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Abstract: Topographic effects in medium and high spatial resolution remote sensing images greatly
limit the application of quantitative parameter retrieval and analysis in mountainous areas. Many
topographic correction methods have been proposed to reduce such effects. Comparative analyses
on topographic correction algorithms have been carried out, some of which drew different or even
contradictory conclusions. Performances of these algorithms over different terrain and surface cover
conditions remain largely unknown. In this paper, we intercompared ten widely used topographic
correction algorithms by adopting multi-criteria evaluation methods using Landsat images under
various terrain and surface cover conditions as well as images simulated by a 3D radiative transfer
model. Based on comprehensive analysis, we found that the Teillet regression-based models had
the overall best performance in terms of topographic effects’ reduction and overcorrection; however,
correction bias may be introduced by Teillet regression models when surface reflectance in the
uncorrected images do not follow a normal distribution. We recommend including more simulated
images for a more in-depth evaluation. We also recommend that the pros and cons of topographic
correction methods reported in this paper should be carefully considered for surface parameters
retrieval and applications in mountain regions.

Keywords: Landsat; topographic correction; multi-criteria evaluation; land type stratification; correction bias

1. Introduction

Mountains cover around a quarter of the global terrestrial land surface [1] and are
particularly sensitive to climate changes [2,3]. However, topographic effects caused by
diverse topography and illumination conditions have complicated further studies employ-
ing remote sensing data in mountain regions, such as geophysical parameter retrieval
and land cover classification [4–7]. For example, Cuo et al. [8] reported that the overall
classification accuracy for original images was 55%, which increased to 85% after removing
the topographic effects. Yu et al. [9] found that the leaf area index retrieval error with
satellite data could reach 51% on average when the slope was 60◦.

Over the past three decades, many topographic correction models have been devel-
oped [10,11], and can be classified as empirical, semi-empirical, and physical models [12,13].
The band ratio method, also categorized as an empirical method, was the earliest and sim-
plest one used [14]. It assumes that reflectance values caused by shadowing in different
spectral bands are proportional, and the topographic effects can be removed using band
ratio; however, it lacked physical meaning [15].

Physical models based on radiative transfer models usually have a solid theorical basis
and require auxiliary information as inputs for radiative transfer calculation [10]. Some
studies considered direct radiation, diffuse radiation, and reflection from adjacent areas on
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sloping terrain for correction [12,13,16,17]. Soenen et al. [18] proposed an algorithm based
on geometric optical mutual shadowing [19] simulation and look-up tables. Li et al. [20]
proposed a physical parameterization scheme with atmospheric, BRDF, and topographic
correction that handles both flat and inclined surfaces. Yin et al. [21] developed path length
correction (PLC) by simplifying radiative transfer process of canopy in rugged terrain,
which is both physically sound and mathematically straightforward. Although physical
models always have high accuracy, they were always in need of auxiliary data and hard to
be adopted on real-time processing of satellite products.

Semi-empirical models have become the most commonly used methods due to their
simplicity and effectiveness [22] compared with empirical and physical models. Smith et al. [23]
presented the Minnaert model by introducing the Minnaert parameter [24] to depict
anisotropy on the true ground. Teillet et al. [25] presented the Cosine model by modeling the
geometric relationship among the Sun, target, and sensor; thus, this model was also defined
as the STS method. The Teillet regression model showed the potential for eliminating terrain
effects based on the linear relationship between reflectance and illumination angle [25].
Gu and Gillespie [26] put forward a model based on Sun-Canopy-Sensor (SCS) geometry
to reduce errors introduced by the STS model in forest areas. Owing to the obvious
overcorrection problems, the C factor was introduced which depicted the relationship
between reflectance and illumination angle [25,27], and the C and SCS+C model was
developed; this relationship was further used to develop b correction [28] and variable
empirical coefficient algorithm (VECA) [29]. Riano et al. [30] smoothed the terrain slope
while calculating illumination conditions to settle the overcorrection problem in the C
model. Lu et al. [31] found that the Minnaert parameter should be computed after slope
stratification. Meanwhile, [32], Szantoi and Simonetti [22], and Vázquez-Jiménez et al. [33]
tested different methods to compute the C factors in the SCS+C or the C model, and all
concluded that pixels in image should be stratified before calculating the C factor.

Independent model intercomparisons have been carried out to assess the effectiveness
of the topographic correction models [10,34]. The most commonly used evaluation method
is to compare the correlation coefficients between reflectance and illumination angles based
on the assumption that a good correction method should reduce the correlation coeffi-
cient [6,35–37]. Based on the assumption that the difference of reflectance in similar land
cover would be decreased after correction, some statistical parameters, such as coefficient
of variation (CV) [38,39], standard deviation (SD) [36,40], and interquartile range (IQR) [34]
were introduced for evaluation. Synthetic images were also used to assess the performance
of topographic correction algorithms [41]. In recent years, the multi-criteria evaluation
strategy was recommended for topographic correction algorithms’ comparison [34,42].

