Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Stream Data
2.3. Image Classification
2.4. LiDAR Classification
2.5. Solar Radiation
3. Results
3.1. Land Cover and Shading Distribution in the Chauga River Watershed Using Deep Learning Classification of High-Resolution Imagery
3.2. Incorporation of Vegetation Structure Using LiDAR to Calcualte Solar Radiation
3.3. Land Cover and Shading along the Chauga River Main Stem and Chauga River Tributaries
4. Discussion
4.1. Importance of Monitoring Riparian Buffers
4.2. Use of High-Resolution Imagery and LiDAR Data to Evaluate Shading
4.3. Land Cover and Shading Influence on River Temperature
4.4. Protected Area Impact on Land Cover Change in the Chauga River Watershed
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachiller-Jareno, N.; Hutchins, M.G.; Bowes, M.J.; Charlton, M.B.; Orr, H.G. A novel application of remote sensing for modelling impacts of tree shading on water quality. J. Environ. Manag. 2019, 230, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.F.; Wilby, R.L. Seeing the landscape for the trees: Metrics to guide riparian shade management in river catchments. Water Resour. Res. 2015, 51, 3754–3769. [Google Scholar] [CrossRef] [Green Version]
- Martin-Ortega, J.; Ferrier, R.C.; Gordon, I.J.; Khan, S. Water Ecosystem Services: A Global Perspective; UNESCO Publishing: Paris, France, 2015; pp. 19–21. [Google Scholar]
- van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, N.L.; Postel, S.L.; Richter, B.; Warner, R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Ghermandi, A.; Vandenberghe, V.; Benedetti, L.; Bauwens, W.; Vanrolleghem, P.A. Model-based assessment of shading effect by riparian vegetation on river water quality. Ecol. Eng. 2009, 35, 92–104. [Google Scholar] [CrossRef]
- Johnson, R.K.; Almlöf, K. Adapting boreal streams to climate change: Effects of riparian vegetation on water temperature and biological assemblages. Freshw. Sci. 2016, 35, 984–997. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Hannah, D.M.; Malcolm, I.A. An evaluation of different forest cover geospatial data for riparian shading and river temperature modelling. River Res. Appl. 2020, 36, 709–723. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep learning for land cover classification using only a few bands. Remote Sens. 2020, 12, 2000. [Google Scholar] [CrossRef]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Helber, P.; Bischke, B.; Dengel, A.; Borth, D. EuroSAT: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Haq, M.A.; Rahaman, G.; Baral, P.; Ghosh, A. Deep learning based supervised image classification using UAV images for forest areas classification. J. Indian Soc. Remote Sens. 2021, 49, 601–606. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Morgenroth, J. Developments in Landsat land cover classification methods: A review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Loicq, P.; Moatar, F.; Jullian, Y.; Dugdale, S.J.; Hannah, D.M. Improving representation of riparian vegetation shading in a regional stream temperature model using LiDAR data. Sci. Total Environ. 2018, 624, 480–490. [Google Scholar] [CrossRef]
- Seixas, G.B.; Beechie, T.J.; Fogel, C.; Kiffney, P.M. Historical and future stream temperature change predicted by a lidar-based assessment of riparian condition and channel width. J. Am. Water Resour. Assoc. 2018, 54, 974–991. [Google Scholar] [CrossRef]
- Olpenda, A.S.; Stereńczak, K.; Będkowski, K. Modeling solar radiation in the forest using remote sensing data: A review of approaches and opportunities. Remote Sens. 2018, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau. County Population Totals: 2010–2019. Available online: https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html (accessed on 9 August 2021).
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Robert, J. Revised Land and Resource Management Plan; Sumter National Forest: Clinton, SC, USA, 2004. [Google Scholar]
- What Are Wild and Scenic Rivers? (U.S. National Park Service). Available online: https://www.nps.gov/orgs/1912/what-are-wild-and-scenic-rivers.htm (accessed on 9 August 2021).
