A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region
Abstract
:1. Introduction
Why Forest Fragmentation Susceptibility Mapping?
- (1)
- we prepare a forest fragmentation susceptibility map for the first time by developing an integrated model,
- (2)
- we identify causative factors of forest fragmentation in the forest landscape, and
- (3)
- as an application of our proposed model, we identify which forest types are most susceptible to forest fragmentation in the study area.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Patch Forest
2.2.2. Forest Fragmentation Causative Factors
2.2.3. Role of Causative Factors on Forest Fragmentation
2.3. Mapping Method
2.3.1. Landscape Fragmentation Analysis Tool
2.3.2. Multicollinearity Analysis
2.3.3. Weight-of-Evidence (WOE) Method
2.3.4. Validation of the Forest Fragmentation Susceptibility Map
3. Results
3.1. Multicollinearity Analysis
3.2. Patch Forests
3.3. Forest Fragmentation Susceptibility Map
3.4. Validation of Forest Fragmentation Susceptibility Map
3.5. Analysis of Forest Fragmentation Susceptibility
4. Discussion
4.1. Forest Fragmentation Susceptibility Mapping
4.2. Forest Fragmentation Susceptibility Analysis
4.3. Implications Regarding Forest Types and Their Conservation
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joshi, G.; Negi, G.C. Quantification and valuation of forest ecosystem services in the western Himalayan region of India. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2011, 7, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Joshi, A.K.; Joshi, P.K. Forest Ecosystem Services in the Central Himalaya: Local Benefits and Global Relevance. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 785–792. [Google Scholar] [CrossRef]
- Rasul, G. The Role of the Himalayan Mountain Systems in Food Security and Agricultural Sustainability in South Asia. Int. J. Rural Manag. 2010, 6, 95–116. [Google Scholar] [CrossRef]
- Singh, J.S. Sustainable development of the Indian Himalayan region: Linking ecological and economic concerns. Curr. Sci. 2006, 90, 784–788. Available online: http://www.jstor.org/stable/24089189 (accessed on 18 March 2021).
- Rasul, G.; Karki, M.; Sah, R.P. The role of non-timber forest products in poverty reduction in India: Prospects and problems. Dev. Pract. 2008, 18, 779–788. [Google Scholar] [CrossRef]
- Rijal, A.; Carsten, S.-H.; Finn, H. Non-timber forest product dependency in the Central Himalyan foothills. Environ. Dev. Sustain. 2011, 13, 121–140. [Google Scholar] [CrossRef]
- Pandey, R.; Steve, H.; Gupta, A.K. Resource Availability Versus Resource Extraction in Forests: Analysis of Forest Fodder System in Forest Density Classes in Lower Himalayas, India. Small-Scale For. 2014, 13, 267–279. [Google Scholar] [CrossRef]
- Chakraborty, A.; Joshi, P.K.; Sachdeva, K. Capturing Forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes. Ambio 2018, 47, 504–522. [Google Scholar] [CrossRef] [PubMed]
- Chettri, N.; Sharma, E.; Deb, D.C.; Sundriyal, R.C. Impact of Firewood Extraction on Tree Structure, Regeneration and Woody Biomass Productivity in a Trekking Corridor of the Sikkim Himalaya. Mt. Res. Dev. 2002, 22, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P.C. Land-use changes in Himalaya and their impact on the plains ecosystem: Need for sustainable land use. Land Use Policy 2000, 17, 101–111. [Google Scholar] [CrossRef]
- Sundriyal, R.C.; Sharma, E. Anthropogenic pressure on tree structure and biomass in the temperate forest of Mamlay watershed in Sikkim. For. Ecol. Manag. 1996, 81, 113–134. [Google Scholar] [CrossRef]
- Sharma, S.; Roy, P.S. Forest fragmentation in the Himalaya: A Central Himalayan case study. Int. J. Sustain. Dev. World Ecol. 2007, 14, 201–210. [Google Scholar] [CrossRef]
- Chakraborty, A.; Ghosh, A.; Sachdeva, K.; Joshi, P.K. Characterizing fragmentation trends of the Himalayan forests in the Kumaon region of Uttarakhand, India. Ecol. Inform. 2017, 38, 95–109. [Google Scholar] [CrossRef]
