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Abstract: Synthetic aperture radar (SAR) can perform observations at all times and has been widely
used in the military field. Deep neural network (DNN)-based SAR target recognition models have
achieved great success in recent years. Yet, the adversarial robustness of these models has received
far less academic attention in the remote sensing community. In this article, we first present a
comprehensive adversarial robustness evaluation framework for DNN-based SAR target recognition.
Both data-oriented metrics and model-oriented metrics have been used to fully assess the recognition
performance under adversarial scenarios. Adversarial training is currently one of the most successful
methods to improve the adversarial robustness of DNN models. However, it requires class labels to
generate adversarial attacks and suffers significant accuracy dropping on testing data. To address
these problems, we introduced adversarial self-supervised learning into SAR target recognition for the
first time and proposed a novel unsupervised adversarial contrastive learning-based defense method.
Specifically, we utilize a contrastive learning framework to train a robust DNN with unlabeled data,
which aims to maximize the similarity of representations between a random augmentation of a SAR
image and its unsupervised adversarial example. Extensive experiments on two SAR image datasets
demonstrate that defenses based on adversarial self-supervised learning can obtain comparable
robust accuracy over state-of-the-art supervised adversarial learning methods.

Keywords: SAR target recognition; adversarial examples; adversarial contrastive learning; deep
neural network

1. Introduction

Synthetic aperture radar (SAR) actively emits microwaves and improves azimuth
resolution through the principle of a synthetic aperture to obtain large-area high-resolution
radar images [1]. SAR images have been widely used for automatic target detection and
recognition in both civil and military applications. Due to their imaging mechanism, differ-
ent terrains in SAR images exhibit several special phenomena such as overlap, shadows,
and perspective shrinkage. Moreover, coherent speckle noises are apparent in SAR images.
It is difficult to manually design effective features for SAR target recognition [2]. With the
rapid development of deep learning technology, deep neural network (DNN) models have
been widely used for SAR target recognition. Shao et al. [3] analyzed the performance of
different DNNs on the MSTAR [4] dataset according to classification accuracy, training time,
and some other metrics to verify the superiority of DNNs for SAR target recognition. Ding
et al. [5] carried out angle synthesis of the training data for DNN-based recognition models.
Ayzel et al. [6] proposed all convolutional neural networks (A-ConvNet), which do not
contain a fully connected layer. Gu and Xu [7] proposed that a wider convolution kernel
was more suitable for a SAR image with stronger speckles noise, taking the multi-scale
feature extraction module as the bottom layer of the network.
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Despite the great success that DNN models have obtained, they have proved to be
very sensitive to adversarial examples: inputs that are specifically designed to cause the
target model to produce erroneous outputs [8]. The vulnerability of DNN models to im-
perceptibly small perturbations raises security concerns from a number of safety-sensitive
applications [9]. Szegedy et al. [8] first discovered that DNNs were very susceptible to
adversarial examples using a box-constrained L-BFGS algorithm. Goodfellow et al. [10]
noted that the linear nature of DNN is the primary cause for its vulnerability to adversarial
perturbations. Based on this theory, they proposed a gradient-based approach to generate
adversarial examples, named the fast gradient sign method (FGSM). Moosavi-Dezfooli
et al. [11] proposed the DeepFool algorithm to simplify L-BFGS and fool deep models, and
thus reliably quantified the robustness of models. Kurakin et al. [12] proposed to incorpo-
rate iterative methods to approximate the inner maximization problem. Moosavi-Dezfooli
et al. [13] further found that the existence of universal adversarial examples by adding very
small perturbation vectors to original images could cause error outputs for different DNNs
with high probability. Although these adversarial examples may remain imperceptible to a
human observer, they can easily fool the DNN models to yield the wrong predictions [9].

So far, there are only a handful of studies [14,15] that explore the threat of adversarial
attacks on DNNs for SAR target recognition. Deep SAR target recognition models are more
likely to suffer from the overfitting problem, resulting in a weaker generalization capability
and greater sensitivity to perturbation [14]. Hence, their vulnerability to adversarial attacks
might be even more serious. An example of adversarial attacks on DNN models for SAR
target recognition is shown in Figure 1. It can be observed that, although the difference
between the adversarial examples and the original ones is too small to be perceived
by human vision, it can fool the DNN model. This phenomenon limits the practical
deployment of DNN models in the safety-critical SAR target recognition field.
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Figure 1. Illustration of adversarial attacks on DNN models for SAR target recognition. The pertur-
bations are amplified ten times for ease of observation.

Adversarial defense methods can enhance adversarial robustness and further lead
to robust SAR target recognition. Among them, adversarial training (AT) and AT-based
defenses, which augment training data with adversarial examples perturbed to maximize
the loss on the target model, remain a highly effective method for safeguarding DNNs
from adversarial examples [9]. Such a strategy requires a large amount of labeled data as
support. The labeling and sample efficiency challenges of deep learning, in fact, are further
exacerbated by its vulnerability to adversarial attacks. The sample complexity of learning
an adversarially robust model with current methods is significantly higher than that of
standard learning [16]. Additionally, AT-based techniques have been observed to cause an
undesirable decline in standard accuracy (the classification accuracy on unperturbed inputs)
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while increasing robust accuracy (the classification accuracy on worst-case perturbed
inputs) [16–18].

Recent research [19] proposed the use of unlabeled data for training adversarially
robust DNN models. Self-supervised learning holds great promise for improving rep-
resentations with unlabeled data and has shown great potential to enhance adversarial
robustness. Hendrycks et al. [17] proposed a multi-task learning framework that incorpo-
rated a self-supervised objective to be co-optimized with the conventional classification
loss. Jiang et al. [18] improved robustness by learning representations that were con-
sistent under both augmented data and adversarial examples. Chen et al. [16] general-
ized adversarial training to different self-supervised pretraining and fine-tuning schemes.
Other studies [18,20,21] exploited contrastive learning to improve model robustness in
unsupervised/semi-supervised settings and achieved advanced robustness.

Though a plethora of adversarial defense methods has been proposed, the correspond-
ing evaluation is often inadequate. For example, by evaluating simple white-box attacks,
most adversarial defenses pose a false sense of robustness by introducing gradient masking,
which can be easily circumvented and defeated [22]. Therefore, rigorous and extensive
evaluation of adversarial robustness is necessary for SAR target recognition.

To address the aforementioned issues, in this paper, we systematically analyzed the
effect of adversarial attacks and defenses on DNNs and utilized adversarial self-supervised
learning to enhance robustness for SAR target recognition. The main contributions of this
article are summarized as follows:

(1) We systematically evaluated adversarial attacks and defenses in SAR target recogni-
tion tasks using both data-oriented robustness metrics and model-oriented robustness
metrics. These metrics provide detailed characteristics of DNN models under adver-
sarial scenarios.

(2) We introduced adversarial self-supervised learning into SAR target recognition tasks
for the first time. The defenses based on adversarial self-supervised learning obtained
comparable robustness to supervised adversarial learning approaches without using
any class labels, while achieving significantly better standard accuracy.

(3) We propose a novel defense method, unsupervised adversarial contrastive learning
(UACL), which explicitly suppresses vulnerability in the representation space by
maximizing the similarity of representations between clean data and corresponding
unsupervised adversarial examples.

The rest of this paper is organized as follows. In Section 2, we describe the adversarial
robustness of SAR target recognition. In Section 3, we review the defenses based on
adversarial self-supervised learning and propose our method, UACL. In Section 4, we
present the information on datasets used in this paper and the experimental results. Our
conclusions and other discussions are summarized in Section 5.

2. Adversarial Robustness of SAR Target Recognition
2.1. Definition of Adversarial Robustness

A DNN model for SAR target recognition can be described as a function f (x) : X→ Y
parameterized by θ ∈W, which maps input x ∈ X to label y ∈ Y. Given data distribution
D over pairs (x, y), the goal of the learning algorithm is to find θ that can minimize the
expected risk, i.e.,

min
θ

E(x,y)∼D[L(x, y; θ)] (1)

where L(x, y; θ) is the cross-entropy classification loss between the output of the DNN
model and the true labels. In practice, we do not have access to the full data distribution D
and only know a subset of training samples

{
(xi, yi)

}N
i=1 ∼ DN . Thus, θ cannot be obtained

by minimizing Equation (1), and it is usually obtained as the solution to the empirical risk
minimization problem:

min
θ

1
N

N

∑
i=1

L(xi, yi; θ) (2)
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The difference between the expected risk and the empirical risk attained by DNN
model fθ is known as the generalization gap. Generally speaking, a DNN model achieves
strong robustness when its generalization gap is small [23]. The amount and quality of
training datasets are critical to training robust models.