- Bartnik, A.; Moniewski, P. River bed shade and its importance in the process of studying of the fundamental physico-chemical characteristics of small river waters. In Contemporary Problems of Management and Environmental Protection. Issues of landscape Conservation and Water Management in Rural Areas; Faculty of Environmental Management and Agriculture, Olsztynwamia and University of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2011; Volume 7, pp. 137–149. [Google Scholar]
- Morgan, A.M.; Royer, T.V.; David, M.B.; Gentry, L.E. Relationships among nutrients, chlorophyll-a, and dissolved oxygen in agricultural streams in Illinois. J. Environ. Qual. 2006, 35, 1110–1117. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Klemas, V. Using remote sensing of land cover change in coastal watersheds to predict downstream water quality. J. Coast. Res. 2012, 28, 930–944. [Google Scholar] [CrossRef]
- Mahmood, R.; Pielke, R.A.; Hubbard, K.G.; Niyogi, D.; Bonan, G.; Lawrence, P.; McNider, R.; McAlpine, C.; Etter, A.; Gameda, S.; et al. Impacts of land use/land cover change on climate and future research priorities. Bull. Am. Meteorol. 2010, 91, 37–46. [Google Scholar] [CrossRef]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar] [CrossRef]
- Edwards, I.F.; Drinkard, M.K. An unprotected tributary has no detectable impact on macroinvertebrates in a wild and scenic river in the Southeast (Chattooga). Bios 2021, 91, 167–172. [Google Scholar] [CrossRef]
- Dolloff, C.A. Monitoring for Changes in Chattooga River Mussel Populations. 2012–2019; Francis Marion-Sumter National Forest, South Carolina; USDA: Washington, DC, USA, 2020. [Google Scholar]
- Poling, B.T.; Dolloff, A.C. Soil Erosion from Eastern Hemlock (Tsuga Canadensis) Windthrow Mounds Following Hemlock Wooly Adelgid (Adelges Tsugae) Infestations in Riparian Areas If the Chattooga Wild and Scenic River and Tributaries; USDA: Washington, DC, USA, 2016. [Google Scholar]
- Creek, J. Chauga River 03060102-03. South Carolina Department of Health and Environmental Control; Savana River Basin: Georgia, SC, USA.
- Tobe, J.D.; Fairey, J.E., III; Gaddy, L.L. Vascular flora of the Chauga River Gorge Oconee County, South Carolina. Castanea 1992, 57, 77–109. [Google Scholar]
- O’Hara, K.; Becker, T.P. Tectonic assembly of the Brevard-Chauga Belt, South Carolina: Fluid inclusion evidence from Appalachian deep core site investigation hole 2 (ADCOH-2). J. Geodyn. 2004, 37, 565–581. [Google Scholar] [CrossRef]
- Acker, L.L.; Hatcher, R.D., Jr. Relationships between Structure and Topography in Northwest South Carolina, Geologic Notes; Division of Geology, State Development Board: Columbia, SC, USA, 1970; Volume 14, pp. 35–48. [Google Scholar]
- NAIP Imagery. Available online: https://fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/index (accessed on 21 September 2021).
- ESRI. ArcGIS Pro: Release 7. Redlands, CA. 2021. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 17 September 2021).
- Classify Pixels Using Deep Learning (Image Analyst)—Arcgis Pro Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/classify-pixels-using-deep-learning.htm (accessed on 21 September 2021).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road extraction by deep residual U-Net. IEEE Geosci. Remote 2018, 15, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Monserud, R.A.; Leemans, R. Comparing global vegetation maps with the Kappa statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Horning, N. Overview of Accuracy Assessment of Land Cover Products; American Museum of Natural History: New York, NY, USA, 2004; Volume 1, pp. 1–6. [Google Scholar]
- Dubayah, R.O.; Drake, J.B. Lidar remote sensing for forestry. J. For. 2000, 98, 44–46. [Google Scholar] [CrossRef]
- Rich, P.; Dubayah, R.; Hetrick, W.; Saving, S. Using viewshed models to calculate intercepted solar radiation: Applications in ecology. American Society for Photogrammetry and Remote Sensing Technical Papers. In Proceedings of the American Society of Photogrammetry and Remote Sensing; 1994; pp. 524–529. Available online: http://www.professorpaul.com/publications/rich_et_al_1994_asprs.pdf (accessed on 15 September 2021).