- Mishra, N.B.; Chaudhuri, G. Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 2015, 56, 29–41. [Google Scholar] [CrossRef]
- Pandit, M.K.; Sodhi, N.S.; Koh, L.P.; Bhaskar, A.; Brook, B.W. Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodivers. Conserv. 2007, 16, 153–163. [Google Scholar] [CrossRef]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From pattern to process landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Sharma, M. Assessing Forest fragmentation in north-western Himalaya: A case study from Ranikhet forest range, Uttarakhand, India. J. For. Res. 2017, 28, 319–327. [Google Scholar] [CrossRef]
- Lele, N.; Joshi, P.K.; Agrawal, S.P. Assessing Forest fragmentation in northeastern region (NER) of India using landscape matrices. Ecol. Indic. 2008, 8, 657–663. [Google Scholar] [CrossRef]
- Munsi, M.; Malaviya, S.; Oinam, G.; Joshi, P.K. A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. Reg. Environ. Chang. 2010, 10, 145–155. [Google Scholar] [CrossRef]
- Sharma, M.; Areendran, G.; Raj, K.; Sharma, A.; Joshi, P.K. Multitemporal analysis of forest fragmentation in Hindu Kush Himalaya—a case study from Khangchendzonga Biosphere Reserve, Sikkim, India. Environ. Monit. Assess. 2016, 188, 596. [Google Scholar] [CrossRef]
- Batar, A.; Watanabe, T.; Kumar, A. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India. Environments 2017, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ram, J. Anthropogenic disturbances, and plant biodiversity in forests of Uttaranchal, central Himalaya. Biodivers. Conserv. 2005, 14, 309–331. [Google Scholar] [CrossRef]
- Pandit, M.K.; Kumar, V. Land-Use Change and Conservation Challenges in the Indian Himalaya. In Conservation Biology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 121–133. [Google Scholar] [CrossRef]
- Midha, N.; Mathur, P.K. Assessment of forest fragmentation in the conservation priority Dudhwa landscape, India using FRAGSTATS computed class level metrics. J. Indian Soc. Remote Sens. 2010, 38, 487–500. [Google Scholar] [CrossRef]
- Kala, C.P. Deluge, disaster and development in Uttarakhand Himalayan region of India: Challenges and lessons for disaster management. Int. J. Disaster Risk Reduct. 2014, 8, 143–152. [Google Scholar] [CrossRef]
- Collingham, Y.C.; Huntley, B. Impacts of Habitat Fragmentation and Patch Size upon Migration Rates. Ecol. Appl. 2000, 10, 131–144. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, B.; Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4. Available online: https://www.ecologyandsociety.org/vol4/iss2/art3/ (accessed on 18 March 2021). [CrossRef]
- Laurance, W.F.; Heraldo, L.V.; Thomas, E.L. Forest loss and fragmentation in the Amazon: Implications for wildlife conservation. Oryx 2000, 34, 39–45. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Leal, I.R.; Filgueiras, B.K.; Gomes, J.P.; Iannuzzi, L.; Andersen, A.N. Effects of habitat fragmentation on ant richness and functional composition in Brazilian Atlantic Forest. Biodivers. Conserv. 2012, 21, 1687–1701. [Google Scholar] [CrossRef]
- Fischer, R.; Taubert, F.; Müller, M.S.; Groeneveld, J.; Lehmann, S.; Wiegand, T.; Huth, A. Accelerated Forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 2021, 7, 37. [Google Scholar] [CrossRef] [PubMed]
- Huebner, C.D.; Randolph, J.C.; Parker, G.R. Environmental Factors Affecting Understory Diversity in Second-Growth Deciduous Forests. Am. Midl. Nat. 1995, 134, 155–165. [Google Scholar] [CrossRef]
- Roy, P.S.; Kushwaha, S.P.; Murthy, M.S.; Roy, A.; Kushwaha, D.; Reddy, C.S.; Behera, M.D.; Mathur, V.B.; Padalia, H.; Saran, S.; et al. Biodiversity characterisation at landscape level: National assessment. In Biodiversity Characterisation at Landscape Level: National Assessment; Indian Institute of Remote Sensing: Dehradun, India, 2012; Volume 3, pp. 31–83. Available online: https://www.researchgate.net/publication/262372416_Biodiversity_Characterisation_at_Landscape_Level_National_Assessment (accessed on 18 March 2021).
