Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin
Abstract
:1. Introduction
2. Study Area and Data Sets
2.1. Study Area
2.2. Data
2.2.1. Precipitation Products
2.2.2. Auxiliary Data
3. Methodology
3.1. Statistical Criteria of Performance Comparison
3.2. Framework of Precipitation Error Correction
- (1)
- Select multiple sets of long-term daily-scale precipitation products with high resolution.
- (2)
- Compare precipitation products with observed precipitation from all gauge stations, and select a set of precipitation products with a higher correlation coefficient and POD01 for correction.
- (3)
- Select gauged precipitation data with a certain period (1998 to 2007 in this study) containing more stations (Figure 4), and these gauges should have better spatial representation. Then monthly grid-scale precipitation data with the same spatial resolution as the precipitation products are obtained through IDW interpolation.
- (4)
- Compare the IDW monthly scale precipitation data with monthly scale gauged precipitation. The precipitation product with the smallest ME at each grid point in each month is obtained as the actual rainfall value for correction.
- (5)
- The precipitation data obtained in the fourth step are used to correct the product selected in the second step at each grid point every month. Then the daily-scale rainfall products with higher accuracy are obtained.
- (6)
- Statistical indicators and hydrological simulation are used to assess the accuracy of the corrected precipitation product. In this study, the SWAT model was used for streamflow simulation.
3.3. Brief Description of the SWAT Model
4. Results
4.1. Evaluation of Five Precipitation Products with Gauged Observations
4.2. Grid-Scale Evaluation of Corrected Precipitation with Gauge Observations from 1998 to 2007
4.3. Point-Scale Evaluation of Corrected Precipitation with Gauge Observations from 1998 to 2007
4.4. Hydrological and Regional Evaluation of Corrected Precipitation from 1998 to 2007
4.5. Validation of Corrected Precipitation with Gauge Observations from 1979 to 1997 and 2008 to 2014
5. Discussion
5.1. Performance of Different Precipitation Products
5.2. Applicability of the Error Correction Framework
5.3. Limitations and Future Directions of This Study
6. Conclusions
- The APHRODITE showed the highest CC (0.61) with gauge observations at a daily scale but greatly underestimated the precipitation (with BIAS equals –15.5%), especially in the downstream areas. This means that we should carefully choose APHRODITE as the actual value of the LMRB for related research. The average probability of precipitation detection (POD01) estimated by MSWEP was 0.99, which was the highest among the five raw precipitation products.
- The monthly grid-scale evaluation results showed that most grids of MSWEP had the smallest ME in February, from May to July, November, and December. The AgMERRA, APHRODITE, CHIRPS, and PERSIANN had the most grids with the smallest ME in September and October, January, April, and August, respectively. The variation of five precipitation products’ performance over the entire LMRB was associated with the data sources included in their respective development processes and the different algorithms they adopt.
- Grid-scale evaluation shows that two resulting precipitation products both can capture the spatial variability of multi-year average precipitation across the entire LMRB in the calibration period. The MSWEP-QM (0.97) and MSWEP-LS (0.98) have higher CC than AgMRRA (0.86), APHRODITE (0.91), CHIRPS (0.86), MSWEP (0.87), PERSIANN (0.76). The point-scale evaluation results indicate that the BIAS of MSWEP-QM (165 in 246), and MSWEP-LS (171 in 246) have more gauges showing a downward trend.
- Hydrological and regional revaluation shows that MSWEP-LS and MSWEP-QM achieved better simulation results in five regions (i.e., Y, YC, CL, LM, and MP regions) compared to the two regions derived from MSWEP (LM and MP). The BIAS of MSWEP-QM and MSWEP-LS in seven sub-regions all reach within ±9% on a daily scale. They also had smaller BIAS in Y, YC, PS, and SA regions than the five raw precipitation products.