Great efforts have been made focusing on the correction model development, but
few studies have evaluated them comprehensively in different seasons and terrain condi-
tions, especially snow-covered areas, preventing a clearer understanding of the models’
performances. Conclusions regarding the algorithms’ performance sometimes differed and
were even conflicting. For example, the modified Minnaert model was shown to have
the best performance in Switzerland using six scenes from SPOT 5, Landsat 5 TM, and
Landsat 7 ETM+ [43]; meanwhile, the C correction and the Teillet regression were reported
to have the best performance based on a time series of 15 Landsat images [10]. Yet, most of
these evaluation strategies based on the assumption that the surface reflectance of differ-
ent slope directions should be consistent, and they may cause deviation in the validation
results. Although some researchers reported that the classification accuracy or biomass
inversion accuracy can be improved after topographic correction [6,44,45], Hoshikawa and
Umezaki [44] reported that classification accuracy could be negatively affected by the re-
duction of the obvious differences among distinct classes. The classification and vegetation
parameter retrieval accuracies are related to complicated factors and may not directly reflect
the topographic correction methods’ performance. Meanwhile, the current evaluation and
comparison studies relied on limited images which may result in conflicting conclusions,
and a systematic evaluation of topographic correction methods is currently in urgent need.
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With abundant topographic correction methods available currently, it is urgent to
document the pros and cons of the well-known algorithms on different spatial and tem-
poral domains. This study conducts multi-criteria comparisons among ten topographic
correction models over different regions with multi-temporal imagery to assess the model
performance taking advantage of the Landsat data legacy. Issues in different algorithms
could be revealed through different analyses and comparisons, while the evaluation with
different seasons and terrain conditions could provide us more robust results, and thor-
oughly validate algorithms’ performance under diverse situations. We also paid more
attention to snow-cover areas which occupied a large portion of mountainous areas in
winter, but were always ignored in previous studies [10,34,38]. LESS [46] was employed
to simulate images with topography, and different land types were introduced to the
simulation by simply setting vegetation and bare land spectral properties of the ground.
The corresponding images over flat terrain were also simulated with the same surface
parameters, which can be used as referenced “true value”. Section 2 of this paper describes
the topographic correction models and evaluation methods we used. Section 3 defines
the study area, data, and pre-processing in the study. The results of different evaluation
methods are compared and analyzed in Section 4. Sections 5 and 6 contain the discussion
and study conclusions, respectively.

2. Methods
2.1. Topographic Correction Models

After a comprehensive literature review, we tried to cover multiple classical and
widely used algorithms and to evaluate their feasibility for topographic correction in
various conditions. The algorithms we selected are shown in Table 1. Some stratification
approaches worked well [22,33,47–50] for regression models; we used a simple land type
stratification in our study for the C, the SCS+C, and the Teillet regression model for their
good potential in previous studies. The stratification grade was classified into three groups:
(1) snow-cover area (normalized difference snow index (NDSI) > 0.1 [51]), (2) vegetation
(normalized difference vegetation index (NDVI) > 0.2 [52], and NDSI < 0.1), (3) bare land
(NDVI < 0.2, and NDSI < 0.1). NDVI and NDSI were selected because of their attenuation
in topographic effects [53,54]. The NDSI and NDVI in Landsat 8 can be calculated as:

NDSI =
ρgreen − ρswir1

ρgreen + ρswir1
(1)

NDVI =
ρnir − ρred
ρnir + ρred

(2)

where ρgreen, ρswir1, ρnir, and ρred refers to the green, SWIR1, near-infrared, and red spectral
band of Landsat 8 surface reflectance data, respectively. Table 1 shows the information of
algorithms included in this study.

Table 1. The topographic correction methods used in this study.

Number Topographic
Correction Model Expression Presenter

1 Teillet regression ρH = ρT − a · cos i− b + ρ Teillet et al. [25]

2 C ρH = ρT · cos θs+C
cos i+C Teillet et al. [25]

3 Minnaert+SCS ρH = ρT · cos S · ( cos θs
cos i )

k Henry Reeder [55]

4 b correction ρH = ρT · exp[b′ · (cos θs − cos i)] Vincini et al. [28]

5 SCS+C ρH = ρT · cos θs ·cos S+C
cos i+C Soenen et al. [27]

6 VECA ρH = ρT ·
ρ

a·cos i+b Gao and Zhang [29]

7 PLC ρH = ρT · S(Ω1)+S(Ω2)
St(Ω1)+St(Ω2)

Yin et al. [21]

Note: The Teillet regression model is also called Statistical Empirical model.



Remote Sens. 2021, 13, 4120 4 of 21

The computation of the illumination condition (solar incidence angle) is based on the
geometric relationship in the following equation [10]:

cos i = cos θs cos S + sin θs sin S cos(ϕa − ϕ0) (3)

where cos i is the cosine of solar incidence angle, θs is the solar zenith angle, S is the slope
angle, ϕa is the solar azimuth angle, and ϕ0 is the aspect angle of the terrain.

In Table 1, ρT is the original reflectance of the image in each pixel and ρH is the
reflectance after topographic correction. ρ is the average of original reflectance, while a and
b can be regressed by:

ρT = a · cos i + b (4)

where cos i is the cosine of the solar incidence angle calculated by Equation (1). The
parameter c in SCS+C and C models can be calculated by the ratio of b and a in the
Equation (4). The Minnaert+SCS parameter k can be calculated by fitting the expression:

ln(ρT · cos S) = k · ln( cos i
cos θs

) + ln ρH (5)

while b′ in b correction model can be obtained by a similar transformation as in Min-
naert+SCS, and can be computed by:

ln ρT = b′ × cos i + c (6)

The flat area (with less than 5◦ slope), cloud-cover area [21], and cast shadow area [56]
were masked before these regressions.

For the PLC model, S(Ω1) and S(Ω2) are the path length along solar and viewing
directions on flat terrain, respectively; and St(Ω1) and St(Ω2) are their counterparts on
sloping terrain. The path lengths over flat and sloping terrain can be simply computed as
Equations (7) and (8), respectively:

S(θ) = 1/cos θ (7)

St(θ, ϕ, S, ϕ0) =
1

cos θ(1− tan S cos(ϕ− ϕ0) tan θ)
(8)

where θ is the solar/viewing zenith angle, and ϕ is the solar/viewing azimuth angle.
Some problems exist in calculating the length of solar direction over sloping terrain

while calculating path length, which influenced the outcome of topographic correction.
According to Luisa et al. [57], the topographic mask of path length over sloping terrain
could be calculated by θs = π/2− S, where θs is the solar zenith angle and S is the slope
angle. However, we did not adopt this mask for PLC model in this study because of our
thorough evaluation target of topographic correction models in different conditions.