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964. [Google Scholar]
- May, C.W.; Horner, R.R. The cumulative impacts of watershed urbanization on stream-riparian ecosystems. In Proceedings of the American Water Resources Association International Conference on Riparian Ecology and Management in Multi-Land Use Watersheds, Portland, OR, USA, 28–31 August 2000; pp. 281–286. [Google Scholar]
- Johnson, L.R.; Trammell, T.L.E.; Bishop, T.J.; Barth, J.; Drzyzga, S.; Jantz, C. Squeezed from all sides: Urbanization, invasive species, and climate change threaten riparian forest buffers. Sustainability 2020, 12, 1448. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.E.; Correll, D.L.; Weller, D.E. Nutrient interception by a riparian forest receiving inputs from adjacent cropland. J. Environ. Qual. 1993, 22, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Pinay, G.; Roques, L.; Fabre, A. Spatial and temporal patterns of denitrification in a riparian forest. J. Appl. Ecol. 1993, 30, 581–591. [Google Scholar] [CrossRef]
- Lee, K.-H.; Isenhart, T.M.; Schultz, R.C.; Mickelson, S.K. Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J. Environ. Qual. 2000, 29, 1200–1205. [Google Scholar] [CrossRef]
- Nakao, M.; Sohngen, B. The effect of site quality on the costs of reducing soil erosion with riparian buffers. J. Soil Water Conserv. 2000, 55, 231–237. [Google Scholar]
- Wynn, T.M.; Mostaghimi, S.; Alphin, E.F. The effects of vegetation on stream bank erosion. In Proceedings of the 2004 ASAE Annual Meeting, Ottawa, ON, Canada, 1–4 August 2004; Volume 1. [Google Scholar]
- Momm, H.G.; Bingner, R.L.; Yuan, Y.; Locke, M.A.; Wells, R.R. Spatial characterization of riparian buffer effects on sediment loads from watershed systems. J. Environ. Qual. 2014, 43, 1736–1753. [Google Scholar] [CrossRef]
- Zhang, C.; Li, S.; Qi, J.; Xing, Z.; Meng, F. Assessing impacts of riparian buffer zones on sediment and nutrient loadings into streams at watershed scale using an integrated REMM-SWAT model. Hydrol. Process. 2017, 31, 916–924. [Google Scholar] [CrossRef]
- Fischer, J.R.; Quist, M.C.; Wigen, S.L.; Schaefer, A.J.; Stewart, T.W.; Isenhart, T.M. Assemblage and population-level responses of stream fish to riparian buffers at multiple spatial scales. Trans. Am. Fish. Soc. 2010, 139, 185–200. [Google Scholar] [CrossRef]
- Albertson, L.K.; Ouellet, V.; Daniels, M.D. Impacts of stream riparian buffer land use on water temperature and food availability for fish. J. Freshw. Ecol. 2018, 33, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Knouft, J.H.; Botero-Acosta, A.; Wu, C.-L.; Charry, B.; Chu, M.L.; Dell, A.I.; Hall, D.M.; Herrington, S.J. Forested riparian buffers as climate adaptation tools for management of riverine flow and thermal regimes: A case study in the Meramec River Basin. Sustainability 2021, 13, 1877. [Google Scholar] [CrossRef]
- Bode, C.A.; Limm, M.P.; Power, M.E.; Finlay, J.C. Subcanopy solar radiation model: Predicting solar radiation across a heavily vegetated landscape using LiDAR and GIS solar radiation models. Remote Sens. Environ. 2014, 154, 387–397. [Google Scholar] [CrossRef]