- Reddy, C.S.; Sreelekshmi, S.; Jha, C.S.; Dadhwal, V.K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 2013, 60, 453–464. [Google Scholar] [CrossRef]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.E.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1998, 1, 153–162. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 1989, 3, 153–162. [Google Scholar] [CrossRef]
- Brown, D.G.; Duh, J.D.; Scott, A.D. Estimating Error in an Analysis of Forest Fragmentation Change Using North American Landscape Characterization (NALC) Data. Remote Sens. Environ. 2000, 71, 106–117. [Google Scholar] [CrossRef]
- Tischendorf, L. Can landscape indices predict ecological processes consistently? Landsc. Ecol. 2001, 16, 235–254. [Google Scholar] [CrossRef]
- Millington, A.C.; Velez-Liendo, X.M.; Bradley, A.V. Scale dependence in multi-temporal mapping of forest fragmentation in Bolivia: Implications for explaining temporal trends in landscape ecology and applications to biodiversity conservation. ISPRS J. Photogramm. Remote Sens. 2003, 57, 289–299. [Google Scholar] [CrossRef]
- Bogaert, J. Lack of agreement on fragmentation metrics blurs correspondence between fragmentation experiments and predicted effects. Conserv. Ecol. 2003, 7, r6. [Google Scholar] [CrossRef] [Green Version]
- Neel, M.C.; McGarigal, K.; Cushman, S.A. Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc. Ecol. 2004, 19, 435–455. [Google Scholar] [CrossRef]
- Mander, Ü.; Müller, F.; Wrbka, T. Functional and structural landscape indicators: Upscaling and downscaling problems. Ecol. Indic. 2005, 4, 267–272. [Google Scholar] [CrossRef]
- Ewers, R.M.; Laurance, W.F. Scale-dependent patterns of deforestation in the Brazilian Amazon. Environ. Conserv. 2006, 33, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Frazier, A.E.; Kedron, P. Landscape Metrics: Past Progress and Future Directions. Curr. Landsc. Ecol. Rep. 2017, 2, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.; Riitters, K.H.; Estreguil, C.; Kozak, J.; Wade, T.G.; Wickham, J.D. Mapping Spatial Patterns with Morphological Image Processing. Landsc. Ecol. 2007, 22, 171–177. [Google Scholar] [CrossRef]
- Hurd, J.D.; Civco, D.L. Assessing Forest Fragmentation in Connecticut Using Multi- Temporal Land Cover. In Proceedings of the ASPRS Annual Conference, San Diego, CA, USA, 26–30 April 2010; Available online: https://clear.uconn.edu/publications/research/tech_papers/Hurd_et_al_ASPRS2010.pdf (accessed on 18 March 2021).
- Kumar, G. Geology of the Srinagar-Nandprayag area (Alaknanda Valley), Chamoli, Garhwal and Tehri Garhwal districts, Kumaun Himalaya, Uttar Pradesh. Him. Geol. 1975, 5, 29–59. Available online: https://ci.nii.ac.jp/naid/10026140513/en/ (accessed on 18 March 2021).
- Rautela, P.; Sajwan, K.S. Geological Investigations in Rudraprayag District with Special Reference to Mass Instability; Technical Reports; Department of Disaster Management, Disaster Mitigation and Management Centre (DMMC): Dehradun, India, 2014. Available online: http://dmmc.uk.gov.in/files/pdf/Rudraprayag_final.pdf (accessed on 18 March 2021).
- NICRA, National Innovations in Climate Resilient Agriculture. District Wise Agricultural Contingency Plans; Technical Reports. Central Research Institute for Dryland Agriculture (CRIDA), Indian Council of Agricultural Research (ICAR), Ministry of Agriculture, Government of India: New Delhi, India, 2009. Available online: http://www.nicra-icar.in/nicrarevised/index.php/state-wise-plan (accessed on 18 March 2021).
- Bhat, J.A.; Kumar, M.; Negi, A.K.; Todaria, N.P. Informants’ consensus on ethnomedicinal plants in Kedarnath Wildlife Sanctuary of Indian Himalayas. J. Med. Plants Res. 2013, 7, 148–154. [Google Scholar]
- Kittur, S. Assessment of spatial and habitat use overlap between Himalayan tahr and livestock in Kedarnath Wildlife Sanctuary, India. Eur. J. Wildl. Res. 2010, 56, 195–204. [Google Scholar] [CrossRef]
- Roy, P.S.; Behera, M.D.; Murthy, M.S.; Roy, A.; Singh, S.; Kushwaha, S.P.; Jha, C.S.; Sudhakar, S.; Joshi, P.K.; Reddy, C.S.; et al. New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 142–159. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F.; Agterberg, F.P.; Wright, D.F. Weights of evidence modelling: A new approach to mapping mineral potential. Comput. Methods Geosci. 1990, 171–183. [Google Scholar] [CrossRef]
- Duke, C.; Steele, J. Geology and lithic procurement in Upper Palaeolithic Europe: A weights-of-evidence based GIS model of lithic resource potential. J. Archaeol. Sci. 2010, 37, 813–824. [Google Scholar] [CrossRef]
- Sterlacchini, S.; Ballabio, C.; Blahut, J.; Masetti, M.; Sorichetta, A. Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology 2011, 125, 51–61. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int. J. Geogr. Inf. Sci. 2004, 18, 789–814. [Google Scholar] [CrossRef]
- Dilts, T.E.; Sibold, J.S.; Biondi, F. A Weights-of-Evidence Model for Mapping the Probability of Fire Occurrence in Lincoln County, Nevada. Ann. Assoc. Am. Geogr. 2009, 99, 712–727. [Google Scholar] [CrossRef]
- Malek, Z.; Boerboom, L.; Glade, T. Future Forest Cover Change Scenarios with Implications for Landslide Risk: An Example from Buzau Subcarpathians, Romania. Environ. Manag. 2015, 56, 1228–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakhshoori, V.; Zare, M. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat. Nat. Hazards Risk 2016, 7, 1731–1752. [Google Scholar] [CrossRef]
- Batar, A.K.; Watanabe, T. Landslide Susceptibility Mapping and Assessment Using Geospatial Platforms and Weights of Evidence (WoE) Method in the Indian Himalayan Region: Recent Developments, Gaps, and Future Directions. ISPRS Int. J. Geo-Inf. 2021, 10, 114. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Computer Methods in the Geosciences. In Geographic Information Systems for Geoscientists; 1994; Volume 13, Available online: https://www.sciencedirect.com/bookseries/computer-methods-in-the-geosciences/vol/13/suppl/C (accessed on 18 March 2021).