2.2. Evaluation Methods

To make a systematic evaluation of topographic correction algorithms, we used a
multi-criteria method [34,42] to compare different aspects of the algorithms’ performance.
For the sake of applicability of the evaluation methods, the following methods were selected
for this research:

(1) Outliers percentage

Some algorithms generate outliers such as negative values due to overcorrection,
which can sometimes reach 10% of the total pixels [14] and will severely reduce the quality
of the corrected results. The number of outliers (pixels in corrected images larger than the
maximum original reflectance or lower than the minimum) was calculated in this study,
and algorithms that produced many outliers should not be recommended. It should be
noted that the atmospheric correction can introduce negative values in shadow areas, and
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to reduce its influence on further comparison, we got rid of negative values caused by
atmospheric correction in evaluation.

(2) Difference in sunlit and shady areas

The difference between sunlit and shadow areas was calculated in each spectral band to
see whether topographic effects were eliminated or whether there was overcorrection [14,58].
The area where the relative angle between Sun azimuth angle and terrain aspect angle less
than 45◦ was defined as the sunlit area, and that relative angle from 135◦ to 180◦ was the
shady area [34]. However, this evaluation assumed that the sunlit and shady areas have
similar surface properties, thus, the selection of validated images is of great importance.
Owing to the fact that winter images have more negative surface reflectance in shadow
areas and the snow-cover areas are always terrain dependent, which may deviate the
evaluation result, we focused on the images obtained in May/July/September to see the
result of different algorithms. The difference percentage can be calculated by:

Di f f erencepercentage =
median(ρsunlit)−median(ρshady)

median(ρshady)
× 100% (9)

where ρsunlit is the reflectance in sunlit area and ρshady is the reflectance in shady area.

(3) Interquartile range reduction

The dispersion degree in the image can be measured by the interquartile range (IQR),
which would not be significantly influenced by outliers [42]. Smaller IQR indicates smaller
spectral differences among similar ground objects, which implies a smaller difference
between shady and sunlit areas in the image [34]. The IQR reduction of each image was
calculated based on the IQR weighted by land type:

IQRreduction =
N

∑
landcover=1

L× (
IQRT − IQRH

IQRT
)× 100% (10)

where IQRT is the IQR of the uncorrected image and IQRH is the IQR of corrected image.

(4) Evaluation using simulated images

A simulation method that only uses DEM data, which can eliminate the errors caused
by the assumptions using remote sensing images, was adopted (e.g., the sunlit and the
shady areas have the same reflectance characteristics). LESS (LargE-Scale remote Sens-
ing data and image simulation framework) is a ray-tracing-based 3D radiative transfer
model which can simulate large-scale satellite images and solar radiation over rugged
terrain [46,59]. In LESS simulation, the “orthographic” sensor type was selected, and 50%
diffuse irradiance (SKY_TO_TOTAL) was set. A DEM of 2000 × 2000 pixels was inputted
for simulation and the ground was covered by soil and vegetation through introducing
different spectral reflectance in different simulations (larger scene and trees on the ground
could not be simulated because of computation limitation). The Sun zenith angle was set
as 30◦ and 60◦; and the Sun azimuth angle was set as 90◦ and 270◦. Then, the marginal
50 pixels were removed to avoid the edge effect, and we finally obtained the scene with
different land type by repeating the simulation with the same DEM but with different soil
and vegetation spectral reflectance values. Meanwhile, the corresponding images over
flat terrain could be attained without inputting the DEM and used as the reference data
to validate topographic correction algorithms. By comparing the topographic corrected
images with the simulated plane images, the effect of different algorithms can be analyzed
in-depth, and more problems can be brought to light.

3. Materials
3.1. Study Area

Topographic effects depend on the terrain condition and solar position, thus the
geographic distribution and seasonal variation in the study area are vital to the evaluation.
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Both good and poor illumination conditions should be considered, and the study area is
supposed to cover as many real situations as possible. China is a mountainous country
where the mountain coverage exceeds two-thirds [60], and it includes nearly all the world’s
terrain types; thus, it was chosen as the study area for this paper. To carry out a more
comprehensive comparison, eleven experimental areas with different terrain features
and climate characteristics were selected to carry out the evaluation. In general, typical
landforms, such as hills, plateaus, and mountains were included. Different climate regions,
including different types of continental and monsoon climates, were covered in our study
area. Meanwhile, the land cover contained bare land, bush, grassland, forest, and so on.
Therefore, the study areas would represent most conditions worldwide. The study area
location with DEM data is shown in Figure 1. The relevant parameters of the study area
are listed in Table 2.

Figure 1. The study area location with DEM of China (the red box is the study area we used which contains different terrain
conditions and the number in the red box represents the number of scenes).

Table 2. Terrain parameter statistics of Landsat data selected in the study area.