A DNN model can extract image feature, and its entries of the output of the last
layer zL ∈ RDL with DL = C are generally referred to as logits. To be more interpretable,
logits are normally mapped to a set of probabilities pθ(x) ∈ [0, 1]C using a soft maximum
operator, i.e.,

[pθ(x)]k =
exp([zL]k)

∑C
c=1 exp [zL]c

(3)

The predicted class is the index of the highest estimated probability.

fθ(x) = argmax
k∈{1,...,C}

[pθ(x)]k (4)

A notable feature of most DNNs is that, in most cases, the decision boundary appears
relatively far from any typical sample. For most DNNs used in SAR target recognition, one
needs to add random noise with a very large variance, σ2, to fool a model. Intriguingly, the
robustness to random noise contrasts with the extra vulnerability of DNNs to adversarial
perturbations [8]. Surprisingly, we can always find adversarial examples for any input,
which suggests that some directions for which the decision boundary is very close to
the input sample always exist. Adding perturbation in such a direction can fool the
model easily.

We can define adversarial perturbation as follows:

min
δ∈RD

Q(δ) s.t. fθ(x + δ) 6= fθ(x), δ ∈ C (5)

where Q(δ) represents a general objective function, C denotes the constraints of adversarial
perturbations, and x+ δ are generally referred to as adversarial examples. In all adversarial
attacks, Q(δ) and C are mainly instantiated by two methods. One method represents the
notion of the smallest adversarial perturbation required to cross the decision boundary of
DNN models without regard to constraints (C = ∅):

Q(δ) = ‖δ‖p = (
D

∑
k=1

([δ]k)
p)

1/p

(6)

The other method represents the worst-case perturbation, maximizing the loss of
model in given radius ε around an input sample and the ε is limited such that the perturba-
tion is imperceptible:

Q(δ) = −L(x + δ, y; θ) (7)

C =
{

δ ∈ RD : ‖δ‖p ≤ ε
}

(8)

The fact that we can craft adversarial examples easily exposes a crucial vulnerability
of current state-of-the-art DNNs. To address this issue, it is important to define some target
metric to quantify the adversarial robustness of DNNs. Corresponding to the above two
strategies to craft adversarial perturbations, we can define the adversarial robustness ρ( fθ)
of a DNN in two ways. One measures the adversarial robustness of a DNN as the average
distance of samples to the decision boundary:

ρ∗p( fθ) = E(x,y)∼D[‖δ∗p(x)‖p
] (9)

Under this metric, adversarial robustness becomes purely a property of the DNN, and
it is agnostic to the type of adversarial attack. Making a DNN more robust means that its
boundary is pushed further away from the samples.



Remote Sens. 2021, 13, 4158 5 of 27

The other approach defines adversarial robustness as the worst-case accuracy of a
DNN that is subject to an adversarial attack:

ρε
p( fθ) = P(x,y)∼D( fθ(x + δε

p(x)) = y) (10)

This quantity is relevant from a security perspective, as it highlights the vulnerability
of DNNs to certain adversarial attacks. Constraints C reflect the attack strength of the
adversary and combine the choice of metric such as Lp norm.

In fact, measuring the “true” adversarial robustness in terms of Equation (9) or Equa-
tion (10) directly is challenging. The average distance of samples to the decision boundary
in Equation (9) takes too many computing resources to achieve. For most DNNs used in
practice, a closed-form analysis of their properties is not possible with our current mathe-
matical tools. In practice, we can simplify the calculation and estimate the approximate
results in Equation (9). As for Equation (10), The current adversaries are not optimal in
computing the adversarial perturbation. In practice, we usually substitute standard adver-
sarial examples (projected gradient descent, PGD) for the optimal adversarial examples to
measure adversarial robustness.

2.2. Adversarial Robustness Evaluation

There have been a number of works that rigorously evaluate the adversarial robust-
ness of DNNs [14,24]. However, most of them focus on providing practical benchmarks for
robustness evaluations, ignoring the significance of evaluation metrics. Simple evaluation
metrics result in incomplete evaluation, which is far from satisfactory for measuring the
intrinsic behavior of a DNN in an adversarial setting. Therefore, incomplete evaluation
cannot provide comprehensive understandings of the strengths and limitations of de-
fenses [25]. To mitigate this problem, we leverage a multi-view robustness evaluation
framework to evaluate adversarial attacks and defenses. This evaluation can be roughly
divided into two parts: model oriented and data oriented [25], as shown in Figure 2.
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Figure 2. With 11 evaluation methods in total, our comprehensive robustness evaluation framework focuses on data and
model, which are the key factors in an adversarial setting.

2.2.1. Model-Oriented Robustness Metrics

To evaluate the robustness of a model, the most intuitive approach is to measure
its performance in an adversarial setting. By default, we use PGD as standard attack to
generate adversarial examples with the perturbation magnitude ε under L∞ norm.



Remote Sens. 2021, 13, 4158 6 of 27

Standard Accuracy (SA). Classification accuracy on clean data is one of the most im-
portant properties in an adversarial setting. A model achieving high accuracy against
adversarial examples but low accuracy on clean data will not be employed in practice.

Robust Accuracy (RA). Classification accuracy on adversarial examples (L∞ PGD by
default) is the most important property for evaluating model robustness.

Average Confidence of Adversarial Class (ACAC). Confidence of adversarial examples
on misclassification gives further indications of model robustness. ACAC can be de-
fined follows:

ACAC(f, D, Aε,p) =
1
m

m

∑
i=1

Pyadv
(Aε,p(xi)) (11)

where D = {X, Y} is the test set, Aε,p is the adversary, m is the number of adversarial ex-
amples that attack successfully, and Pyadv

is the prediction confidence of the incorrect class.
Relative Confidence of Adversarial Class (RCAC). In addition to ACAC, we also use RCAC

to further evaluate to what extent the attacks escape from the ground truth relatively:

RCAC(f, D, Aε,p) =
1
m

m

∑
i=1

(Pyadv
(Aε,p(xi))/Py(Aε,p(xi))) (12)

where Py is the prediction confidence of the true class.
Noise Tolerance Estimation (NTE). Given the adversarial examples, NTE further calcu-

lates the gap between the probability of a misclassified class and the maximum probability
of all other classes as follows:

NTE(f,D,Aε,p) =
1
m

m

∑
i=1

Pyadv
(Aε,p(xi)−maxPj(Aε,p(xi))) (13)

Empirical Boundary Distance (EBD). EBD calculates the minimum distance to the model
decision boundary in a heuristic way. A larger EBD value means a stronger model in some
way. Given a model, it first generates a set V of m random orthogonal directions [26]. Then,
it estimates the root mean square (RMS) distances φi(V) for each direction in V until the
prediction changes. Among φi(V), di denotes the minimum distance moved to change the
prediction. Then, the EBD is defined as follows:

EBD =
1
n

n

∑
i=1

di, di = minφi(V) (14)

where n is the number of images.
Guided Backpropagation. Given a high-level feature map, the “deconvnet” inverts the

data flow of a DNN, going from neuron activations in the given layer down to an image
sample. Typically, a single neuron is left as non-zero in the high-level feature map. Then,
the resulting reconstructed image shows the part of the input image that is most strongly
activating this neuron and, hence, the part that is most discriminative to it [27].

Extremal perturbations [28]. Extremal perturbations perform an analysis of the effect of
perturbing the network’s input on its output, which selectively deletes (or preserve) parts
of the input sample and observe the effect of that change to the DNN’s output. Specifically,
it would like to find a mask assigned to each pixel and use said mask to induce a local
perturbation of the image. Then, it can find the fixed-size mask that maximizes the model’s
output and further visualize the activation of model.

