV point cloud is less noisy and captures plant organs, such as stalks and leaves. For
the PhenoRover, the tractor would unavoidably interfere with the crops when navigating
through the field. The movement of the crops because of the disturbance caused by the
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PhenoRover would lead to noisier data when compared with those from the UGV, which
has minimum interference with the crops during data acquisition owing to its small size.
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Next, the vertical and planimetric alignments between point clouds acquired by
the UGV, PhenoRover, and UAV in field ACRE-12 were quantitatively evaluated. The
field boundaries were extracted, from which the planting orientation was determined as
1.21° from north. The point clouds were rotated to a UV coordinate system with the plant
rows parallel to the V axis. Since there was no alley in the field, only the plant row detection
was performed, and the result is shown in Figure 23. For all the systems, the peaks are
prominent throughout the field. The column sum of the accumulated elevations in the
individual cells for the ground-based systems is at the same level, which is much higher
than that for the UAV.
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Figure 23. Peak detection result showing the plant row locations for B-1 (UGV), B-2 (PhenoRover), and B-3 (UAV) datasets.
The gray dotted lines indicate the UGV tracks.
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To investigate the impact of the trajectory accuracy on the point cloud, the vertical
difference between UGV and UAV point clouds is illustrated in Figure 24. For this dataset
(B-1), the low canopy coverage resulted in a fixed integer solution and, thus, an accurate
trajectory for almost the entire mission. Therefore, there is no significant difference between
the two-point clouds near the tracks, as can be seen in Figure 24b. Tables 8 and 9 report the
vertical and planimetric discrepancy estimation, respectively. The planimetric discrepancy
estimation is based on two field boundaries and 44 plant rows since there are no alleys
in field ACRE-12. The result suggests that the overall discrepancy between the UGV and
PhenoRover point clouds is in the range of ±5 cm. Between the UGV and UAV point
clouds, on the other hand, the overall discrepancy is in the range of ±8 cm. One should
note that the estimated discrepancy along the Y direction is expected to be less accurate
since it mainly relies on the two edges of the field: only two observations for each dataset.
This is confirmed by its higher standard deviation.
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in a red box. (b) A side view of the two-point clouds for the selected region, showing good alignment of the ground
elevation.

Table 8. Estimated vertical discrepancy and square root of a posteriori variance factor using B-1
(UGV), B-2 (PhenoRover), and B-3 (UAV) datasets.

Reference Source Number of
Observations

^
σ0 (m)

dz (m)
Mean Std. Dev.

B-1 (UGV) B-2 (PhenoRover) 291 0.038 0.014 0.002
B-1 (UGV) B-3 (UAV) 307 0.038 0.052 0.002

Table 9. Estimated planimetric discrepancy and square root of a posteriori variance factor using B-1 (UGV), B-2 (PhenoRover),
and B-3 (UAV) datasets.

Reference Source Number of Observations ^
σ0 (m)

dx (m) dy (m)
Mean Std. Dev. Mean Std. Dev.

B-1 (UGV) B-2 (PhenoRover) Two field boundaries and 44 plant rows 0.053 0.013 0.008 0.050 0.038
B-1 (UGV) B-3 (UAV) Two field boundaries and 44 plant rows 0.055 −0.014 0.008 0.080 0.039

6. Plant Trait Derivation using Under-Canopy Data

Under-canopy data acquisition leads to high-resolution, high-quality point clouds
that can capture individual plants and plant organs. High-resolution point clouds enable
the derivation of plant traits beyond plant height, such as plant centers, plant count, LAI,
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and ear height. As introduced in Section 5.2, Lin and Habib [45] showed that the plant
row/alley locations can be automatically extracted from UAV point clouds. The plant
rows/alleys can serve as features for targetless quality control in an agricultural field, as
discussed in the previous section. Moreover, they can be used to extract plant row segments
and identify plots, thus facilitating automated plant trait extraction at the plot level.

As has been shown in Section 5, the UGV provides a higher resolution point cloud
that enables the identification of individual plants. Therefore, it is possible to detect plant
centers and derive plant counts based on the height and point density of point clouds. This
section introduces a plant center detection approach adapted from the plant row/alley
detection proposed by Lin and Habib [45]. Plant count in the field is then estimated based
on the detected plant locations.

6.1. Plant Center Detection and Plant Count

This section discusses how the plant centers and plant count can be derived from
the UGV point clouds by slightly modifying the plant row/alley detection approach. The
hypothesis is that a location with high point density and high elevation would correspond
to a plant location. The procedure can be summarized in two steps:

(a) The field is divided into 2D cells and the metric defined by the sum of elevations
of all points within a cell, which reflects both point density and height in a local
neighborhood, is evaluated.