- Kaluża, T.; Sojka, M.; Wróżyński, R.; Jaskula, J.; Zaborowski, S.; Hämmerling, M. Modeling of river channel shading as a factor for changes in hydromorphological conditions of small lowland rivers. Water 2020, 12, 527. [Google Scholar] [CrossRef] [Green Version]
- Pankiw, J.; Piwowar, J. Seasonality of imagery: The impact on object-based classification accuracy of shelterbelts. Prairie Perspect. Geogr. Essays 2010, 13, 39–48. [Google Scholar]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Kalny, G.; Laaha, G.; Melcher, A.; Trimmel, H.; Weihs, P.; Rauch, H.P. The influence of riparian vegetation shading on water temperature during low flow conditions in a medium sized river. Knowl. Manag. Aquat. Ecosyst. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Horne, J.P.; Hubbart, J.A. A spatially distributed investigation of stream water temperature in a contemporary mixed-land-use watershed. Water 2020, 12, 1756. [Google Scholar] [CrossRef]
- Jusik, S.; Staniszewski, R. Shading of river channels as an important factor reducing macrophyte biodiversity. Pol. J. Environ. Stud. 2019, 28, 1215–1222. [Google Scholar] [CrossRef]
- Rice, S.; Roy, A.; Rhoads, B. River Confluences, Tributaries and The Fluvial Network; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 209–217. ISBN 978-0-470-76037-6. [Google Scholar]
- Fisher, J.R.B.; Acosta, E.A.; Dennedy-Frank, P.J.; Kroeger, T.; Boucher, T.M. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens. Ecol. Conserv. 2018, 4, 137–149. [Google Scholar] [CrossRef]
Water Quality Parameters | Shaded | Non-Shaded | Location | Source |
---|---|---|---|---|
Temperature | Cooler | Warmer | Scotland | Dugdale et al., 2020 [8] |
Dissolved oxygen | Higher | Lower | Poland | Bartnik et al., 2011 [25] |
Algae | Lower | Higher | Illinois | Morgan et al., 2006 [26] |
Data Layer | Source | Spatial Resolution (m) | Year |
---|---|---|---|
Chauga polygon | SCDNR | - | 2011 |
Single line stream | SCDNR | - | 2011 |
Stream connector | SCDNR | - | 2011 |
LiDAR | SCDNR | 1 point per m | 2011 |
Sumter National Forest | USDA | - | 2020 |
NAIP 2011 | USGS | 1 | April 2011 |
NAIP 2019 | USGS | 0.6 | September–October 2019 |
Land Cover Class | Description | Number of Polygon Samples | |
---|---|---|---|
2011 | 2019 | ||
Water (W) | Rivers, streams, lakes, and ponds | 328 | 243 |
Deciduous trees (DT) | Deciduous tree cover | 296 | 333 |
Evergreen trees (ET) | Evergreen tree cover, pine plantations | 225 | 201 |
Open land (OL) | Grass, fields, bare soil | 401 | 379 |
Riverbed (RB) | Sand, bare earth, rock inside or alongside water | 240 | 265 |
Developed (D) | Man-made structures, houses, buildings | 252 | 245 |
Roads (R) | Paved roads, paved driveways and parking lots, dirt roads | 278 | 292 |
Shadows from trees (ST) | Shadows cast by trees over grass, roads, or in forest | 252 | 356 |
Shadows over riverbed (SR) | Shadows cast over water | 228 | 186 |
Land Cover Class | Consumer’s Accuracy | Producer’s Accuracy | ||
---|---|---|---|---|
2011 | 2019 | 2011 | 2019 | |
Water | 0.993 | 0.997 | 0.982 | 0.997 |
Trees | 0.980 | 0.988 | 0.955 | 0.943 |
Open Land | 0.982 | 0.937 | 0.979 | 0.973 |
Riverbed | 0.465 | 0.738 | 0.855 | 0.567 |
Developed | 0.922 | 0.823 | 0.781 | 0.885 |
Roads | 0.738 | 0.842 | 0.956 | 0.934 |
Shadow (trees) | 0.678 | 0.674 | 0.821 | 0.867 |
Shadow (river) | 0.901 | 0.970 | 0.737 | 0.852 |