WRS2
PathRow

Center
Coordinate

Elevation Range/m
(Average Elevation/m)

Average
Slope/◦ Main Land Cover Main Terrain

120029 30◦ N 118◦ E 1-1821 (277) 16.1 Evergreen forest Middle and low mountains
121024 52◦ N 124◦ E 277-1519 (699) 8.5 Deciduous forest Low mountains, hills
121042 26◦ N 116◦ E 42-1522 (393) 13.9 Evergreen forest and cropland Low hills
122035 36◦ N 117◦ E 0-1524 (144) 5.0 Cropland and grassland Hills, relatively flat
124032 40◦ N 115◦ E 15-2849 (1029) 13.5 Cropland and grassland Hills, plains, and mountains
128036 34◦ N 108◦ E 419-3753 (1366) 18.1 Evergreen forest High mountains
129043 24◦ N 103◦ E 341-2983 (1830) 14.2 Forest and grassland Mountains, plateaus, basins
131035 36◦ N 103◦ E 1436-4767 (2487) 17.2 Grassland and cropland High mountains
131038 32◦ N 102◦ E 1812-5479 (3888) 26.7 Grassland and evergreen forest Hilly plateau
139040 28◦ N 88◦ E 3725-7073 (4723) 16.0 Bare areas and grassland Mountains and wide valleys
143030 44◦ N 87◦ E 516-5248 (2394) 18.9 Sparse vegetation and forest Vast mountains

Note: WRS means Worldwide Reference System. The main land cover is from [61].
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3.2. Data

Landsat 8 surface reflectance products provided an estimate of the surface spectral
reflectance as it would be measured at ground level in the absence of atmospheric scattering
or absorption [62]. They were generated at the Earth Resources Observation and Science
(EROS) Center at a 30-m spatial resolution in the Universal Transverse Mercator Grid
System (UTM). Landsat 8 surface reflectance products were obtained from the United
States Geological Survey (USGS, https://earthexplorer.usgs.gov/, accessed on 12 October
2021). Cloudless images (cloud cover lower than 10%) acquired in different seasons
(January, May, July, September, and November) were selected in each experimental area.
Table 3 shows the image acquisition time, solar zenith angle, and snow cover percentage
in each image (the snow cover percentage was calculated by the land type stratification
described in Section 2.1 in areas with slope angle larger than 5◦).

Table 3. Data acquisition and snow-cover information of Landsat 8 surface reflectance products included for topographic
correction evaluation.

WRS2
Path/Row Date Solar Zenith

Angle/◦
Snow Cover
Percentage

WRS2
Path/Row Date Solar Zenith

Angle/◦
Snow Cover
Percentage

120/029

20170126 54.7 1.46%

131/035

20180110 61.9 34.88%
20170518 22.1 0.55% 20180502 27.6 4.34%
20170721 23.5 0.35% 20180721 25.2 0.15%
20160920 35.1 0.64% 20180923 40.2 0.28%
20181129 54.9 0.69% 20171107 54.7 2.86%

121/024
20180528 32.7 0.48%

129/043
20180128 49.9 0.93%

20160725 35.1 0.14% 20170501 23.2 0.11%
20180917 51.0 0.03% 20161122 48.7 0.28%

122/035

20180111 61.8 2.41%

139/040

20180118 55.0 1.04%
20180503 27.3 0.28% 20170507 23.2 2.47%
20170703 23.1 0.31% 20150721 23.3 1.17%
20180908 35.6 0.43% 20150907 30.7 0.92%
20171124 59.0 0.29% 20181118 51.3 0.96%

124/032

20170122 63.6 16.19%

143/030

20180130 64.3 73.42%
20170514 27.2 0.05% 20180522 27.6 7.07%
20150712 25.8 0.09% 20170722 28.8 1.65%
20180922 43.2 0.03% 20180927 47.3 34.61%
20181109 59.0 0.09% 20181130 66.5 49.24%

128/036

20170102 61.2 1.38%

121/042

20170509 22.3 0.47%
20180513 24.5 0.03% 20170728 23.7 0.34%
20150724 25.0 0.14% 20160927 34.1 0.31%
20181121 57.0 3.62% 20171101 44.4 0.27%

131/038

20180126 55.9 14.52%
20160512 23.3 10.37%
20160715 23.2 0.29%
20181110 51.7 48.51%

Note: snow cover percentage was calculated by the stratification method in Section 2.1.

In this study, SRTM DEM V003 (the first freely available high resolution DEM [63],
obtained from https://search.earthdata.nasa.gov/, accessed on 12 October 2021) with a 1 arc-
second resolution (~30 m) in WGS84 was used to calculate slope, aspect, and cast shadows.

3.3. Data Processing

Some necessary processing steps were completed before the implementation of topo-
graphic correction methods. After the SRTM DEM data were mosaicked in the study area,
they were reprojected onto the same zone of UTM coordinate system as the corresponding
Landsat 8 image. Cubic resampling and clipping were applied to DEM data so that they
could be matched with the Landsat 8 data in the spatial domain. Aspect and slope param-
eters were then calculated from the DEM data. The mean solar azimuth/zenith angles
were used, and sensor viewing angles were calculated pixel-by-pixel based on the location
and acquisition time. Cast shadow and cloud areas can influence the effect of some algo-
rithms and prejudice the evaluation results, thus they were detected in the preprocessing

https://earthexplorer.usgs.gov/
https://search.earthdata.nasa.gov/
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step. The cast shadow was detected by subtracting the self-shadow from the full shadow
area [64], and the full shadow detection method was based on the geometric relationship
between sunlight direction and mountains, and can refer to Li, Toshio, and Cheng [56].
Cloud detection was adopted by Fmask 4.0 [65], and both cloud and cloud-shadow pixels
were eliminated before correction. However, snow is easily confused with clouds, thus
we did not adopt Fmask in winter images to avoid hidden problems, and cloud cover in
these images is small and can be ignored. Figure 2 is the flow chart of data processing for
topographic correction in this study.

