Effects of New Level-1B Data on GRACE Temporal Gravity Field Models and Precise Orbit Determination Solutions
Abstract
:1. Introduction
2. Methods and Background Models
2.1. Functional Model for Dynamic Approach
2.1.1. GPS Observation Equation
2.1.2. KBRR Observation Equation
2.1.3. Combining the Normal Equations
2.2. Background Models and Processing Strategy
3. Results
3.1. PSD of KBRR Observations
3.2. Post-Fit Residuals of KBRR Observations
3.3. Post-Fit Residuals of GPS Phase Observations
3.4. POD Precision
3.5. Comparison of Monthly Gravity Field Model Degree Variances
3.6. Spatial Distribution of Temporal Signals and Noise in the Monthly Gravity Field Solutions
3.7. Distribution of Temporal Signals and Noise in Specific Regions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapley, B.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.; Wahr, J.; Nerem, R. Preliminary observations of global ocean mass variations with GRACE. Geophys. Res. Lett. 2004, 31, L13310. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Wilson, C.; Blankenship, D.; Tapley, B.D. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci. 2009, 2, 859–862. [Google Scholar] [CrossRef]
- Ni, S.N.; Chen, J.L.; Wilson, C.; Hu, X.G. Long-term water storage changes of Lake Volta from GRACE and satellite altimetry and connections with regional climate. Remote Sens. 2017, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Uebbing, B.; Kusche, J.; Rietbroek, R.; Landerer, F.W. Processing choices affect ocean mass estimates from GRACE. J. Geophys. Res. Oceans 2019, 124, 1029–1044. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Hu, Z.; Shi, C.; Liu, J.; Cai, H.; Liu, X. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. Adv. Space. Res. 2011, 47, 1833–1850. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Zhong, M.; Feng, W.; Ran, J.; Yang, F. An investigation on GRACE temporal gravity field recovery using the dynamic approach. Chin. J. Geophys. 2015, 58, 756–766. [Google Scholar] [CrossRef]
- Guo, X.; Zhao, Q. GRACE time-varying gravity field solutions based on PANDA software. Geod. Geodyn. 2018, 9, 162–168. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Z.; Luo, Z. A new hybrid processing strategy to improve temporal gravity field solution. J. Geophys. Res. Solid Earth 2019, 124, 9415–9432. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.C.; Zhou, Z.B.; Zhong, B.; Hsu, H.Z. HUST-Grace2016s: A new GRACE static gravity field model derived from a modified dynamic approach over a 13-year observation period. Adv. Space Res. 2017, 60, 597–611. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Eicker, A.; Ilk, K.H. Gravity Field Recovery from GRACE-SST Data of Short Arcs; Springer: Berlin/Heidelberg, Germany, 2006; pp. 131–148. [Google Scholar]
- Chen, Q.; Shen, Y.; Zhang, X.; Hsu, H.; Lou, L. Monthly gravity field models derived from grace level1b data using a modified short arc approach. J. Geophys. Res. Solid Earth 2015, 120, 1804–1819. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An optimized short-arc approach: Methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Jekeli, C. The determination of gravitional potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astr. 1999, 75, 85–101. [Google Scholar] [CrossRef]
- Han, S. Efficient determination of global gravity field from satellite-to-satellite tracking mission. Celest. Mech. Dyn. Astr. 2004, 88, 69–102. [Google Scholar] [CrossRef]
- Shang, K.; Guo, J.; Shum, C.; Dai, C.; Luo, J. GRACE time-variable gravity field recovery using an improved energy balance approach. Geophys. J. Int. 2015, 203, 1773–1786. [Google Scholar] [CrossRef]
- Tapley, B.; Ries, J.; Bettadpur, S.; Chambers, D.; Wang, F. GGM02—An improved Earth gravity field model from GRACE. J. Geod. 2005, 79, 467–478. [Google Scholar] [CrossRef]
- Flechtner, F.; Dahle, C.; Neumayer, K.H.; König, R.; Förste, C. (Eds.) The release 04 CHAMP and GRACE EIGEN gravity field models. In System Earth via Geodetic-Geophysical Space Techniques, Advanced Technologies in Earth Sciences (2190-1643); Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Dahle, C.; Flechtner, F.; Gruber, C.; König, D.; König, R.; Michalak, G.; Neumayer, K. GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005; Scientific Technical Report-Data; Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2012; Volume 12. [Google Scholar] [CrossRef]