- Validation results indicated that the average absolute BIAS of MSWEP-QM and MSWEP-LS reduced by 3.4% and 3.51%, respectively, compared to MSWEP. The BIAS of MSWEP-QM and MSWEP-LS had 141 and 142 gauges showing a decreasing trend than MSWEP.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duan, Z.; Bastiaanssen, W. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Gao, C.; Booij, M.J.; Xu, Y.P. Impacts of climate change on characteristics of daily-scale rainfall events based on nine selected GCMs under four CMIP5 RCP scenarios in Qu River basin, east China. Int. J. Climatol. 2020, 40, 887–907. [Google Scholar] [CrossRef]
- Zhu, Q.; Hsu, K.l.; Xu, Y.P.; Yang, T. Evaluation of a new satellite-based precipitation data set for climate studies in the Xiang River basin, southern China. Int. J. Climatol. 2017, 37, 4561–4575. [Google Scholar] [CrossRef]
- Tang, G.; Long, D.; Hong, Y.; Gao, J.; Wan, W. Documentation of multifactorial relationships between precipitation and topography of the Tibetan Plateau using spaceborne precipitation radars. Remote Sens. Environ. 2018, 208, 82–96. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Gao, C.; Ruben, G.B.; Wang, G. Assessing the Uncertainties of Four Precipitation Products for Swat Modeling in Mekong River Basin. Remote Sens. 2019, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Wu, W.; He, D.; Li, Y.; Ji, X. Hydrological Simulation Using TRMM and CHIRPS Precipitation Estimates in the Lower Lancang-Mekong River Basin. Chin. Geogr. Sci. 2019, 29, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Lu, H.; Yang, D.; Khem, S.; Yang, J.; Gao, B.; Peng, X.; Pang, Z. Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations. PLoS ONE 2016, 11, e0152229. [Google Scholar] [CrossRef] [Green Version]
- Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2016, 21, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Mazzoleni, M.; Brandimarte, L.; Amaranto, A. Evaluating precipitation datasets for large-scale distributed hydrological modelling. J. Hydrol. 2019, 578, 124076. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Wang, G.; Yang, Q.; Yang, Y.; Guan, T.; Liu, C.; Jin, J.; Liu, Y.; Bao, Z. Evaluating Suitability of Multiple Precipitation Products for the Lancang River Basin. Chin. Geogr. Sci. 2019, 29, 37–57. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Hong, Y.; Chen, Y.; Yang, Y.; Tang, G.; Yao, Y.; Long, D.; Li, C.; Han, Z.; Liu, R. Performance of optimally merged multisatellite precipitation products using the dynamic Bayesian model averaging scheme over the Tibetan Plateau. J. Geophys. Res. Atmos. 2018, 123, 814–834. [Google Scholar] [CrossRef]
- Worqlul, A.W.; Ayana, E.K.; Maathuis, B.H.P.; Macalister, C.; Philpot, W.D.; Leyton, J.M.O.; Steenhuis, T.S. Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia. J. Hydrol. 2017, 556, S0022169417300689. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G. Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Theor. Appl. Clim. 2013, 114, 511–529. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.; Haugen, J.; Engen-Skaugen, T. Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Ghimire, U.; Srinivasan, G.; Agarwal, A. Assessment of rainfall bias correction techniques for improved hydrological simulation. Int. J. Climatol. 2019, 39, 2386–2399. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef] [Green Version]
- Gumindoga, W.; Rientjes, T.H.; Haile, A.T.; Makurira, H.; Reggiani, P. Performance of bias-correction schemes for CMORPH rainfall estimates in the Zambezi River basin. Hydrol. Earth Syst. Sci. 2019, 23, 2915–2938. [Google Scholar] [CrossRef] [Green Version]