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Mohammadi, M.; Moradi, H.R. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J. Geosci. 2013, 6, 2351–2365. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 2010, 115, 172–187. [Google Scholar] [CrossRef]
- Fan, D.; Cui, X.M.; Yuan, D.B.; Wang, J.; Yang, J.; Wang, S. Weight of Evidence Method and Its Applications and Development. Procedia Environ. Sci. 2011, 11, 1412–1418. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for land-slide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- MacLean, M.G.; Congalton, R.G. A comparison of landscape fragmentation analysis programs for identifying possible invasive plant species locations in forest edge. Landsc. Ecol. 2015, 30, 1241–1256. [Google Scholar] [CrossRef]
- Bosch, M. PyLandStats: An open-source Pythonic library to compute landscape metrics. PLoS ONE 2019, 14, e0225734. [Google Scholar] [CrossRef] [Green Version]
- Misra, S.; Maikhuri, R.K.; Dhyani, D.; Rao, K.S. Assessment of traditional rights, local interference and natural resource management in Kedarnath Wildlife Sanctuary. Int. J. Sustain. Dev. World Ecol. 2009, 16, 404–416. [Google Scholar] [CrossRef]
- Sati, V.P.; Bandooni, S.K. Forests of Uttarakhand: Diversity, Distribution, Use Pattern and Conservation. ENVIS Bull. Himal. Ecol. 2018, 26, 21–27. Available online: http://gbpihedenvis.nic.in/Envis_Bulletin_Vol.26_2018.html (accessed on 20 September 2021).
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Cattarino, L.; McAlpine, C.A.; Rhodes, J.R. Land-use drivers of forest fragmentation vary with spatial scale. Glob. Ecol. Biogeogr. 2014, 23, 1215–1224. [Google Scholar] [CrossRef] [Green Version]
- Wickham, J.; Riitters, K.H. Influence of high-resolution data on the assessment of forest fragmentation. Landsc. Ecol. 2019, 34, 2169–2182. [Google Scholar] [CrossRef] [Green Version]
- Geist, H.J.; Lambin, E.F. What Drives Tropical Deforestation? A Meta-Analysis of Proximate and Underlying Causes of Deforestation Based on Subnational Case Study Evidence. 2001. Available online: https://www.pik-potsdam.de/members/cramer/teaching/0607/Geist_2001_LUCC_Report.pdf (accessed on 18 March 2021).
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
Causative Factors | VIF |
---|---|
Slope angle | 1.413 |
Slope aspect | 1.575 |
Altitude zone | 1.831 |
Distance to streams | 1.713 |
Distance to roads | 1.986 |
Distance to agricultural land | 1.607 |
Distance to built-up areas | 1.638 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batar, A.K.; Shibata, H.; Watanabe, T. A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region. Remote Sens. 2021, 13, 4090. https://doi.org/10.3390/rs13204090
Batar AK, Shibata H, Watanabe T. A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region. Remote Sensing. 2021; 13(20):4090. https://doi.org/10.3390/rs13204090
Chicago/Turabian StyleBatar, Amit Kumar, Hideaki Shibata, and Teiji Watanabe. 2021. "A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region" Remote Sensing 13, no. 20: 4090. https://doi.org/10.3390/rs13204090
APA StyleBatar, A. K., Shibata, H., & Watanabe, T. (2021). A Novel Approach for Forest Fragmentation Susceptibility Mapping and Assessment: A Case Study from the Indian Himalayan Region. Remote Sensing, 13(20), 4090. https://doi.org/10.3390/rs13204090