2.2.2. Data-Oriented Robustness Metrics

We use data-oriented metrics considering data imperceptibility, including average
Lp perturbation (ALPp), average structural similarity (ASS), perturbation sensitivity dis-
tance (PSD), and neuron coverage, including top-K neuron coverage (TKNC) to mea-
sure robustness.
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ALPp. To measure the computer visual perceptibility of adversarial examples, we use
the average Lp perturbation (ALPp) as:

ALPp =
1
m

m

∑
i=1
‖xi

adv − xi‖
p

(15)

ASS. To evaluate the human visual imperceptibility of adversarial examples, we
further use structural similarity (SSIM) as a similarity measurement:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(16)

where µx and µy are the mean value of x and y, σ2
x and σ2

y are the variance of x and y, and
σxy is the covariance of x and y. ASS can be defined as the average SSIM similarity between
clean data and the corresponding adversarial example:

ASS =
1
m

m

∑
i=1

SSIM(xi
adv, xi) (17)

The higher the ASS, the more imperceptible the adversarial perturbation.
PSD. Based on the contrast masking theory, PSD is proposed to evaluate human

perception of perturbations [29]:

PSD =
1
n

n

∑
i=1

t

∑
j=1

δi
jSen(R(xi

j)) (18)

where t is the total number of pixels and δi
j represents the j-th pixel of the i-th image. R(xi

j)

is the square surrounding region of xi
j, and Sen(R(xi

j)) = 1/std(R(xi
j)). Evidently, the

smaller the PSD, the more imperceptible the adversarial perturbation.
TKDC. Given test input and neurons, the i-th layer uses topk (x,i) to denote the neurons

that have the largest k (3 by default) outputs. TKNC measures how many neurons were
once the most active k neurons on each layer. It is defined as the ratio of the total number
of top-k neurons and the total number of neurons in a DNN:

TKNC(D, k) =

∣∣Ux∈D(U1≤i≤ltopk(x, i))
∣∣

N
(19)

The neurons from the same layer often play similar roles, and active neurons from
different layers are important indicators to characterize the major functionality of a DNN.
A high TKNC means the data can activate the model more fully.

3. Adversarial Self-Supervised Learning
3.1. Drawbacks of Adversarial Training

AT is currently one of the most promising ways to obtain the adversarial robustness of
a DNN model by augmenting the training set with adversarial examples [10], as shown in
Figure 3a. Specifically, AT minimizes the worst-case loss within some perturbation region
for the models. Though we cannot find a worst-case perturbation, an implication of this
claim is that, if a model is robust to PGD, it is also robust against any other adversary;
as such, AT with PGD adversary (i.e., PGD AT) is generally thought to yield certain
robustness guarantees. Setting the x ∈ X as a training sample, y ∈ Y as a corresponding
label, and a DNN model as vv, where v is the parameter of the model, AT first generates
the adversarial examples. Then, AT uses adversarial examples x + δ′ to solve the following
min–max optimization:

argminE(x,y)∼C[maxLCE(v, x + δ′, y)] (20)
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and ACL(DS) share all weights; however, adversarial and standard encoders use independent
BN parameters.

Such an AT strategy results in the following challenges. (a) Data dependency: There is
a significant generalization gap in adversarial robustness between the training and testing
datasets. It has been observed that such a gap gradually increases from the middle of
training, i.e., robust overfitting, which makes practitioners consider heuristic approaches
for a successful optimization [30]. However, robust overfitting is inevitably sensitive to
data in the AT-based method. The sample complexity of learning a robust representation
with AT-based methods is significantly higher than that of standard learning. Insufficient
data will widen the gap and further lead to poor robustness. (b) Accuracy drop: Models
trained with AT lose significant accuracy in terms of the original distribution, e.g., in our
experiment, ResNet18 accuracy on the MSTAR test set dropped from 97.65% to 86.23%,
without any adversarial attacks.

3.2. Adversarial Self-Supervised Learning Defenses

The latest studies have introduced adversarial learning into self-supervision. These
defenses utilize a contrastive learning framework to pretrain an adversarially robust DNN
with unlabeled data. Conventional contrastive learning aims to reduce the distance be-
tween representations of different augmented views of the same image (positive pairs) and
increase the distance between representations of augmented views from different images
(negative pairs) [31]. This fits particularly well with AT, as one cause of adversarial fragility
could be attributed to the non-smooth feature space near samples, i.e., small perturbations
can result in large feature variations and even label change. Adversarial contrastive pre-
training defenses such as adversarial contrastive learning (ACL) [18] and robust contrastive
learning (RoCL) [20], which both augment positive samples with adversarial examples,
have led to state-of-the-art robustness.

RoCL proposed a framework to train an adversarially robust DNN, as shown in
Figure 3b, which aimed to maximize the similarity between a random augmentation of
a data sample and its instance-wise adversarial example, and to minimize the similarity
between a data sample and another sample:
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L(x, {xpos}, {xneg}) = −log
∑{zpos} exp(sim(z,

{
zpos

}
)/τ)

∑{zpos} exp(sim(z, {zpos})/τ) + ∑{zpos} exp(sim(z,
{

zneg
}
)/τ)

(21)

where z, {zpos}, zneg are corresponding latent feature vectors of image data. Specifically,
RoCL first generates instance-wise adversarial examples as follows:

t(x)i+1 = ΠB(t(x),ε)(t(x)
i + αsign(∇t(x)i L(t(x)i, {t′(x)}, {t(x)neg})) (22)

where t(x) and t′(x) are transformed images with stochastic data augmentations, and
t(x)neg are examples of other samples. Then, we used the instance-wise adversarial exam-
ples as additional elements in the positive set and formulated the objective as follows:

Ltotal = L(t(x), {t′(x), t(x)adv}, {t(x)neg}) + L(t(x)adv, {t′(x)}, {t(x)neg}) (23)

After optimization, we can obtain an adversarially robust pretrained DNN.
ACL contains all kinds of workflows to leverage a contrastive framework to learn

robust representations, including ACL(A2A), ACL(A2S), and ACL(DS). Among these,
ACL(DS) achieves advanced performance, and its workflow is as shown in Figure 3c.
Specifically, for each input, ACL(DS) augments into it twice (creating four augmented
views): t(x), t′(x) by standard augmentations, and instance-wise adversarial examples
t(x)adv, t′(x)adv. The final unsupervised loss consists of a contrastive loss term on the
former pair (through two standard branches) and another contrastive loss term on the latter
pair (through two adversarial branches); the two terms are, by default, equally weighted:

Ltotal = L(t(x), {t′(x)}, {t(x)neg}) + L(t(x)adv, {t′(x)adv}, {t(x)neg}) (24)

3.3. Unsupervised Adversarial Contrastive Learning

Unsupervised adversarial contrastive learning (UACL) aims to pretrain a robust DNN
that can be used in target recognition tasks by adversarial self-supervised learning. As
shown in Figure 4, the framework of UACL consists of a target network, f, with parameter
ξ and an online network, q, with parameter θ. The online network consists of three parts:
an encoder, a projector, and a predictor, while the target network does not have a predictor.
Specifically, the encoder is a DNN (ResNet-18 excluding the fully connected (FC) layer
by default) that can represent SAR image effectively. The projector and predictor are
multi-layer perceptron (MLP) made up of a linear layer, followed by batch normalization
(BN), rectified linear units (ReLU), and a final linear layer that outputs a 256-dimensional
feature vector. The data argumentation contains random cropping, random color distortion,
random flip, and Gaussian blur.
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During training, UACL leverages the unlabeled data to train the Siamese networks,
whose core represents the adversarial example close to that of the clean data.

First, UACL crafts unsupervised adversarial examples as positive samples. Specifi-
cally, given an unlabeled SAR image input x, UACL adds perturbation δ to it to alter its
representation as much as possible by maximizing the contrastive similarity loss between
the positive samples as follows:

L , ‖ f (t(x))− q(xi)‖
2
2 =

〈
f (t(x)), q(xi)

〉
‖ f (t(x))‖2

2 · ‖q(xi)‖2
2

(25)

xi+1 = ΠB(x,ε)(x
i + α sign(∇xi L(θ, ξ, xi, t(x)))) (26)

Second, the UACL utilizes unsupervised adversarial examples x + δ to optimize the
parameters of the Siamese network via contrastive learning. The adversarial contrastive
learning objective is given as the following min–max formulation:

argmin
θ

Ex∼C[maxL(θ, ξ, xi, t(x))] (27)

where C represents data distribution and t represents data augmentation. It should be noted
that the input of the online network is not augmented. The augmentation of clean data
can increase diversity to ensure robustness, but it is not suitable for adversarial examples.
Data augmentation before an unsupervised adversarial attack may reduce the effect of the
enhanced robustness.