Land Cover Class | 2011 Land Cover | 2019 Land Cover | Land Cover Differences | |||
---|---|---|---|---|---|---|
(%) | Area (m2) | (%) | Area (m2) | (%) | Area (m2) | |
Water | 0.98 | 2,817,089 | 0.64 | 1,835,553 | −0.34 | −981,536 |
Deciduous trees | 66.10 | 189,317,917 | 49.04 | 140,478,223 | −17.06 | −48,839,694 |
Evergreen trees | 17.68 | 50,645,052 | 33.61 | 96,277,891 | +15.93 | +45,632,839 |
Open land | 8.87 | 25,408,534 | 8.72 | 24,968,595 | −0.15 | −439,939 |
Riverbed | 0.33 | 936,175 | 0.53 | 1,511,301 | +0.20 | +575,126 |
Developed | 0.74 | 2,110,961 | 0.73 | 2,098,324 | −0.01 | −12,637 |
Roads | 1.78 | 5,111,583 | 0.74 | 2,127,878 | −1.04 | −2,983,705 |
Shadow (tree) | 3.34 | 9,578,705 | 5.75 | 16,472,533 | +2.41 | +6,893,828 |
Shadow (riverbed) | 0.18 | 504,060 | 0.23 | 659,465 | +0.05 | +155,405 |
Location | Min | Max | Range | Mean | Standard Deviation | Median |
---|---|---|---|---|---|---|
Inside SNF | 98,122 | 520,093 | 421,970 | 416,770 | 67,977 | 430,976 |
Outside SNF | 180,776 | 520,230 | 339,453 | 455,845 | 40,977 | 467,569 |
Land Cover Class | 2011 | |||
---|---|---|---|---|
Chauga River | Tributaries | |||
Sumter National Forest | ||||
Inside | Outside | Inside | Outside | |
Land Cover (%) | ||||
Water | 2.62 | 5.40 | 0.15 | 2.23 |
Deciduous trees | 60.76 | 64.50 | 81.91 | 69.43 |
Evergreen trees | 15.45 | 10.64 | 13.48 | 12.41 |
Open land | 0.66 | 1.91 | 1.10 | 9.65 |
Riverbed | 8.15 | 6.63 | 0.10 | 0.40 |
Developed | 0.11 | 0.33 | 0.05 | 0.56 |
Roads | 0.34 | 0.79 | 0.23 | 1.77 |
Shadow (tree) | 6.34 | 5.13 | 2.88 | 3.39 |
Shadow (riverbed) | 5.57 | 4.66 | 0.09 | 0.15 |
Land Cover Class | 2019 | |||
---|---|---|---|---|
Chauga River | Tributaries | |||
Sumter National Forest | ||||
Inside | Outside | Inside | Outside | |
Land Cover (%) | ||||
Water | 1.99 | 4.05 | 0.04 | 1.89 |
Deciduous trees | 43.96 | 38.01 | 55.35 | 44.54 |
Evergreen trees | 33.85 | 37.91 | 37.51 | 37.52 |
Open land | 0.86 | 2.67 | 1.00 | 7.68 |
Riverbed | 3.58 | 3.59 | 0.22 | 0.47 |
Developed | 0.10 | 0.36 | 0.11 | 0.49 |
Roads | 0.12 | 0.30 | 0.09 | 0.60 |
Shadow (tree) | 11.75 | 9.50 | 5.59 | 6.50 |
Shadow (riverbed) | 3.78 | 3.61 | 0.08 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolick, M.M.; Post, C.J.; Mikhailova, E.A.; Zurqani, H.A.; Grunwald, A.P.; Saldo, E.A. Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification. Remote Sens. 2021, 13, 4172. https://doi.org/10.3390/rs13204172
Bolick MM, Post CJ, Mikhailova EA, Zurqani HA, Grunwald AP, Saldo EA. Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification. Remote Sensing. 2021; 13(20):4172. https://doi.org/10.3390/rs13204172
Chicago/Turabian StyleBolick, Madeleine M., Christopher J. Post, Elena A. Mikhailova, Hamdi A. Zurqani, Andrew P. Grunwald, and Elizabeth A. Saldo. 2021. "Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification" Remote Sensing 13, no. 20: 4172. https://doi.org/10.3390/rs13204172
APA StyleBolick, M. M., Post, C. J., Mikhailova, E. A., Zurqani, H. A., Grunwald, A. P., & Saldo, E. A. (2021). Evaluation of Riparian Tree Cover and Shading in the Chauga River Watershed Using LiDAR and Deep Learning Land Cover Classification. Remote Sensing, 13(20), 4172. https://doi.org/10.3390/rs13204172