- Boushaki, F.I.; Hsu, K.-L.; Sorooshian, S.; Park, G.-H.; Mahani, S.; Shi, W. Bias adjustment of satellite precipitation estimation using ground-based measurement: A case study evaluation over the southwestern United States. J. Hydrometeorol. 2009, 10, 1231–1242. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.Y. A conceptual model for constructing high-resolution gauge-satellite merged precipitation analyses. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; He, D.; Luo, X.; Ji, X. Spatial downscaling of the tropical rainfall measuring mission precipitation using geographically weighted regression Kriging over the Lancang River Basin, China. Chin. Geogr. Sci. 2019, 29, 446–462. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Jia, S.; Tripathi, N.K.; Shrestha, S. Precipitation extended linear scaling method for correcting GCM precipitation and its evaluation and implication in the transboundary Jhelum River basin. Atmosphere 2018, 9, 160. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D. Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Clim. 2013, 26, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yan, D.; Qin, T.; Weng, B.; Li, M. Correction of TRMM 3B42V7 based on linear regression models over China. Adv. Meteorol. 2016, 2016. [Google Scholar] [CrossRef]
- Hecht, J.S.; Lacombe, G.; Arias, M.E.; Dang, T.D.; Piman, T. Hydropower dams of the Mekong River basin: A review of their hydrological impacts. J. Hydrol. 2018, 568, 285–300. [Google Scholar] [CrossRef]
- Lauri, H.; Räsänen, T.A.; Kummu, M. Using Reanalysis and Remotely Sensed Temperature and Precipitation Data for Hydrological Modeling in Monsoon Climate: Mekong River Case Study. J. Hydrometeorol. 2014, 15, 1532–1545. [Google Scholar] [CrossRef]
- Winemiller, K.O.; Mcintyre, P.B.; Castello, L.; Fluetchouinard, E.; Giarrizzo, T.; Nam, S.; Baird, I.G.; Darwall, W.; Lujan, N.K.; Harrison, I. Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 2016, 351, 128. [Google Scholar] [CrossRef] [Green Version]
- Ohara, N.; Chen, Z.; Kavvas, M.; Fukami, K.; Inomata, H. Reconstruction of historical atmospheric data by a hydroclimate model for the Mekong River basin. J. Hydrol. Eng. 2010, 16, 1030–1039. [Google Scholar] [CrossRef]
- Chen, A.; Chen, D.; Azorin-Molina, C. Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets. Int. J. Climatol. 2018, 38, 4314–4334. [Google Scholar] [CrossRef]
- Chen, C.; Jayasekera, D.; Senarath, S. Assessing Uncertainty in Precipitation and Hydrological Modeling in the Mekong. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 2510–2519. [Google Scholar]
- Chen, C.J.; Senarath, S.U.S.; Dima-West, I.M.; Marcella, M.P. Evaluation and restructuring of gridded precipitation data over the Greater Mekong Subregion. Int. J. Climatol. 2016, 37, 180–196. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, H.; He, D.; Chen, J. Integrating precipitation zoning with random forest regression for the spatial downscaling of satellite-based precipitation: A case study of the Lancang-Mekong River basin. Int. J. Climatol. 2019, 39, 3947–3961. [Google Scholar] [CrossRef]
- Jacobs, J.W. The Mekong River Commission: Transboundary Water Resources Planning and Regional Security. Geogr. J. 2002, 168, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Long, D.; Fang, Y.; Hou, A.; Hong, Y. Impacts of climate change and human activities on the flow regime of the dammed Lancang River in Southwest China. J. Hydrol. 2019, 570, 96–105. [Google Scholar] [CrossRef]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong River basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Ruane, A.C.; Goldberg, R.; Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agric. For. Meteorol. 2015, 200, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Retalis, A.; Tymvios, F.; Katsanos, D.; Michaelides, S. Downscaling CHIRPS precipitation data: An artificial neural network modelling approach. Int. J. Remote Sens. 2017, 38, 3943–3959. [Google Scholar] [CrossRef]
- Faridzad, M.; Yang, T.; Hsu, K.; Sorooshian, S.; Xiao, C. Rainfall Frequency Analysis for Ungauged Regions using Remotely Sensed Precipitation Information. J. Hydrol. 2018, 563, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Koster, R.D.; De Lannoy, G.J.M.; Forman, B.A.; Liu, Q.; Mahanama, S.P.P.; Touré, A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 2011, 24, 6322–6338. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Todling, R.; Bacmeister, J.; Takacs, L.; Liu, H.; Gu, W.; Sienkiewicz, M.; Koster, R.D.; Gelaro, R. The GEOS-5 Data Assimilation System—Documentation of Versions 5.0.1, 5.1.0, and 5.2.0. 2008. Available online: https://gmao.gsfc.nasa.gov/pubs/docs/GEOS-5.0.1_Documentation_r3.pdf (accessed on 18 January 2021).