In every training step, UACL minimizes loss Lθ,ξ by optimizing weight θ but without
ξ (i.e., stop-gradient), as shown in Figure 4. Weight ξ is updated later with θ by EMA. The
dynamics of UACL can be summarized as follows:

θ ← optimizer
(
θ,∇θ Lθ,ξ , η

)
(28)

ξ ← τξ + (1− τ)θ (29)

where η is the learning rate and τ is the target decay rate. Algorithm 1 summarizes the
progress of UACL.

Algorithm 1 summarizes the progress of UACL.

Input: Dataset C, weight of online network θ, and target network ξ,
for all number of training iteration do

for all minibatch B = {x1, x2, . . . , xn} do
Generate unsupervised adversarial examples from clean data

xi+1 = Px,ε

(
xi + αsign

(
∇xi L

(
θ, t(x), xi

)))
L = 1

n ∑n
k=1

f (t(xk)),q(xi
k)

f (t(xk))2·q(xi
k)2

Optimize the weight θ over L
θ ← optimizer(θ,∇θ L, η)

Update the weight ξ

ξ ← τξ + (1− τ)θ
end for

end for

Through the above pretraining, we can obtain a robust encoder, gϕ, without using
any labeled data. However, since the encoder is trained for identity-wise classification, it
cannot be directly used for class-wise SAR target recognition. Thus, we need to fine-tune
the robust encoder finally to obtain a CNN model vv (i.e., ResNet18) as follows:

argmin
v

E(x,y)∼CLCE(v, x, y) (30)
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where all the parameters of the model are optimized according to LCE.
UACL can also be combined with supervised defenses, such as tradeoff-inspired

adversarial defense via surrogate-loss minimization (TRADES) [32] and adversarial training
fast is better than free (ATFBF) [33], to achieve composite defenses. Specifically, we first
fine-tune the pretrained model from UACL to obtain a classifier and then use the AT-based
defense to enhance the robustness of the above classifier once again.

4. Experimental Results

In this section, we used nine attack algorithms to attack nine DNNs trained on
MSTAR [4] and FUSAR-Ship [34] datasets, and further used six defense methods to enhance
adversarial robustness. Specifically, the adversarial attacks include gradient-based white-
box attack: FGSM, PGD, and Auto-PGD (APGD) [35]; boundary-based white-box attacks:
DeepFool and Carlini and Wagner Attacks (CW); score-based black-box attacks: Square-
Attack and Sparse Random Search (Sparse-RS); decision-based black-box attacks: Hop-
SkipJump Attack. The defenses include AT, TRADES [32], ATFBF [33], RoCL, ACL, UACL,
and composite defenses (UACL+TRADES and UACL+ATFBF). The DNN models include
ResNet18, ResNet50, ResNet101 [36], DenseNet121, DenseNet201 [37], MobileNet [38],
ShuffleNet [39], A-ConvNet, and A-ConvNet-M [40]. At the end, the experimental results
are analyzed comprehensively.

4.1. Data Descriptions

(1) MSTAR [4] Dataset: MSTAR was produced by the US Defense Advanced Research
Projects Agency using high-resolution spotlight SAR to collect SAR images of various
Soviet military vehicles. The collection conditions for the MSTAR images are divided into
two types: standard operating condition (SOC) and extended operating condition (EOC).
In this article, we use SAR images collected by SOC, whose details are as shown in Table 1.
The dataset includes ten target classes with different sizes. To simplify recognition, we
resized the images to 128 × 128. The training dataset was collected at a 17◦ imaging side
view, and the test dataset was collected at a 15◦ imaging side view [14]. Figure 5 shows
example images for each of the classes in MSTAR.

Table 1. Details of MSTAR, including target class and data number.

Target Class Training Number Testing Number

2S1 299 274
BMP2 233 296

BRDM2 298 274
BTR60 256 195
BTR70 233 196

D7 299 274
T62 299 273
T72 232 196

ZIL131 299 274
ZSU234 299 274

(2) FUSAR-Ship Dataset: FUSAR-Ship is the high-resolution AIS dataset obtained by
a GF-3 satellite, which is used for ship detection and recognition. The root node is the
maritime target, which can be divided into two branches: ship and non-ship. The ship node
includes almost all types of ships. In this paper, we selected four kinds of sub-class targets
for the experiment. Specifically, the experimental data contain BulkCarrier, CargoShip,
Fishing, and Tank, which were divided into the training set and the test set according to the
ratio of 0.8 to 0.2. The details of this dataset are as shown in Table 2. To simplify recognition,
we resized the images to 512 × 512. Figure 6 shows example images for each of the classes
in FUSAR-Ship.
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4.2. Experimental Design and Settings

The experiments were conducted in three parts. In the first part, we evaluated nine
common DNN models for SAR target recognition against both standard attack (PGD)
with different Lp norm limit and some other attacks. In the second part, we evaluated
the defense methods against adversarial attacks. Finally, the third part visualized how
adversarial attacks and defenses changed the activation of the DNN model.

We implement the experiments with the Pytorchplatform. All DNN models were
initialized with random parameters. We used the optimizer Adam to train the networks
with a learning rate of 1 × 10−3 and a batch size of 16 in all supervised learning for
100 epochs and a learning rate of 3 × 10−4 and a batch size of 8 for 200 epochs in all
unsupervised learning. By default, we chose ResNet18 as the backbone in all defense
experiments. As for UACL, we chose τ = 0.99 as the target decay rate. The experiments
were carried out with a computer that ran a Windows 7 system on a 3.60 GHz Intel(R)
i9-9900KF 64-bit CPU with 32 GB of RAM and one NVIDIA GeForce RTX 2080 Ti GPU
with 11 GB. Moreover, it should be noted that all experimental adversarial examples were
crafted to attack the standard classifier in view of unified measurements and the wide use
of a standard model.
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4.3. Evaluation on Adversarial Attacks

In this section, we evaluate the robustness of different DNN models in adversar-
ial settings. The quantitative classification results of standard attack are presented in
Tables 3 and 4. It can be observed that DNNs can yield good performance on the classifica-
tion of original clean data in both datasets, especially MSTAR, which contains adequate
data. All DNN models of MSTAR performed poorly against L∞ attacks, whose robust
accuracy dropped by more than 90%, while those of FUSAR-Ship all dropped to less than
30%. As for L2 and L1 attacks, most MSTAR DNN models still maintained high accuracy,
except for lightweight networks (ShuffleNet and MobileNet). However, in the classification
of the L2 and L1 FUSAR-Ship adversarial examples, the performance of DNN models
differs greatly. Even though their structures are similar, DenseNet121 and DenseNet201
show completely different performances. Matching a SAR image dataset with a suitable
DNN can lead to higher robustness.

Table 3. Classification accuracy of MSTAR models against standard adversarial attack (PGD). The adversarial examples can
be divided into L∞ norm, L2 norm, and L1 norm limited attacks.

Clean Data

Adversarial Examples

L∞ L2 L1

8/255 16/255 0.25 0.5 7.84 12

ResNet18 97.65 ± 0.28 2.02 ± 0.08 1.86 ± 0.04 62.60 ± 0.85 17.53 ± 0.47 86.23 ± 1.33 76.87 ± 1.47
ResNet50 97.86 ± 0.12 1.73 ± 0.07 1.65 ± 0.07 56.41 ± 0.87 19.51 ± 0.68 75.18 ± 1.58 59.01 ± 1.21
ResNet101 98.68 ± 0.25 1.53 ± 0.11 1.36 ± 0.12 56.25 ± 1.16 15.13 ± 0.97 72.49 ± 1.02 57.73 ± 0.93

DenseNet121 98.56 ± 0.13 0.82 ± 0.08 0.37 ± 0.13 47.67 ± 2.07 6.02 ± 1.28 86.35 ± 2.47 69.44 ± 1.84
DenseNet201 98.68 ± 0.07 0.66 ± 0.09 0.08 ± 0.15 52.82 ± 2.12 7.46 ± 1.67 84.45 ± 3.11 69.94 ± 2.03

MobileNet 98.23 ± 0.17 2.31 ± 0.06 1.32 ± 0.07 10.31 ± 2.15 3.46 ± 1.35 67.09 ± 1.09 35.09 ± 1.04
ShuffleNet 95.01 ± 0.78 1.48 ± 0.06 1.32 ± 0.09 9.24 ± 1.45 3.09 ± 1.22 74.64 ± 1.38 23.92 ± 0.79
A-ConvNet 99.79 ± 0.84 0.12 ± 0.01 0.12 ± 0.01 71.84 ± 2.46 17.73 ± 0.38 94.39 ± 2.46 83.55 ± 2.34

A-ConvNet-M 98.14 ± 0.33 1.98 ± 0.03 1.69 ± 0.07 68.78 ± 2.73 21.85 ± 1.52 87.05 ± 1.10 73.15 ± 1.22

Table 4. Classification accuracy of FUSAR-Ship models against standard adversarial attack (PGD).