Figure 2. Flow chart of data processing for Landsat topographic correction.

4. Results
4.1. Outlier Analysis

The number of outliers is the primary assessment method as good topographic correc-
tion methods should maintain a spatially continuous correction of surface and not produce
many outliers. It should be noted that outlier calculation included cast shadow areas to find
out each model’s overall performance in mountainous areas. Figure 3 shows the outlier
percentage in each Landsat footprint with different time. The box plots of each topographic
correction model’s outlier percentage on all images are shown in Figure 4.

From Figures 3 and 4, these algorithms always offered similar outlier percentages in
the same image in May/July/September, and outliers were produced mainly in winter.
The Minnaert+SCS and PLC model led to the largest numbers of outliers. The b correction,
SCS+C, VECA, and C models offers a lower number of outliers compared with the Teillet
regression model. The land type stratification decreased the outliers of the Teillet regression
model effectively, and the effect of land type stratification was not obvious for C and SCS+C
model. The outlier percentage also showed large differences even in winter, e.g., the outlier
percentage of January was larger than November’s in Figure 3f,h, but the reverse was the
case in Figure 3i.
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Figure 3. The outlier percentage in different Landsat footprint with different time. (a) path/row:120/039, (b) path/row:
121/024, (c) path/row: 121/042, (d) path/row:122/035, (e) path/row:124/032, (f) path/row: 128/036, (g) path/row:129/043,
(h) path/row:131/035, (i) path/row: 131/038, (j) path/row: 139/040, (k) path/row: 143/030.
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Figure 4. The box plot of all topographic correction models’ outlier percentages (‘_landtype’ refers to the results using the
land type stratification method).

4.2. Difference in Sunlit and Shadow Areas

A comparison of the difference in sunlit and shady areas was carried out for different
algorithms in all spectral bands to determine which gave the best result, and to check
whether slight overcorrection was produced. The relationship between median reflectance
in sunlit and shady areas for each model was shown in Figure 5.

From Figure 5, the uncorrected images have a large difference between sunlit and
shady slope’s median reflectance, and all topographic correction algorithms provide reduc-
tion of the difference. The b correction and Minnaert+SCS model had positive bias value,
which indicated that the shady area’s reflectance exceeded the sunlit area’s reflectance after
correction, which may be caused by an overcorrection problem. The PLC model resulted in
larger sunlit and shady areas’ difference than other models. The Teillet regression model
outperformed other non-stratification algorithms with lower RMSE and smaller negative
bias. Models with land type stratification can achieve better result than the original models.
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Figure 5. The relationship of median reflectance in sunlit and shady areas for each model using
seven spectral band (sample size = 203). (a) Original image, (b) b correction, (c) SCS+C model, (d) C
model, (e) Minnaert+SCS, (f) PLC, (g) VECA, (h) Teillet regression, (i) C with land type stratification,
(j) SCS+C with land type stratification, (k) Teillet regression with land type stratification.

4.3. IQR Analysis

IQR reduction shows the effect of topographic effects’ removal, and a comparison of
different algorithms’ IQR reduction in May/July/September and January/November is
shown in Figures 6 and 7, respectively.
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Figure 6. The comparison of IQR reduction in May/July/September. The x label’s number represents
different algorithms: b correction, SCS+C, C, Minnaert+SCS, PLC, VECA, Teillet regression, C with
land type stratification, SCS+C with land type stratification, and Teillet regression with land type
stratification. (a) 120,039 (path/row) image obtained on 20170518, (b) 120,039 image obtained on
20170721, (c) 120,039 image obtained on 20160920, (d) 121,024 image obtained on 20180528, (e) 121,024
image obtained on 20160725, (f) 121,024 image obtained on 20180917, (g) 121,042 image obtained
on 20170509, (h) 121,042 image obtained on 20170728, (i) 121,042 image obtained on 20160927,
(j) 122,035 image obtained on 20180503, (k) 122,035 image obtained on 20170703, (l) 122,035 image
obtained on 20180908, (m) 124,032 image obtained on 20170514, (n) 124,032 image obtained on
20170712, (o) 124,032 image obtained on 20180922, (p) 128,036 image obtained on 20180513, (q) 128,036
image obtained on 20150724, (r) 129,043 image obtained on 20170501, (s) 131,035 image obtained on
20180502, (t) 131,035 image obtained on 20180721, (u) 131,035 image obtained on 20180923, (v) 131,038
image obtained on 20160512, (w) 131,038 image obtained on 20160715, (x) 139,040 image obtained
on 20170507, (y) 139,040 image obtained on 20150721, (z) 139,040 image obtained on 20150907,
(aa) 143,030 image obtained on 20180522, (bb) 143,030 image obtained on 20170722, (cc) 143,030
image obtained on 20180927.
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Figure 7. The comparison of IQR reduction in January/November. The x label number represents
different algorithms: b correction, SCS+C, C, Minnaert+SCS, PLC, VECA, Teillet regression, C with
land type stratification, SCS+C with land type stratification, and Teillet regression with land type
stratification. (a) 120,039 (path/row) image obtained on 20170126, (b) 120,039 image obtained on
20181129, (c) 121,042 image obtained on 20171101, (d) 122,035 image obtained on 20180111, (e) 122,035
image obtained on 20171124, (f) 124,032 image obtained on 20170122, (g) 124,032 image obtained
on 20181109, (h) 128,036 image obtained on 20170102, (i) 128,036 image obtained on 20181121, (j)
129,043 image obtained on 20180128, (k) 129,043 image obtained on 20161122, (l) 131,035 image
obtained on 20180110, (m) 131,035 image obtained on 20171107, (n) 131,038 image obtained on
20180126, (o) 131,038 image obtained on 20,181,110 (p) 139,040 image obtained on 20180118, (q)
139,040 image obtained on 20181118, (r) 143,030 image obtained on 20180130, (s) 143,030 image
obtained on 20181130.