(b) The local maxima of the evaluated metric are detected and assumed to correspond to
the plant centers.

Two parameters are used for peak detection (or plant centers): size of the local neigh-
borhood and minimum prominence. The former can be selected according to prior infor-
mation about the field, i.e., the approximate distance between two adjacent plants. The
latter must be tuned manually for each plant row since it relates to the point density, which
depends highly on the plant-to-track distance. Then, the detected plant centers are used
to estimate the plant count. Having established the mounting parameters for the camera
and LiDAR units, one can visualize the extracted plant centers/locations in the images
where these plants are visible. Such an ability benefits the reporting mechanism of plant
center detection. More specifically, the images capturing each plant can be identified and
the detected plant locations can be backprojected onto the images. In other words, the
plant locations can be visualized and reported in 3D point clouds as well as 2D images
even though they are detected in 3D space. The 2D–3D cross-visualization is useful for
identifying the causes of misdetections of plant centers. The imagery helps to associate any
environmental factors that lead to false detections in addition to examining the point cloud.
Furthermore, image-based visualization enables plant growth monitoring throughout the
growing season.

6.2. Experimental Results and Discussion: Plant Centers and Plant Count

The performance of the proposed strategy for plant center detection and plant count
estimation was evaluated using the B-1 dataset. The point cloud for each plant row was
extracted. Plant center detection was then carried out for each plant row independently
in order to fine-tune the minimum prominence parameter. The detected plant centers
were superimposed on top of the point clouds and backprojected onto the images, thus
serving as means for qualitative quality assessment. Figure 25 visualizes the detected
plant centers on top of the UGV point clouds for the 44 plant rows in field ACRE-12, along
with the platform’s trajectory showing the seven tracks. Three areas (locations i, ii, and
iii) are selected to investigate the impact of point cloud quality on plant center detection.
The proposed algorithm yields reasonable detections for most parts of the field. Some
misdetections occur in the area between tracks 6 and 7, as well as track 7 and the right edge
of the field due to the sparse nature of the corresponding point cloud by virtue of their
distance from the UGV track. Figure 26 provides a closer view of the detection result at
location i, showing a top view with automatically detected plant centers together with a
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side view depicting manually established plant locations. The manual plant localization
was carried out by first cropping the individual plant row in question from the point cloud
and inspecting the side view to identify plants. As evident from the figure, the detected
plant centers align well with the manually established plant locations. One can also observe
some misdetections (omission errors) in Figure 26, where the manually identified plant
centers that are not detected by the proposed algorithm are shown in magenta. The
automatically detected plant centers are then backprojected to the original and rectified
images. Figure 27 shows a 2D visualization corresponding to the area shown in Figure 28,
where the plant centers are displayed as vertical lines. The figure verifies that the detected
plant centers are well aligned with the plant stalks. The alignment of the back-projected
plant stalk centers with the visible plant locations in the images qualitatively verifies the
performance of the proposed approach, the quality of the trajectory, and the accuracy of
the system calibration.
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Figure 28. Factors that cause difficulty in manual identification of plants including: (a) sparse point
cloud at location ii in Figure 25 and (b) collapsed leaves in the plant rows and noisy point cloud at
location iii in Figure 25.

Having qualitatively examined the plant center detection result, the plant count in
each plant row was derived by calculating the corresponding number of detected plant
centers and compared against manually established locations from the point cloud. The
manual plant localization was performed on the point cloud for 31 out of 44 plant rows. The
remaining 13 plant rows could not be included during manual plant localization, mainly
due to (a) sparse point cloud or (b) environmental factors and high noise level, as illustrated
in Figure 28. The 13 plant rows include 10 plant rows (rows 29–33 and 38–42) that are
located between track 6 and the right edge of the field, where most of the area suffers from
point cloud sparsity (which can be observed in Figures 25 and 28a). The remaining three
plant rows (rows 34–36) belong to the area next to track 7, where collapsed leaves as well as
the bending and lodging of plants cause difficulty in the manual identification of plants, as
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shown in Figure 28b. Moreover, the UGV is more likely to interfere with the plants when
traveling through collapsed leaves inside the plant rows, resulting in a noisy point cloud.
The percent error between the estimated plant count and ground truth was calculated for
each plant row (where the manually established locations are available) and is reported in
Table 10. The average error between the estimation and ground truth is 10%. As expected,
the detection in the plant rows closest to the track generally has a lower error.

Table 10. Plant counting accuracy using the B-1 dataset showing the 31 plant rows where ground truth is available.