Clean Data

Adversarial Examples

L∞ L2 L1

8/255 16/255 0.25 0.5 7.84 12

ResNet18 69.77 ± 2.32 8.14 ± 2.32 8.14 ± 2.32 16.28 ± 2.32 13.95 ± 2.32 53.49 ± 3.49 37.21 ± 3.49
ResNet50 68.60 ± 3.49 4.65 ± 1.16 4.65 ± 1.16 13.95 ± 2.32 12.79 ± 1.16 50.00 ± 2.32 37.21 ± 2.32
ResNet101 70.93 ± 4.65 29.07 ± 2.32 29.07 ± 2.32 25.58 ± 3.49 20.93 ± 2.32 53.49 ± 3.49 45.35 ± 2.32

DenseNet121 66.28 ± 4.65 24.42 ± 2.32 24.42 ± 2.32 11.63 ± 2.32 6.98 ± 1.16 59.30 ± 3.49 41.86 ± 3.49
DenseNet201 68.60 ± 4.65 29.06 ± 3.49 29.07 ± 2.32 30.23 ± 3.49 24.42 ± 2.32 68.60 ± 2.32 55.81 ± 3.49

MobileNet 63.95 ± 4.65 29.07 ± 4.65 29.07 ± 2.32 20.93 ± 1.16 20.93 ± 1.16 22.09 ± 1.16 23.26 ± 2.32
ShuffleNet 45.35 ± 5.81 26.74 ± 3.49 26.74 ± 2.32 29.07 ± 2.32 29.07 ± 3.49 38.37 ± 2.32 36.05 ± 2.32
A-ConvNet 81.34 ± 3.49 5.81 ± 2.32 5.81 ± 2.32 48.83 ± 3.49 26.74 ± 2.32 63.95 ± 2.32 56.98 ± 3.49

A-ConvNet-M 70.93 ± 2.32 25.58 ± 4.65 25.58 ± 2.32 31.39 ± 2.32 26.74 ± 3.49 43.02 ± 3.49 36.05 ± 2.32

The classification results of different adversarial attacks are presented in Tables 5 and 6.
It can be seen that all kinds of adversarial attack, especially the gradient-based and
boundary-based attacks, can effectively reduce the classification accuracy to a very low
level. Sparseness-based attacks (Sparse-RS, SparseFool), which are easy to implement in
SAR target recognition, also lead to low robust accuracy. PGD and APGD behave well in
attacking all kind of models in the classification of both MSTAR and FUSAR-Ship datasets.
The defense of PGD and APGD should be a priority in evaluation. Additionally, models
with a high standard of accuracy are not necessarily more robust. For example, A-ConvNet
performs well in classifying clean data but shows poor robustness against most kinds of
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adversarial attacks. Lightweight networks show strong robustness when facing boundary-
based attacks (DeepFool and CW) and poor robustness against other attacks. Residual
networks such as ResNet18, ResNet101, and DenseNet201 behave well in the classification
of black-box adversarial examples. A-ConvNet and A-ConvNet m are more robust against
sparseness-based attacks.

The comprehensive evaluation results are presented in Tables 7 and 8. According to the
results of RCAC, ACAC, and NTE, the model had a high confidence in the misclassification
of white-box adversarial examples; this is difficult to correct. The EBD of the model depends
on the data type and model structure. The EBD of MSTAR classification models is almost
the same, but the EBD of the FUSAR-Ship dataset is different. On the whole, the model
with a small EBD is less robust, such as ResNet18, ResNet50, and A-ConvNet. However,
this does not equate to AA; for example, DenseNet121 has a small EBD and a comparatively
high AA. We can see the importance of data distribution for AA. The PGD adversarial
examples under the L∞ limit also obtained similar results in L0 ALPp evaluation. However,
in L2 ALPp evaluation, it showed a great difference, and this will affect the attack’s effect
to some extent. The perceptive evaluation of human vision is related to that of computer
vision, but it also shows some differences. For example, PGD adversarial examples of the
ShuffleNet model in the MSTAR dataset have lower computer vision similarity and higher
human vision similarity compared to the A-ConvNet m model. TKNC is generally small
and the smallest one is only 0.02, showing that DNN can hardly keep the whole network
active to classify adversarial examples.

4.4. Evaluation of Adversarial Defenses

In this section, we evaluate the models with defense methods, including AT, TRADES,
ATFBF, RoCL, ACL, and UACL, as well as those with composite defenses and no-defense
but with a pretraining method, including SimCLR and BYOL. Furthermore, we evaluate
models trained with fewer data to simulate a situation in which there are insufficient data.

The classification results of adversarial defenses against standard attack are presented
in Tables 9 and 10. Models with defense are significantly more robust than no-defense
models. AT-based defenses obtain stable adversarial accuracy, especially in the face of
perturbations with significant power. Their robust accuracy decreases very little, but
this is at the expense of standard accuracy. Adversarial contrastive pretraining defenses
can improve robustness and hardly reduce standard accuracy. This low-cost method for
enhancing model robustness has potential in SAR target recognition tasks. Compared with
a standard model, UACL increases robustness accuracy by 78.90% at the cost of only a
2.56% decline in standard accuracy. Compared with AT-based defense methods, UACL
behaves better in the classification of clean data and L2, L1 adversarial examples, yielding
similar robust accuracy in the classification of L∞ adversarial examples. Combining UACL
with ATFBF can result in the most advanced performance in the classification of both clean
data and adversarial examples. Additionally, the results of SimCLR and BYOL are also
notable. They can increase the accuracy of clean data and L2, L1 adversarial examples,
demonstrating the potential of utilizing unlabeled data to enhance adversarial robustness.

The comprehensive evaluation results of adversarial defenses against different ad-
versarial attacks are presented in Tables 11 and 12. It can be seen that the robustness of
the models is transferable. A model that is robust to PGD has a high probability of being
robust against other attacks. AT-based defenses behave well in defending gradient-based
attacks, while adversarial contrastive pretraining defenses perform better in defending
boundary-based attacks. As for sparseness-based attacks and black-box attacks, the above
two defenses have a similar performance. Compared with TRADES, UACL yields no-
table improvements in standard accuracy by 4.24% and robust accuracy (PGD) by 0.05%;
this makes UACL more appealing over baselines in SAR target recognition. Moreover,
it is noteworthy that combining UACL with ATFBF or TRADES leads to the best robust-
ness against almost all kinds of attack. Composite defense has a unique advantage in
enhancing robustness.
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Table 5. Classification accuracy of MSTAR models against different kinds of adversarial attack.

Method Clean Data PGD FGSM APGD Deep Fool CW Sparse-RS Sparse Fool Square Attack Hop Skip
Jump

ResNet18 97.65 ± 0.28 2.02 ± 0.08 3.01 ± 0.57 2.02 ± 0.05 2.10 ± 0.06 14.85 ± 0.79 63.59 ± 0.84 51.76 ± 0.86 70.47 ± 2.44 13.81 ± 0.76
ResNet50 97.86 ± 0.12 1.73 ± 0.07 9.61 ± 0.66 1.32 ± 0.05 1.94 ± 0.13 12.29 ± 0.47 62.93 ± 0.92 50.98 ± 0.69 58.68 ± 1.76 9.36 ± 0.55

ResNet101 98.68 ± 0.25 1.53 ± 0.11 12.33 ± 0.93 1.36 ± 0.07 1.73 ± 0.26 10.56 ± 0.77 61.94 ± 0.95 48.98 ± 0.93 60.66 ± 1.57 14.72 ± 0.87
DenseNet121 98.56 ± 0.13 0.82 ± 0.08 6.14 ± 1.64 0.82 ± 0.09 1.32 ± 0.14 18.68 ± 1.56 60.70 ± 1.21 50.32 ± 0.98 57.24 ± 1.22 8.74 ± 0.58
DenseNet201 98.68 ± 0.07 0.66 ± 0.09 6.02 ± 1.06 0.62 ± 0.09 1.03 ± 0.25 16.29 ± 1.36 60.82 ± 1.09 51.30 ± 0.90 48.00 ± 0.74 16.33 ± 0.80

MobileNet 98.23 ± 0.17 2.31 ± 0.06 4.58 ± 0.60 2.10 ± 0.05 3.38 ± 0.20 31.30 ± 2.32 45.61 ± 0.83 41.26 ± 0.84 47.96 ± 0.49 9.40 ± 0.48
ShuffleNet 95.01 ± 0.78 1.48 ± 0.06 2.10 ± 0.49 1.32 ± 0.06 1.73 ± 0.08 29.69 ± 2.14 42.64 ± 0.42 41.09 ± 0.68 48.16 ± 0.83 9.07 ± 0.74
A-ConvNet 99.79 ± 0.84 0.12 ± 0.01 0.16 ± 0.01 0.08 ± 0.01 0.16 ± 0.01 16.41 ± 0.92 71.05 ± 1.24 69.03 ± 1.22 39.59 ± 0.66 3.79 ± 0.32

A-ConvNet-M 98.14 ± 0.03 1.98 ± 0.03 8.78 ± 0.87 1.94 ± 0.07 3.75 ± 0.14 83.34 ± 2.56 67.84 ± 1.07 68.11 ± 1.01 17.36 ± 0.82 10.47 ± 0.54

Table 6. Classification accuracy of FUSAR-Ship models against different kinds of adversarial attack.