Remote Sens. 2021, 13, 4120 14 of 21

From Figures 6 and 7, it was obvious that the removal of topographic effects in
winter was much higher, which was caused by high Sun zenith angle and thus more
topographic effects in winter. In contrast, topographic effects were less significant in
May/July/September, and thus the effectiveness of algorithms was not obvious, which
resulted in low IQR reduction. Meanwhile, different models had similar IQR reduction
distribution for different spectral bands in the same image, which indicated the relative
coincident of different algorithms and topographic effects depended on spectral bands.

Negative IQR reduction did not correspond with the object of the topographic normal-
ization, however, it occurred in some images, such as Figure 6a,p,q,t. This phenomenon
happened mainly for b correction, C model with or without land type stratification. The
Teillet regression model produced higher IQR reduction in most images; while PLC had
a slightly lower IQR reduction than others in Figure 7, but similar or even larger IQR
reduction in Figure 6. In Figure 7o,r, the IQR reduction in all algorithms was not satis-
factory; in this image, most algorithms produced small or even negative IQR reduction
except the Teillet regression model with land type stratification; in the same scene both in
winter (Figure 7n,s), however, most algorithms offered much better performance. Land
type stratification improved Teillet regression significantly, while the improvements for C
and SCS+C model were not evident.

4.4. Evaluation with LESS Simulation

In LESS simulation, images with different terrain conditions were generated to explore
the performance of topographic correction methods. Two scenes with two solar azimuth
angles (90◦ and 270◦ respectively) were simulated, the scene was created by repeating the
same DEM but was simulated with soil and vegetation spectral reflectance to figure out
the effect of algorithms in images with different land types. Figure 8 shows the simulation
result in the NIR band (0.85–0.88 µm).

Figure 8. The LESS simulation results in two scenes with 30◦ and 270◦ solar azimuth angle (SAA). They are in NIR band, in
30 m resolution with 3800 × 1900 pixels. The upper area has soil reflectance property (lower reflectance), while the nether
area has leaf reflectance property (higher reflectance). (a) is scene 1 with 90◦ SAA; (b) is scene 1 with 270◦ SAA; (c) is the
scene 2 with 90◦ SAA; (d) is scene 2 with 270◦ SAA.

By adopting nine topographic correction methods, the images after correction all
showed different levels of elimination of topographic effects. The PLC model was not
adopted, because the “orthographic” sensor type was simulated in LESS, and thus unfeasi-
ble for the basis of the algorithm.
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The evaluation methods for topographic correction algorithms here included IQR
reduction, RMSE, and bias compared with plane images, and mean reflectance was also
calculated for in-depth understanding of these algorithms. The validation parameters of
topographic correction methods in different images are listed in Table 4.

Table 4. The comparison of topographic correction methods in different simulated images.

SAA = 90◦ SAA = 270◦

RMSE Bias IQR Re-
duction Mean RMSE Bias IQR Re-

duction Mean

Scene 1

Before correction 0.0673 −0.0454 0.3619 0.0664 −0.0455 0.3619
b correction 0.0181 −0.0109 82.26% 0.3964 0.0179 −0.0108 81.88% 0.3965

SCS+C 0.0526 −0.0454 58.43% 0.3619 0.0526 −0.0454 56.72% 0.3620
C 0.0179 −0.0113 86.88% 0.3960 0.0177 −0.0113 86.48% 0.3960

Minnaert+SCS 0.0801 −0.0644 32.86% 0.3430 0.0813 −0.0656 28.38% 0.3417
VECA 0.0472 −0.0454 88.01% 0.3619 0.0472 −0.0455 87.65% 0.3619

Teillet regression 0.0472 −0.0454 82.33% 0.3619 0.0472 −0.0455 82.16% 0.3619
C_landtype 0.0176 −0.0113 86.88% 0.3960 0.0175 −0.0113 86.51% 0.3960

SCS+C_landtype 0.0528 −0.0454 58.39% 0.3620 0.0528 −0.0453 56.87% 0.3620
Teillet_ landtype 0.0467 −0.0454 87.92% 0.3619 0.0467 −0.0455 87.58% 0.3619

Scene 2

Before correction 0.0356 −0.0164 0.3910 0.0354 −0.0171 0.3902
b correction 0.0082 −0.0037 87.61% 0.4036 0.0081 −0.0037 87.40% 0.4036

SCS+C 0.0218 −0.0167 60.41% 0.3906 0.0218 −0.0167 60.04% 0.3906
C 0.0085 −0.0033 89.51% 0.4040 0.0084 −0.0033 89.36% 0.4040

Minnaert+SCS 0.0337 −0.0242 38.63% 0.3831 0.0338 −0.0244 37.05% 0.3830
VECA 0.0180 −0.0163 89.85% 0.3910 0.0186 −0.0171 89.72% 0.3902

Teillet regression 0.0179 −0.0164 83.11% 0.3910 0.0186 −0.0171 83.05% 0.3902
C_ landtype 0.0084 −0.0033 89.38% 0.4040 0.0084 −0.0033 89.27% 0.4040

SCS+C_ landtype 0.0222 −0.0167 60.29% 0.3906 0.0222 −0.0167 59.93% 0.3906
Teillet_ landtype 0.0173 −0.0164 89.67% 0.3910 0.0180 −0.0171 89.59% 0.3902

Consistent with the former sections, the Minnaert+SCS did not show good perfor-
mance with highest RMSE, largest bias, and smallest IQR reduction. Meanwhile, SCS+C
did not offer good results in this evaluation mainly due to the simulation limitations: we
cannot simulate enough trees in such large scenes, but the SCS+C model was put forward
to solve the STS model’s problem in forest areas. Our evaluation here also indicated better
performance of the C model than the SCS+C model in bare land areas. The C model and b
correction model offered better results, which had low RMSE, low bias, and relatively high
IQR reduction.