- Beutler, G.; Jäggi, A.; Mervart, L.; Meyer, U. The celestial mechanics approach: Application to data of the GRACE mission. J. Geod. 2010, 84, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Meyer, U.; Jäggi, A.; Beutler, G. Monthly gravity field solutions based on GRACE observations generated with the Celestial Mechanics Approach. Earth Planet. Sc. Lett. 2012, 345, 72–80. [Google Scholar] [CrossRef]
- Yunck, T.; Wu, S.; Wu, J.; Thornton, C. Precise tracking of remote sensing satellites with the global positioning system. IEEE Trans. Geosci. Remote Sens. 1990, 28, 208–216. [Google Scholar] [CrossRef]
- Mander, A.; Bisnath, S. GPS-based precise orbit determination of low earth orbiters with limited resources. GPS Solut. 2013, 17, 587–594. [Google Scholar] [CrossRef]
- Kang, Z.; Tapley, B.; Bettadpur, S.; Ries, J.; Nagel, P. Precise orbit determination for grace using accelerometer data. Adv. Space Res. 2006, 38, 2131–2136. [Google Scholar] [CrossRef]
- Jäggi, A.; Hugentobler, U.; Bock, H.; Beutler, G. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv. Space Res. 2007, 39, 1612–1619. [Google Scholar] [CrossRef]
- Li, K.; Zhou, X.; Guo, N.; Zhao, G.; Xu, K.; Lei, W. Comparison of precise orbit determination methods of zero-difference kinematic, dynamic and reduced-dynamic of GRACE-A satellite using SHORDE software. J. Appl. Geod. 2017, 11, 157–165. [Google Scholar] [CrossRef]
- Case, K.; Kruizinga, G.; Wu, S. GRACE Level 1B Data Product User Handbook; JPL D-22027; JPL: Pasadena, CA, USA, 2010. [Google Scholar]
- GRACE. GRACE Level 1B JPL Release 3.0; Data Publication; PO.DAAC: Pasadena, CA, USA, 2018. [Google Scholar] [CrossRef]
- Sujata, G. Analysis of attitude errors in GRACE range-rate residuals-a comparison between SCA1B and the reprocessed attitude fused product (SCA1B+ACC1B). Sens. Appl. 2017, 1, 1–4. [Google Scholar] [CrossRef]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0006; Technical Report GRACE; The University of Texas at Austin: Austin, TX, USA, 2018; pp. 327–742. [Google Scholar]
- Dahle, C.; Murböck, M.; Flechtner, F.; Dobslaw, H.; Michalak, G.; Neumayer, K.H.; Abrykosov, O.; Reinhold, A.; König, R.; Sulzbach, R.; et al. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sens. 2019, 11, 2116. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D. JPL Level-2 Processing Standards Document for Level-2 Product Release 06; Technical Report GRACE; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018; pp. 327–744. [Google Scholar]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res. Solid Earth 2019, 124, 9332–9344. [Google Scholar] [CrossRef] [Green Version]
- Weigelt, M.; van Dam, T.; Jäggi, A.; Prange, L.; Tourian, M.-J.; Keller, W.; Sneeuw, N. Time-variable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J. Geophys. Res. Solid Earth 2013, 118, 3848–3859. [Google Scholar] [CrossRef] [Green Version]
- Reigber, C. Gravity field recovery from satellite tracking data. In Theory of Satellite Geodesy and Gravity Field Determination, Lecture Notes in Earth Sciences; Sanso, F., Rummel, R., Eds.; Springer: Berlin, Germany, 1989; Volume 25, pp. 197–234. [Google Scholar]
- Zhu, S.; Reigber, C.; König, R. Integrated adjustment of CHAMP, GRACE, and GPS data. J. Geod. 2004, 78, 103–108. [Google Scholar] [CrossRef]
- Reigber, C.; Schmidt, R.; Flechtner, F.; König, R.; Meyer, U.; Neumayer, K.; Schwintzer, P.; Zhu, S. An earth gravity field model complete to degree and order 150 from GRACE: EIGENGRACE02S. J. Geodyn. 2005, 39, 1–10. [Google Scholar] [CrossRef]
- Bruinsma, S.; Lemoine, J.; Biancale, R.; Valès, N. CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv. Space Res. 2010, 45, 587–601. [Google Scholar] [CrossRef]
- Guo, N.N.; Zhou, X.; Wu, B.; Zhao, G. A model of the time-variable gravity field inverted from combined GRACE on-board GPS and KBR range rate data. Chin. J. Geophys. 2017, 60, 2568–2577. [Google Scholar] [CrossRef]
- Švehla, D.; Rothacher, M. Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv. Geosci. 2003, 1, 1–10. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions (2010); IERS technical note; Bureau International des Poids et Mesures: Sèvres, France, 2010.