- Yatagai, A.; Arakawa, O.; Kamiguchi, K.; Kawamoto, H.; Nodzu, M.I.; Hamada, A. A 44Year Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Sci. Online Lett. Atmos. Sola 2009, 5, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bull. Am. Meteorol. Soc. 2014, 96, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.R.; Wang, J.D.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Potter, N.J.; Chiew, F.H.; Charles, S.P.; Fu, G.; Zheng, H.; Zhang, L. Bias in Downscaled Rainfall Characteristics. Available online: https://hess.copernicus.org/preprints/hess-2019-139/hess-2019-139.pdf (accessed on 18 January 2021).
- Reiter, P.; Gutjahr, O.; Schefczyk, L.; Heinemann, G.; Casper, M. Does applying quantile mapping to subsamples improve the bias correction of daily precipitation? Int. J. Climatol. 2018, 38, 1623–1633. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2017, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil & Water Assessment Tool: Input/Output Documentation. Version 2012; Texas Water Resources Institute: College Station, TX, USA, 2012; pp. 1–650.
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP calibration and uncertainty programs for SWAT. Modsim Int. Congr. Model. Simul. Land Water Environ. Manag. Integr. Syst. Sustain. 2007, 364, 1603–1609. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Johnson, C.A.; Genuchten, M.T.V. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340–1352. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Qiu, L.; Sun, Y.; Sun, L.; Li, Q.; Niu, J.; Wang, G. Parameter uncertainty analysis of the SWAT model in a mountain-loess transitional watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [Google Scholar] [CrossRef] [Green Version]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 7, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.; Ma, Y.; Long, D.; Zhong, L.; Hong, Y. Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J. Hydrol. 2016, 533, 152–167. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation datasets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2017, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, D.; Trenberth, K.E.; Erfanian, A.; Yu, M.; Bosilovich, M.G.; Parr, D.T. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Chang. 2017, 7, 268. [Google Scholar] [CrossRef]
Precipitation | Temporal Resolution | Spatial Resolution | Date | Date Sources |
---|---|---|---|---|
Gauge | Daily | Point | 1979–2014 | CMA and MRC |
AgMERRA | Daily | 0.25° | 1980–2010 | https://data.giss.nasa.gov/impacts/agmipcf/agmerra/ |
APHRODITE | Daily | 0.25° | 1951–2007 | http://www.chikyu.ac.jp/precip/english/products.html |
CHIRPS | Daily | 0.25° | 1981–present | https://chc.ucsb.edu/data/chirps |
MSWEP | Daily | 0.25° | 1979–2016 | https://platform.princetonclimate.com/PCA_Platform/index.html |
PERSIANN | Daily | 0.25° | 1983–present | https://climatedataguide.ucar.edu/climate-data/persiann-cdr-precipitation-estimation-remotely-sensed-information-using-artificial |
Station | Country | Latitude (Degree) | Longitude (Degree) | Elevation (Meter) | Period |
---|---|---|---|---|---|
Yunjinghong | China | 100.78 | 22.03 | 592 | 1998–2007 |
Chiang Saen | Myanmar | 100.08 | 20.27 | 372 | 1998–2007 |
Luang Prabang | Laos | 102.14 | 19.89 | 316 | 1998–2007 |