The VECA and Teillet regression model both produced high IQR reduction, but large
bias and high RMSE. The mean reflectance of the simulated plane images was 0.407, and
bias was found to be related to the mean reflectance value of the uncorrected images,
for example, the bias can reach to −0.045 in scene 1, and the mean reflectance value
of uncorrected is 0.3619, which had about −0.045 deviation compared with the mean
reflectance of plane image. Similar findings were also identified in scene 2. Land type
stratification improved the Teillet regression model’s IQR reduction, but there was little
improvement in the reduction of bias. There was no obvious improvement for the SCS+C
and C model when adopting land type stratification. The RMSE of different algorithms
varied in different scenes; since these algorithms always have empirical parameters, the
performance of them depend largely on the empirical parameters’ calculation.

5. Discussion

In this work, we focused on topographic correction models’ evaluation and inter-
comparison. Based on a large number of images with different terrain conditions and
seasons, the in-depth analysis for topographic correction algorithms was carried out using
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a combination of different evaluation methods. LESS simulation helped us discover some
problems and drawbacks of algorithms which have not been mentioned before.

5.1. Analysis of Evaluation Results

By analyzing the outliers introduced by different algorithms, we could find which
algorithms produced many outliers and invalid data. More outliers appeared in winter,
which can be explained by deep terrain effects causing various problems for different
topographic correction methods. For example, these images with deep terrain effects not
only had self-shadow, but also had considerable cast shadow, which caused deviations for
corrected images [64]. Many invalid values in Minnaert+SCS were generated because of
the exponential form in these algorithms: the area with negative illumination condition
would result in invalid pixels. The PLC model also produced more outliers than other
algorithms, especially in winter times, which is caused by the limitation of path length
computation in rugged terrains, and thus the PLC model may not be a good choice for
steep terrain areas or images with a large solar zenith angle. The number of outliers in C,
SCS+C, and VECA was lower than in the Teillet regression model, and the reason is that
algorithms with ratio format can introduce some invalid values when the denominator is
close to 0, but they are beneficial for scope limitations, while the Teillet regression model
may produce more outliers slightly exceeding the original range once coefficients are not
ideal. Therefore, the land type stratification significantly reduced the outliers produced by
the Teillet regression model, but the effect for the C and SCS+C models was not evident.

The difference between sunlit and shady areas showed the effect of topographic
effects’ removal. However, the images for this evaluation should be carefully selected,
because when terrain orientations determined the surface properties or land type (e.g.,
sunlit area covered by bare land, and shady area covered by snow), this evaluation would
introduce problems in comparison and analysis. Therefore, we only focused on the overall
results, not specific images. The results showed the overcorrection in b correction and Min-
naert+SCS models, and land type stratification improved C, SCS+C, and Teillet regression
models greatly.

The IQR reductions were higher in winter owing to larger topographic effects, but it
also showed large differences in the same footprint in January and November (Figure 7). We
concluded that the different land type resulted in this problem (snow-cover can influence
the model’s parameters calculation largely without land type stratification), and the results
were largely improved by adopting land type stratification for the Teillet regression model.

Many evaluation studies compared the correlation coefficients between reflectance and
illumination angles [6,37–39]. However, the result may not be valid where slope orientation
determines land cover or vegetation growth status [10]. Furthermore, the relation between
reflectance and illumination angle has been incorporated into some topographic correction
models, such as the VECA model and the Teillet regression model, and using the correlation
coefficients again as the evaluation method may not be impartial.

The validation using LESS simulation is an effective way to avoid some assumptions
in the evaluation and can explore the bias between corrected images and “true values”. The
evaluation results by LESS simulation confirm the former comparison, and the C model
performed best in the evaluation with smallest RMSE and least bias (this result was based
on unforested simulations), and it corresponded with the former studies based on synthetic
images [34,41]. In our study, correction bias was concentrated for further analysis based
on LESS simulations for the first time. The bias was found in Teillet regression model
and VECA when the original images had large bias with the simulated plane image and
could be explained by the utilization of mean reflectance in the algorithm, assuming that
the mean reflectance of the image is close to the “true value”. However, the bias would
be introduced into the corrected image when the mean reflectance had large bias from
the “true value”; and the C model also showed slight bias changing with scenes. Based
on this, the mean value was not recommended for stability evaluation for topographic
correction models [38], because the utilization of mean reflectance in some algorithms
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(Teillet regression model and VECA) would show partiality in the comparison. Although
large bias also appeared in SCS+C model, the IQR reduction was not that high and could
be caused by the improper correction of SCS strategy for unforested areas. Due to the
utilization of empirical parameters in these algorithms, the performance of them was
closely related to the parameters’ calculation and the complexity of the surface ground. It
should be noted that the evaluation based on simulation image in our study can offer more
information about different algorithms, but we did not totally depend on it owing to more
complex situations in remote sensing images.