Method Clean Data PGD FGSM APGD Deep Fool CW Sparse-RS Sparse Fool Square Attack Hop Skip
Jump

ResNet18 69.77 ± 2.32 8.14 ± 2.32 29.07 ± 2.32 8.14 ± 1.16 22.09 ± 1.16 19.77 ± 2.32 12.79 ± 1.16 33.72 ± 2.32 69.77 ± 2.32 24.42 ± 2.32
ResNet50 68.60 ± 3.49 4.65 ± 1.16 29.07 ± 2.32 5.81 ± 1.16 20.93 ± 2.32 26.74 ± 2.32 13.95 ± 1.16 33.72 ± 2.32 68.60 ± 3.49 4.65 ± 1.16

ResNet101 70.93 ± 4.65 29.07 ± 2.32 44.19 ± 2.32 26.74 ± 2.32 23.26 ± 2.32 32.56 ± 1.16 40.70 ± 2.32 38.37 ± 3.49 70.93 ± 4.65 29.07 ± 2.32
DenseNet121 66.28 ± 4.65 24.42 ± 2.32 17.44 ± 1.16 8.14 ± 2.32 20.93 ± 1.16 24.42 ± 2.32 30.23 ± 2.32 50.00 ± 3.49 66.28 ± 4.65 24.42 ± 2.32
DenseNet201 68.60 ± 4.65 29.06 ± 3.49 29.07 ± 2.32 5.81 ± 1.16 20.93 ± 1.16 27.91 ± 3.16 19.77 ± 2.32 43.03 ± 2.32 68.60 ± 4.65 29.06 ± 3.49

MobileNet 63.95 ± 4.65 29.07 ± 4.65 29.07 ± 2.32 16.28 ± 2.32 47.67 ± 3.49 25.58 ± 1.16 22.09 ± 1.16 33.72 ± 2.32 63.95 ± 4.65 29.07 ± 4.65
ShuffleNet 45.35 ± 5.81 26.74 ± 3.49 19.77 ± 2.32 15.12 ± 2.32 38.37 ± 1.16 37.21 ± 3.16 30.23 ± 2.32 38.37 ± 3.49 45.35 ± 5.81 26.74 ± 3.49
A-ConvNet 81.34 ± 3.49 5.81 ± 2.32 40.70 ± 3.49 9.30 ± 2.32 36.04 ± 2.32 8.14 ± 1.16 36.05 ± 1.16 12.79 ± 2.32 81.34 ± 3.49 5.81 ± 2.32

A-ConvNet-M 70.93 ± 2.32 25.58 ± 4.65 26.74 ± 2.32 23.26 ± 2.32 23.26 ± 1.16 41.86 ± 4.65 48.84 ± 2.32 13.95 ± 3.49 70.93 ± 2.32 25.58 ± 4.65
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Table 7. Comprehensive evaluation of different DNN models against PGD attack (attack strength is 8/255 in L∞ norm) in MSTAR dataset.

SA RA ACAC RCAC NTE EBD
ALPp ASS PSD TKNC

L0 L2 L∞

ResNet18 97.65 2.02 0.99 685 0.99 1.66 0.97 685 8 0.83 423 0.11
ResNet50 97.86 1.73 1.00 inf 1.00 1.55 0.97 917 8 0.84 415 0.03

ResNet101 98.68 1.53 1.00 inf 1.00 1.66 0.97 914 8 0.84 414 0.03
DenseNet121 98.56 0.82 0.99 1470 0.98 1.66 0.95 880 8 0.85 392 0.03
DenseNet201 98.68 0.66 0.99 1668 0.98 1.66 0.96 897 8 0.84 402 0.02

MobileNet 98.23 2.31 0.99 1514 0.98 1.66 0.94 789 8 0.86 342 0.03
ShuffleNet 95.01 1.48 0.99 1474 0.98 1.52 0.95 830 8 0.84 364 0.06
A-ConvNet 99.79 0.12 1.0 inf 1.0 1.66 0.96 862 8 0.84 385 0.23

A-ConvNet-M 98.14 1.98 1.00 inf 1.0 1.66 0.94 819 8 0.84 385 0.18

Table 8. Comprehensive evaluation of different DNN models against PGD attack (attack strength is 8/255 in L∞ norm) in FUSAR-Ship dataset.

SA RA ACAC RCAC NTE EBD
ALPp ASS PSD TKNC

L0 L2 L∞

ResNet18 69.77 8.14 1.00 inf 1.00 1.30 0.92 2924 8.00 0.38 6153 0.07
ResNet50 68.60 6.98 1.00 inf 1.00 1.30 0.97 3641 8.00 0.39 6834 0.04

ResNet101 70.93 20.93 0.99 inf 1.00 1.85 0.96 3485 8.00 0.29 6445 0.01
DenseNet121 66.28 24.42 1.00 inf 1.00 1.59 0.97 3667 8.00 0.35 6915 0.01
DenseNet201 68.60 10.47 1.00 inf 1.00 1.85 0.97 3509 8.00 0.29 6515 0.01

MobileNet 63.95 29.07 1.00 inf 1.00 1.85 0.98 3821 8.00 0.35 7338 0.01
ShuffleNet 45.35 26.74 1.00 inf 1.00 1.79 0.98 3571 8.00 0.28 6675 0.02
A-ConvNet 81.34 5.81 1.00 inf 1.00 1.59 0.97 3762 8.00 0.35 6343 0.01

A-ConvNet-M 70.93 26.74 0.99 inf 1.00 1.85 0.94 3145 8.00 0.35 6934 0.01
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Table 9. Classification accuracy of models (ResNet18) with no-defense or defense methods against PGD adversarial attacks in MSTAR dataset.

Clean Data
Adversarial Examples

L∞ L2 L1

8/255 16/255 0.25 0.5 7.84 12

No Defense

Standard 97.65 ± 0.28 2.02 ± 0.11 1.86 ± 0.08 62.60 ± 0.68 17.53 ± 0.77 86.23 ± 1.44 76.87 ± 1.11

SimCLR 99.38 ± 0.19 22.93 ± 0.74 2.27 ± 0.54 97.65 ± 0.92 93.15 ± 0.69 98.56 ± 1.20 98.35 ± 1.01
BYOL 99.51 ± 0.22 29.15 ± 0.66 4.99 ± 0.51 97.28 ± 0.99 93.24 ± 0.88 98.43 ± 1.23 97.94 ± 0.78

Defense

AT 86.23 ± 1.59 79.13 ± 0.74 69.98 ± 0.61 85.11 ± 1.24 84.33 ± 0.93 85.57 ± 0.97 85.36 ± 0.55
TRADES 90.85 ± 0.86 80.87 ± 0.83 66.02 ± 0.77 90.14 ± 1.09 88.45 ± 0.69 90.56 ± 1.54 80.87 ± 0.98
ATFBF 86.02 ± 0.58 84.41 ± 0.67 82.06 ± 0.53 84.29 ± 1.10 84.49 ± 0.79 83.75 ± 1.29 84.12 ± 0.69

RoCL 92.43 ± 0.95 80.73 ± 0.82 65.40 ± 0.76 88.16 ± 1.33 90.29 ± 0.90 89.65 ± 0.93 89.10 ± 0.69
ACL 95.34 ± 1.33 74.43 ± 0.44 51.88 ± 0.35 88.99 ± 2.22 83.59 ± 1.20 90.19 ± 1.49 90.43 ± 0.93

UACL 95.09 ± 0.90 80.92 ± 0.89 60.74 ± 0.54 94.10 ± 2.04 93.36 ± 0.80 94.31 ± 1.10 94.27 ± 0.90

UACL+TRADES 90.02 ± 0.48 87.88 ± 0.62 84.91 ± 0.44 89.73 ± 1.79 89.53 ± 0.77 89.98 ± 0.92 89.90 ± 0.53
UACL+ ATFBF 96.99 ± 0.29 95.38 ± 0.60 92.16 ± 0.38 96.86 ± 1.53 96.66 ± 0.74 97.03 ± 0.88 97.03 ± 0.47

Table 10. Classification accuracy of models (ResNet18) with no-defense or defense methods against PGD adversarial attacks in FUSAR-Ship dataset.