Mukdahan | Thailand | 104.74 | 16.54 | 133 | 1998–2007 |
Pake | Laos | 105.8 | 15.12 | 102 | 1998–2007 |
Stung Treng | Cambodia | 106.02 | 13.55 | 51 | 1998–2007 |
Product | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AgMERRA | 241 | 205 | 202 | 200 | 229 | 268 | 220 | 252 | 313 * | 292 * | 194 | 177 # |
APHRODITE | 382 * | 300 | 156 # | 125 # | 143 # | 87 # | 110 # | 79 # | 121 # | 156 # | 217 | 286 |
CHIRPS | 150 | 172 | 288 * | 281 * | 222 | 196 | 282 | 209 | 307 | 258 | 172 # | 203 |
MSWEP | 239 | 322 * | 288 | 274 | 364 * | 307 * | 283 * | 287 | 192 | 235 | 313 * | 295 * |
PERSIANN | 127 # | 140 # | 205 | 259 | 181 | 281 | 244 | 312 * | 206 | 198 | 243 | 178 |
Station | Gauge | AgMERRA | APHRODITE | CHIRPS | ||||
NSE | BIAS | NSE | BIAS | NSE | BIAS | NSE | BIAS | |
Yunjinghong | 0.83 | 1.94 | 0.72 | −10.66 | 0.52 | −23.58 | 0.51 | 9.92 |
Chiang Saen | 0.88 | 3.34 | 0.9 | −2.8 | 0.87 | −11.57 | 0.76 | 8.31 |
Luang Prabang | 0.89 | 16.96 | 0.88 | 10.66 | 0.9 | 4.89 | 0.82 | 18.25 |
Mukdahan | 0.93 | 6.61 | 0.87 | −17.49 | 0.76 | −27.73 | 0.80 | −19.58 |
Pakse | 0.97 | 7.79 | 0.95 | −7.24 | 0.92 | −14.47 | 0.95 | −4.88 |
Stungtreng | 0.98 | −0.94 | 0.96 | −2.67 | 0.96 | −8.83 | 0.96 | 2.27 |
Station | MSWEP | PERSIANN | MSWEP-QM | MSWEP-LS | ||||
NSE | BIAS | NSE | BIAS | NSE | BIAS | NSE | BIAS | |
Yunjinghong | 0.8 | 15.07 | 0.54 | 49.51 | 0.79 | 16.22 | 0.83 | 7.32 |
Chiang Saen | 0.89 | 1.75 | 0.82 | −3.33 | 0.88 | 3.35 | 0.89 | −0.4 |
Luangprabang | 0.89 | 12.5 | 0.86 | 8.9 | 0.88 | 16.99 | 0.89 | 11.4 |
Mukdahan | 0.87 | −17.6 | 0.86 | −17.8 | 0.91 | −11.81 | 0.9 | −10.33 |
Pakse | 0.95 | −7.93 | 0.96 | 9.32 | 0.97 | 4.83 | 0.97 | 3.41 |
StungTreng | 0.97 | −2.8 | 0.96 | −2.01 | 0.97 | −6.2 | 0.96 | −7.75 |
Region | AgMERRA | APHRODITE | CHIRPS | MSWEP | PERSIANN | MSWEP-QM | MSWEP-LS |
---|---|---|---|---|---|---|---|
Y | −2.10 | −7.78 | 3.13 | 9.41 | 20.99 | 2.35 | 1.22 |
YC | −5.20 | −11.59 | 4.20 | 1.28 | −8.32 | 0.88 | −0.81 |
CL | −1.57 | −12.73 | −2.61 | −0.72 | 0.88 | −0.96 | −2.39 |
LM | −11.49 | −24.63 | −9.79 | −7.12 | −3.39 | −8.46 | −8.91 |
MP | −9.70 | −24.50 | −5.36 | −4.24 | 5.73 | −7.77 | −8.18 |
PS | −1.67 | −14.45 | 12.20 | 7.49 | 5.29 | −4.86 | −5.12 |
SD | 8.89 | −20.16 | 13.31 | 10.14 | 42.16 | −0.16 | −1.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Zhang, J.; Wang, G.; Ruben, G.B.; Bao, Z.; Liu, Y.; Liu, C.; Jin, J. Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin. Remote Sens. 2021, 13, 312. https://doi.org/10.3390/rs13020312
Tang X, Zhang J, Wang G, Ruben GB, Bao Z, Liu Y, Liu C, Jin J. Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin. Remote Sensing. 2021; 13(2):312. https://doi.org/10.3390/rs13020312
Chicago/Turabian StyleTang, Xiongpeng, Jianyun Zhang, Guoqing Wang, Gebdang Biangbalbe Ruben, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin. 2021. "Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin" Remote Sensing 13, no. 2: 312. https://doi.org/10.3390/rs13020312
APA StyleTang, X., Zhang, J., Wang, G., Ruben, G. B., Bao, Z., Liu, Y., Liu, C., & Jin, J. (2021). Error Correction of Multi-Source Weighted-Ensemble Precipitation (MSWEP) over the Lancang-Mekong River Basin. Remote Sensing, 13(2), 312. https://doi.org/10.3390/rs13020312