Row ID Estimation Ground Truth Error (%) Row ID Estimation Ground Truth Error (%)

0 69 83 16.9 16 * 77 79 2.5
1 74 88 15.9 17 79 85 7.1
2 77 86 10.5 18 76 83 8.4

3 * 81 89 9.0 19 79 85 7.1
4 * 84 84 0.0 20 * 80 85 5.9
5 69 79 12.7 21 * 76 80 5.0

6 * 75 78 3.8 22 79 85 7.1
7 * 73 82 11.0 23 68 83 18.1
8 75 84 10.7 24 72 87 17.2
9 66 77 14.3 25 77 82 6.1

10 * 72 80 10.0 26* 75 82 8.5
11 * 78 85 8.2 27* 72 80 10.0
12 73 87 16.1 28 76 85 10.6
13 75 78 3.8 37 62 76 18.4
14 74 83 10.8 43 64 78 17.9

15 * 74 82 9.8 Average 10.1

* Plant row next to a UGV track.

The performance of the proposed plant center detection is mainly affected by the
point density and noise level of the point cloud as well as clearance issues within the
plant rows. These factors are also challenging for the manual identification of the plants.
As discussed in Section 5.2.2, a relatively high point density is required to capture plant
structure. Figure 29a shows a sample plant center detection result in a low point density
area (location ii in Figure 25). As can be seen in the figure, omission errors occur more
frequently when the point cloud is not dense enough to describe the plant structure. Since
the point density is highly correlated to the distance from the track, it can be deduced that
a successful detection relies on a well-designed drive-run configuration that ensures a full
coverage of the field. The noise level of the point cloud is another factor that impacts plant
center detection. Figure 29b shows a sample plant center detection result at location iii in
Figure 25 when the point cloud is dense and noisy. The varying noise level in the point
cloud is related to the quality of the trajectory, different degrees of penetration, and the
movement of the plants because of wind or interference with collapsed leaves within the
plant rows during data collection. Since the environmental factors are hard to control, it is
crucial to optimize the quality of the trajectory throughout the field. Finally, the planting
density and growth pattern of the plants can have an influence on the detection. The B-1
dataset was collected late in the season in a field with high planting density. As a result,
the plants were tall and exhibited some tilt; in addition, they were close to one another
and the leaves overlapped. All these factors lead to less prominent peaks in plant center
detection. In conclusion, the proposed plant center detection would yield better accuracy,
especially for fields with high planting density, if performed in early to mid-season when
the plants are small and the separation between them is sufficient.
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Figure 29. A top view with automatically detected plant centers together with a side view showing manually established
plant locations superimposed on the UGV point cloud (colored by height) showing areas with: (a) low point density
(location ii) and (b) high noise level (location iii). The thick black line shows the agreement between the automatic detection
and ground truth.

7. Conclusions and Recommendations for Future Work

This study developed and tested a new ground-based mobile mapping platform
equipped with LiDAR and an RGB camera along with an integrated GNSS/INS unit for
direct georeferencing. The choice of sensors and compact design of the integration ensured
non-destructive plant data acquisition while maximizing the scan output. Inter-sensor
data alignment was investigated to evaluate the accuracy of georeferencing and system
calibration. The designed UGV is deployed for in-field data collection and, hence, is quite
susceptible to degraded GNSS signal reception. The analysis of GNSS/INS-derived posi-
tion estimates showed that unreliable signal reception can sometimes lead to an incorrectly
processed solution and hence a comprehensive review of the post-processing reports is
essential. Nonetheless, we demonstrated through the point cloud quality assessment
that the UGV point cloud agrees with UAV and wheel-based MMS point clouds with an
accuracy in the range of ±5–8 cm. The UGV point cloud has a clear advantage over those
from other MMS platforms in terms of: (a) the ability to capture individual plants and
(b) maintaining a low noise level because it does not interfere with the crops during data
acquisition. This study also demonstrated the possibility of using UGV point clouds for
the accurate derivation of plant centers and plant count (which are not possible using
point clouds captured by the UAV and wheel-based MMS). Moreover, the plant center
detection result can be visualized in 3D space as well as 2D images, highlighting the benefit
of LiDAR–camera integration.

Although both hardware- and software-based techniques have been addressed by
numerous research efforts, poor GNSS data quality due to canopy coverage or short-
range multipath cannot be completely avoided. Therefore, future research will focus on
devising a novel approach that uses non-GNSS/INS sensor information to complement the
trajectory estimation process, especially when the conventional post-processed solution is
deemed unsatisfactory. More specifically, the research will focus on improving the platform
trajectory using LiDAR point clouds and RGB imagery. In terms of plant trait derivation,
future work will include (a) automatic parameter tuning for plant center detection and (b)
implementing statistical methods for detecting, identifying, and characterizing other plant
traits such as ear size, height, and count.
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