Clean Data
Adversarial Examples

L∞ L2 L1

8/255 16/255 0.25 0.5 7.84 12

No Defense

Standard 69.77 ± 2.32 8.14 ± 2.32 8.14 ± 2.32 16.28 ± 2.32 13.95 ± 2.32 53.49 ± 3.49 37.21 ± 3.49

SimCLR 80.23 ± 5.81 37.21 ± 2.32 26.74 ± 2.32 47.67 ± 2.32 47.67 ± 3.49 40.70 ± 2.32 46.51 ± 3.49
BYOL 80.23 ± 5.81 51.16 ± 2.32 41.86 ± 3.49 59.30 ± 3.49 58.14 ± 3.49 59.30 ± 3.49 59.30 ± 4.65

Defense

AT 60.47 ± 2.32 60.47 ± 3.49 60.47 ± 2.32 60.47 ± 4.65 60.47 ± 4.65 60.47 ± 4.65 60.47 ± 3.49
TRADES 61.63 ± 3.49 61.63 ± 3.49 61.63 ± 3.49 61.63 ± 4.65 61.63 ± 4.65 61.63 ± 4.65 61.63 ± 3.49
ATFBF 59.30 ± 2.32 60.47 ± 4.65 60.47 ± 2.32 59.30 ± 3.49 59.30 ± 3.49 59.30 ± 4.65 59.30 ± 4.65

RoCL 62.79 ± 2.32 56.98 ± 3.49 37.21 ± 2.32 61.63 ± 5.81 61.63 ± 3.49 62.79 ± 5.81 62.79 ± 5.81
ACL 69.77 ± 3.49 56.98 ± 5.81 53.49 ± 2.32 72.09 ± 5.81 69.77 ± 5.81 70.93 ± 5.81 70.93 ± 5.81

UACL 68.60 ± 2.32 65.12 ± 3.49 55.81 ± 2.32 67.44 ± 3.49 67.44 ± 4.65 68.60 ± 3.49 68.60 ± 4.65

UACL+TRADES 69.77 ± 2.32 67.44 ± 4.65 68.60 ± 5.81 68.60 ± 4.65 68.60 ± 4.65 69.77 ± 5.81 69.77 ± 4.65
UACL+ ATFBF 66.28 ± 3.49 66.28 ± 4.65 67.44 ± 5.81 66.28 ± 4.65 66.28 ± 4.65 66.28 ± 4.65 66.28 ± 3.49
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Table 11. Classification accuracy of models (ResNet18) with no-defense or defense methods against different kinds of adversarial attack in MSTAR dataset.

PGD FGSM APGD DeepFool CW Sparse-RS Sparsefool SquareAttack HopSkipJump

No Defense

Standard 2.02 ± 0.11 3.01 ± 0.34 2.02 ± 0.09 2.10 ± 0.09 14.85 ± 1.29 63.59 ± 1.08 51.76 ± 1.46 70.47 ± 0.86 13.81 ± 0.32

SimCLR 22.93 ± 0.74 47.22 ± 0.59 19.34 ± 0.50 36.70 ± 0.09 93.57 ± 0.53 74.89 ± 1.22 60.33 ± 1.46 55.96 ± 0.53 46.35 ± 0.89
BYOL 29.15 ± 0.66 58.10 ± 0.56 26.93 ± 0.33 30.19 ± 0.09 97.20 ± 1.16 76.16 ± 1.40 61.09 ± 1.46 71.22 ± 0.76 67.88 ± 0.96

Defense

AT 79.13 ± 0.74 81.53 ± 0.98 79.84 ± 0.42 74.14 ± 0.09 84.91 ± 1.29 84.91 ± 1.31 81.93 ± 1.46 85.32 ± 0.92 86.10 ± 0.94
TRADES 80.87 ± 0.83 85.03 ± 1.20 81.98 ± 0.54 75.01 ± 0.09 89.24 ± 1.79 89.11 ± 1.57 85.31 ± 1.46 89.81 ± 0.98 90.35 ± 1.02
ATFBF 84.41 ± 0.67 83.59 ± 0.97 83.26 ± 0.47 81.07 ± 0.09 83.67 ± 1.60 84.08 ± 1.30 84.24 ± 1.46 83.30 ± 0.67 83.55 ± 0.89

RoCL 80.73 ± 0.82 86.02 ± 0.84 76.29 ± 0.70 81.07 ± 0.09 90.38 ± 1.57 90.55 ± 1.69 88.49 ± 1.46 84.08 ± 1.24 91.90 ± 1.23
ACL 74.43 ± 0.44 79.53 ± 0.68 59.98 ± 0.31 68.60 ± 0.09 80.62 ± 1.01 87.42 ± 1.64 82.10 ± 1.46 82.14 ± 1.08 86.52 ± 1.20

UACL 80.92 ± 0.89 85.20 ± 1.14 76.33 ± 0.66 81.53 ± 0.09 93.20 ± 1.32 93.07 ± 1.89 93.07 ± 1.46 85.15 ± 1.33 92.33 ± 1.08

UACL+TRADES 87.88 ± 0.62 88.66 ± 0.92 87.92 ± 0.68 86.47 ± 0.09 89.65 ± 1.05 89.40 ± 1.02 89.67 ± 1.46 89.53 ± 1.03 89.65 ± 1.01
UACL+ ATFBF 95.38 ± 0.60 95.92 ± 0.77 95.55 ± 0.53 88.29 ± 0.09 96.82 ± 1.10 95.22 ± 0.77 95.18 ± 1.46 96.91 ± 0.93 96.99 ± 0.92

Table 12. Classification accuracy of models (ResNet18) with no-defense or defense methods against different kinds of adversarial attack in FUSAR-Ship dataset.

PGD FGSM APGD DeepFool CW Sparse-RS Sparsefool SquareAttack HopSkipJump

No Defense

Standard 8.14 ± 2.32 19.77 ± 2.32 8.14 ± 1.16 29.07 ± 2.32 19.77 ± 2.32 38.49 ± 2.32 36.90 ± 3.49 12.79 ± 2.32 34.88 ± 2.32

SimCLR 37.21 ± 2.32 46.51 ± 2.32 53.49 ± 3.49 47.67 ± 2.32 47.67 ± 3.49 53.49 ± 3.49 46.51 ± 4.65 17.44 ± 2.32 53.49 ± 4.65
BYOL 51.16 ± 2.32 40.70 ± 2.32 48.84 ± 2.32 58.14 ± 3.49 55.81 ± 4.65 46.51 ± 2.32 40.70 ± 3.49 46.51 ± 4.65 48.84 ± 4.65

Defense

AT 60.47 ± 3.49 60.47 ± 2.32 60.47 ± 3.49 60.47 ± 3.49 60.47 ± 4.65 60.47 ± 3.49 60.47 ± 5.81 60.47 ± 3.49 60.47 ± 2.32
TRADES 61.63 ± 3.49 61.63 ± 3.49 61.63 ± 3.49 61.63 ± 4.65 61.63 ± 4.65 61.63 ± 3.49 61.63 ± 4.65 62.79 ± 3.49 61.63 ± 3.49
ATFBF 60.47 ± 4.65 60.47 ± 3.49 60.47 ± 2.32 59.30 ± 3.49 59.30 ± 3.49 59.30 ± 2.32 59.30 ± 4.65 60.47 ± 3.49 60.47 ± 2.32