5.2. Summary of Different Topographic Correction Algorithms

Different evaluation indicators aim to assess different aspects of topographic correc-
tion models, so it is necessary to combine these assessment methods to carry out a more
systematic comparison [34,42]. By using different methods to validate algorithms, they
showed diverse applicability in varied conditions. The Teillet regression with land type
stratification offered good results but may produce bias in some conditions, which is ig-
nored in previous studies [34]. One feasible way for bias decrease and model improvement
is to build a high-quality database for parameter fitting [32] instead of training in each
image, which would be beneficial for obtaining high-consistency topographic correction
data. Meanwhile, in high cloud-cover images, using coefficients from a pre-constructed
database is an effective way to provide good estimates.

Owing to the logarithm in the fitting, the negative cos i pixels were removed while
calculating in Minnaert+SCS model; the impossibility of making a considerate description
about the ground information obstructs the further advancement of the algorithm. The
method of calculating path length in steep terrain areas restricted the application of the PLC
model, and the topographic mask should be generated before correction [57]. Meanwhile,
our study focused on Landsat 8 which has a small view zenith angle, and Yin et al. [21]
reported a better performance of the PLC model when the view zenith angle is large.
Without depending on empirical parameters, the PLC model may offer higher quality
correction results for a time series study. The C model and SCS+C model provided similar
performance in outliers and difference between sunlit and shady areas, but the C model
offered better results based on LESS simulation (owing to the bare land simulations).
Hurni et al. [42] found that the Teillet regression model offered the best performance
in most images, but other algorithms can also outperform it in some conditions, which
corresponded with our results, and the land type stratification improved Teillet regression
model significantly in our study. It verified that the Teillet regression model was sensitive to
fitting coefficients and may lead to bad results when the fitting is not ideal, e.g., insufficient
fitting pixels or cloud and cast shadow pixels are not totally removed. The algorithms
with ratio format (SCS+C and C model) would be less sensitive to land type stratification
than the Teillet regression model, because the C parameter is both in the numerator and
the denominator, which can lessen the influence of coefficients in different land types.
However, the ratio format also introduced errors, such as obvious outliers in the image
when the denominator was close to zero.

Land type stratification was found to improve the semi-empirical models, especially
for the Teillet regression model in this study, which is inconsistent with [66]. The main
reason is that the large surface reflectance difference between snow-free and snow-cover
areas can significantly influence the fitting efficiency in some algorithms, and land type
stratification markedly improves the images with high snow-cover (Figure 7). However, the
snow-cover areas were always ignored in previous research [10,66]. Thus, the conclusion
may be conflicting when focused only on a few images with similar land types. Therefore,
it is difficult to thoroughly evaluate algorithms in just a small number of images due to
complicated conditions in mountainous areas, and we highly recommended evaluating
topographic correction methods under different terrain conditions and seasons.

Using a computer with i7-9750H CPU and 16 GB memory for this experiment, the
Teillet regression model took 103 s for each Landsat 8 image, and it was 174 s for the Teillet
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regression with land type stratification, which is acceptable for research and application.
Other topographic correction methods without land type stratification used a similar
amount of time as the Teillet regression model did, while the PLC was the most time
efficient of them all.

5.3. Limitations and Applications

Problems also existed with these algorithms, such as the neglection of cast shadow,
which would introduce some errors while correcting, especially in steep terrain areas.
Therefore, relevant modifications should be made on the model [64]. A simple land type
stratification strategy was used in this study, and it can be improved or replaced by finer
land classification product in the future. The 3D radiative transfer model is time and
memory consuming, and the simulation of a large number of trees in the scene is limited,
which makes it difficult to evaluate the algorithms’ performance in forest areas.

Owing to the above issues in topographic correction algorithms, we here discuss the
precautions that need to be taken when using topographic correction. Some studies have
utilized topographic correction methods for land cover and vegetation classification, and
reached good results in mountains [6,7,35,67]. Since the classification relied more on the
difference of different land types and was not very sensitive to the absolute value of the
image, topographic correction methods can eliminate the difference of the same land cover
pixels in different terrain conditions; thus, it is helpful to apply topographic correction for
image classification.

However, when it comes to surface parameters retrieval, the bias caused by topo-
graphic correction algorithms may exceed the errors in the estimation method itself (e.g.,
large RMSE in scene for some algorithms in Table 4). It was also proven that the utilization
of sloping reflectance directly offered better results than the reflectance after topographic
correction for estimation of albedo [68]. Thus, we recommend users consider the pros
and cons before using a topographic correction algorithm for surface parameter retrieval,
especially for parameters related to radiation, such as surface albedo estimation [69], and
net radiation [70]; and the further developing estimation algorithms for surface parameters
on sloping terrains should couple with the topography rather than apply topographic
corrections [68,71].

6. Conclusions

This study validated the effect of different topographic correction methods in large
areas and different seasons. The advantages and disadvantages in different topographic
correction methods are obvious after comparing a large number of images. Most algorithms
provided worse results in snow-cover areas, while land type stratification could improve
the Teillet regression model. The Teillet regression model, which was most recommended
in previous studies, showed bias in the evaluation using simulated images.

The validation results showed large differences even in the same Landsat footprint
in January and November, and the land type stratification can markedly decrease this
difference for the Teillet regression model. It also indicated the necessity of evaluation
based on a large number of images.

LESS simulation offers an effective way to assess the correction bias, and large bias was
found in the Teillet and VECA model when there was bias between the mean reflectance
value in uncorrected images and the “true reflectance”. We recommend the implementation
of simulation images to evaluate the topographic correction models, which can facilitate
in-depth analysis.

Owing to the issues in different algorithms and complicated conditions in rugged
terrain, we recommended taking into account the pros and cons of topographic correction
methods for surface parameter retrieval in mountain regions and integrating topographic
considerations into mountainous retrieval methods directly rather than adopting topo-
graphic correction before retrieval.
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