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015; Volume 17, p. 5481. [Google Scholar]
- Desai, S.D. Observing the pole tide with satellite altimetry. J. Geophys. Res. Oceans 2002, 107, 3186. [Google Scholar] [CrossRef]
- Flechtner, F.; Dobslaw, H.; Fagiolini, E. AOD1B Product Description Document for Product Release 05; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2014. [Google Scholar]
- Förste, C.; Bruinsma, S.; Shako, R.; Marty, J.C.; Flechtner, F.; Abrykosov, O.; Dahle, C.; Lemoine, J.M.; Neumayer, K.H.; Biancale, R. EIGEN-6-A New Combined Global Gravity Field Model Including GOCE Data from the Collaboration of GFZ-Potsdam and GRGS-Toulouse; Geophysical Research Abstracts Volume 13, EGU2011-3242-2; EGU General Assembly: Vienna, Austria, 2011. [Google Scholar]
Forces and Parameters | Description | Notes |
---|---|---|
Forces | ||
A priori gravity model | EIGEN-6c model | d/o 180 × 180 |
N-body perturbation | Sun and Moon et al. | JPL DE/LE 421 |
Solid Earth tide | IERS2010 | |
Solid Earth pole tide | IERS2010 | |
Ocean tide | FES2014b | |
Ocean pole tide | Desai model | |
Relativity perturbation | IERS2010 | |
Non-conservative forces | Level-1B ACC and ATT | |
Atmosphere and oceanic variability | AOD1B | |
Solved parameters | ||
Department parameters | ||
Initial state vector | 3D positions and velocity | One group per arc |
Accelerometer | One group bias per hour One group factor per day | |
KBRR empirical parameters | One group per 90 min | |
LEO receiver clock | Every epoch | |
Ambiguities | Dependent on cycle | |
Global parameters | ||
Geopotential coefficients parameters | d/o 2–60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, N.; Zhou, X.; Li, K. Effects of New Level-1B Data on GRACE Temporal Gravity Field Models and Precise Orbit Determination Solutions. Remote Sens. 2021, 13, 4119. https://doi.org/10.3390/rs13204119
Guo N, Zhou X, Li K. Effects of New Level-1B Data on GRACE Temporal Gravity Field Models and Precise Orbit Determination Solutions. Remote Sensing. 2021; 13(20):4119. https://doi.org/10.3390/rs13204119
Chicago/Turabian StyleGuo, Nannan, Xuhua Zhou, and Kai Li. 2021. "Effects of New Level-1B Data on GRACE Temporal Gravity Field Models and Precise Orbit Determination Solutions" Remote Sensing 13, no. 20: 4119. https://doi.org/10.3390/rs13204119
APA StyleGuo, N., Zhou, X., & Li, K. (2021). Effects of New Level-1B Data on GRACE Temporal Gravity Field Models and Precise Orbit Determination Solutions. Remote Sensing, 13(20), 4119. https://doi.org/10.3390/rs13204119