RoCL 56.98 ± 3.49 46.51 ± 4.65 54.65 ± 3.49 62.79 ± 3.49 62.79 ± 4.65 59.30 ± 4.65 55.81 ± 5.81 58.14 ± 5.81 56.98 ± 5.81
ACL 56.98 ± 5.81 26.74 ± 4.65 33.72 ± 4.65 70.93 ± 5.81 70.93 ± 4.65 61.63 ± 4.65 59.30 ± 5.81 30.23 ± 5.81 55.81 ± 5.81

UACL 65.12 ± 3.49 62.79 ± 3.49 63.95 ± 3.49 68.60 ± 4.65 69.77 ± 3.49 68.60 ± 3.49 68.60 ± 4.65 56.98 ± 3.49 55.81 ± 4.65

UACL+TRADES 67.44 ± 4.65 67.44 ± 4.65 67.44 ± 3.49 69.77 ± 4.65 69.77 ± 4.65 69.77 ± 3.49 69.77 ± 4.65 68.60 ± 4.65 70.93 ± 3.49
UACL+ ATFBF 66.28 ± 4.65 66.28 ± 4.65 67.44 ± 2.32 66.28 ± 3.49 66.28 ± 3.49 66.28 ± 2.32 66.28 ± 4.65 67.44 ± 3.49 67.44 ± 3.49
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The comprehensive evaluation results of MSTAR and FURASR-Ship classification
against different adversarial attacks are presented in Tables 13 and 14. According to
ACAC, RCAC, and NTE, the defense methods not only improve the adversarial accuracy
of the model but also reduce the confidence of the error class in adversarial classification.
Compared with TKNC, we can see that adversarial contrastive pretraining defenses can
enhance the overall activation of the model more than AT-based defenses. An active model
often means a higher robustness.

Table 13. Comprehensive evaluation of models (ResNet18) with no-defense or defense methods against PGD attacks (attack
strength is 8/255 in L∞ norm) in MSTAR dataset.

SA RA ACAC RCAC NTE EBD PSD TKNC

No
Defense

Standard 97.65 2.02 0.998 685 0.996 1.66 423 0.11
SimCLR 99.38 22.93 0.916 27.6 0.841 1.66 427 0.49

BYOL 99.51 29.15 0.927 29.0 0.863 1.60 423 0.47

Defense

AT 86.23 79.13 0.491 1.4 0.142 1.67 422 0.41
TRADES 90.85 80.87 0.563 1.8 0.247 1.67 424 0.39
ATFBF 86.02 84.41 0.540 1.6 0.194 1.67 441 0.49

RoCL 92.43 80.73 0.691 41.4 0.855 1.66 423 0.51
ACL 95.34 34.43 0.629 13.6 0.698 1.67 422 0.57

UACL 95.09 80.92 0.661 9.8 0.742 1.64 433 0.56

UACL+TRADES 90.02 87.88 0.526 1.4 0.161 1.50 418 0.58
UACL+ ATFBF 96.99 95.38 0.787 3.8 0.579 1.67 403 0.43

Table 14. Comprehensive evaluation of models (ResNet18) with no-defense or defense methods against PGD attacks (attack
strength is 8/255 in L∞ norm) in FUSAR-Ship dataset. Because the robust accuracy of some models is not less than the
standard accuracy, some parameters cannot be obtained.

SA RA ACAC RCAC NTE EBD PSD TKNC

No
Defense

Standard 69.77 8.14 1 inf 1 1.30 6153 0.07
SimCLR 80.23 37.21 0.84 9.10 0.70 1.21 5173 0.05

BYOL 80.23 51.16 0.81 10.4 0.77 1.14 5802 0.04

Defense

AT 60.47 60.47 \ \ \ 1.77 \ 0.02
TRADES 61.63 61.63 \ \ \ 1.80 \ 0.03
ATFBF 59.30 60.47 \ \ \ 1.74 \ 0.03

RoCL 62.79 56.98 0.65 3.56 0.35 1.59 4598 0.03
ACL 69.77 56.98 0.70 7.33 0.34 1.62 4794 0.03

UACL 68.60 65.12 0.61 2.02 0.31 1.68 4560 0.03

UACL+TRADES 69.77 67.44 0.50 1.01 0.01 1.74 4992 0.03
UACL+ ATFBF 66.28 66.28 \ \ \ 1.42 \ 0.03

To further research the relation between attack strength and robust accuracy, we
utilized a standard adversarial attack (L∞ PGD) with different attack strengths to attack the
DNN models. As shown in Figures 7 and 8, adversarial contrastive pretraining defenses,
especially UACL, behave better than AT-based defense methods against attacks with low
strength. AT-based defense methods can maintain steady robust accuracy as attack strength
increases. UACL combined with AT-based defense can lead to stable and excellent robust
accuracy in all attack strengths.

Given the lack of labeled SAR image data, we attempted to enhance robustness with a
single defense method with only 10% of labeled data and attack the model with PGD, as
shown in Table 15. Defense, especially AT-based defenses, will reduce standard accuracy
sharply when labeled data are inadequate and adversarial contrastive pretraining defense
is significantly better. Adversarial contrastive pretraining defense also performs better
in the classification of adversarial examples compared to all AT-based defense methods.
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Therefore, it should be given priority in the absence of sufficient data. As such, what are
the advantages of UACL compared with other adversarial contrastive pretraining defenses
such as RoCL and ACL? UACL is faster. The time taken by RoCL, ACL, and UACL to
pretrain the model with all data for 200 epochs in our experimental setting is shown in
Table 16. We can see that UACL is much faster than RoCL and ACL, as it benefits from the
abandonment of negative pairs.
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Table 15. Classification accuracy of models (ResNet18) with different defense methods trained with
10% labeled data against PGD adversarial attacks.

Clean data PGD(ε = 8/255) PGD(ε = 16/255)

Standard 77.15 2.02 2.02
AT 42.76 42.64 42.72

TRADES 40.87 37.77 37.90
ATFTF 41.24 40.99 41.03
RoCL 63.42 62.02 61.77
ACL 68.20 47.90 45.18

UACL 64.45 62.35 61.28
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Table 16. The training times of adversarial contrastive pretraining defenses.

RoCL ACL UACL

MSTAR 25:01:24 29:12:36 17:28:14
FUSAR-Ship 7:12:09 5:34:56 4:09:40

4.5. Visualization of DNNs

To further understand how defenses improve robust representations, we used guided
backpropagation [27] and extremal perturbations [28] to visualize the model and obtain
the activation maps of clean images and their PGD adversarial examples.

Guided backpropagation images show which part of the image drives the model
to make its final prediction. Guided backpropagation images of MSATR and FUSAR-
Ship in standard and adversarial settings are shown in Figures 9–12. It can be seen that
adversarial examples can effectively destroy the activation of the standard model and
make the standard model pay attention to the whole region. The activation region of the
standard model is larger both in the face of the clean data and in the adversarial examples.
The model with defense will pay more attention to the core region of the image, which
improves the adversarial robustness of the model. For a model with AT-based defense (AT),
a model with adversarial contrastive pretraining (UACL), and a model with composite
defenses (UACL+ATFBF), the active area reduces, in turn showing that the latter has a
deeper understanding of the realistic significance of the SAR target.
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Extremal perturbations show which part of the image the DNNs pay more attention 
to. Extremal perturbation images are shown in Figures 13–16. It can be seen that the ad-
versarial examples can shift the focus area of the standard model, but not completely 
change it. Models with adversarial contrastive pretraining can better target the focus area 
in the face of both the clean data and the adversarial examples, reflecting the advantages 
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in the face of both the clean data and the adversarial examples, reflecting the advantages
and potential of adversarial contrastive pretraining defenses.
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5. Conclusions

Robustness is important for SAR target recognition tasks. Although DNNs have
achieved great success in SAR target recognition tasks, previous studies have shown
that DNN models can be easily fooled by adversarial examples. In this paper, we first
systematically evaluated the threat of adversarial examples to DNN-based SAR target
recognition models. To alleviate the vulnerability of models to adversarial examples, we
then introduced adversarial contrastive pretraining defense into SAR target recognition
and proposed a novel unsupervised adversarial contrastive learning defense method. Our
experimental results demonstrate that adversarial contrastive pretraining defenses behave
well in the classification of both clean data and adversarial examples compared with AT-
based defenses, and have great potential to be used in practical applications. Potential
future work should include an investigation of the influence of adversarial attacks and
defenses on other SAR image datasets and the incorporation of more diverse adversarial
self-supervised learning methods.
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