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Abstract: Atmospheric correction is a fundamental process of ocean color remote sensing to remove
the atmospheric effect from the top-of-atmosphere. Generally, Near Infrared (NIR) based algorithms
perform well for clear waters, while Ultraviolet (UV) based algorithms can obtain good results for
turbid waters. However, the latter tends to produce noisy patterns for clear waters. An ideal and
practical solution to deal with such a dilemma is to apply NIR- and UV-based algorithms for clear
and turbid waters, respectively. We propose a novel atmospheric correction method that integrates
the advantages of UV- and NIR-based atmospheric correction (AC) algorithms for coastal ocean color
remote sensing. The new approach is called UV-NIR combined AC algorithm. The performance of
the new algorithm is evaluated based on match-ups between GOCI images and the AERONET-OC
dataset. The results show that the values of retrieved Rrs (Remote Sensing Reflectance) at visible
bands agreed well with the in-situ observations. Compared with the SeaDAS (SeaWiFS Data Analysis
System) standard NIR algorithm, the new AC algorithm can achieve better precision and provide
more available data.

Keywords: integrated algorithm; ocean color; atmospheric correction; UV-NIR

1. Introduction

The Geostationary Ocean Color Imager (GOCI), the world’s first geostationary ocean
color spaceborne instrument, is onboard the Communication, Ocean, and Meteorological
Satellite (COMS), which was launched in 2010 [1]. The GOCI offers moderate spatial
resolution data (500 m × 500 m) for six visible bands and two infrared bands (centered
around 412, 443, 490, 555, 660, 680, 745, and 865 nm) every hour during the daytime
from 00:15 to 07:15 UTC. Its high-frequency sea-surface observation capability provides
effective monitoring data for dynamic marine environment research. During the past
10 years, a large number of studies utilized the GOCI data for monitoring short-term
coastal ocean phenomena, including suspended sediment dynamics [2–5], red tides [6,7],
and tidal variability [8–10].

The effective use of the GOCI data depends on the atmospheric correction (AC)
algorithm and ocean color information acquisition capabilities of the GOCI data [11]. The
process of removing the influence of the atmosphere from the radiation signal received by
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the sensor is called AC [12]. In the AC process, the dominant contribution of the Rayleigh
scattering can be accurately computed using a radiative transfer model with the inputs
of solar-sensor geometries, atmospheric pressure, and surface wind speed, without using
the remotely sensed data [13–15]. The difficulty of the AC is how to determine the type of
aerosols and eliminate the scattering and absorption contribution of aerosols because of
their unique optics and their temporal and spatial changes [16–18].

The widely used AC algorithm developed by Gordon and Wang [12] assumes that
the reflectance from water is zero in the NIR (Near Infrared) band when estimating the
aerosol scattering ratio (ε) [12,19]. The algorithm selects the closest aerosol model from
candidate aerosol models, based on ε, and then extrapolates aerosol reflectance from NIR
band to visible band [20,21]. This algorithm has given good results in the open ocean.
However, in turbid coastal water, the reflectance from water in the NIR band is no longer
zero, and the hypothesis of NIR “dark pixel” is no longer applicable. To overcome this
problem, various AC algorithms use an iterative optimization scheme to separate water and
aerosol reflectance in the NIR [22–25]. However, these iterative schemes result in biased
estimations in ocean color products for the complex turbid waters [26,27]. To address
this issue, Wang and Shi [28] proposed a NIR-SWIR (NIR-Short Wave Infrared) combined
algorithm for AC of MODIS images. This method takes advantage of much stronger water
absorption for the SWIR wavelengths and uses a turbidity index to apply a NIR-based
algorithm for clear waters and a SWIR-based algorithm for turbid waters [29]. However,
most current ocean color remote sensors, such as the Sea-viewing Wide Field-of-View
Sensor (SeaWiFS), Medium Resolution Imaging Spectrometer (MERIS), and GOCI, do not
include SWIR bands, which limits the application of this method. He et al. [30] proposed
an AC algorithm based on the assumption of UV (Ultraviolet) “dark pixel” (UV-AC). The
UV-AC algorithm produces good corrections for turbid waters.

The AC algorithms have advantages and disadvantages. There are four commonly
used AC algorithms for the GOCI data process, including the UV-AC algorithm [30], KOSC
standard AC (KOSC-STD) algorithm [31], NASA standard (NASA-STD) AC algorithm [23],
and MUMM algorithm [32]. None of them can handle the AC for both clear and turbid
waters perfectly. An ideal and practical solution to such a dilemma is to apply NIR- and
UV-based algorithms for clear and turbid waters, respectively. The UV-AC method can
be used to replace the SWIR method, the NIR algorithm for clean pixels, and the UV-AC
method for turbid pixels.

In this study, we analyze the currently widely used GOCI image AC methods and use
simulation datasets to evaluate the accuracy of three NIR-AC and one UV-AC algorithm. A
novel AC method, called as UV-NIR combined AC algorithm, is proposed, which integrates
the advantages of UV and NIR AC algorithms for GOCI coastal ocean color remote sensing.
The new approach divides the applicable areas of the UV and NIR AC algorithms. After
analyzing the application area of the UV and NIR AC algorithms and the characteristic
cross-section remote sensing reflectance spectrum, a joint UV and NIR AC algorithm is
constructed. Moreover, it is performed on the GOCI images of the Bohai Sea and the East
China Sea, which contain both clear and turbid waters.

2. Materials and Methods

We use AC for retrieving water reflectance at the sea surface (ρwn) by removing
atmospheric reflectance. Ignoring the sunglint, whitecaps, and effects of bidirectional
reflectance, the reflectance at the top of the atmosphere (TOA) (ρTOA) at wavelength λ can
be described by [12]:

ρTOA(λ) =
πLTOA(λ)

F0(λ)cosθ
(1)

ρTOA(λ) = ρr(λ) + ρa(λ) + tv
d(λ)t

s
d(λ)ρwn(λ) (2)

where LTOA is the TOA radiance, F0 is the extraterrestrial solar irradiance, and θ is the solar
zenith angle. ρr(λ) is Rayleigh reflectance in the absence of aerosols, and ρa(λ) is aerosol scat-
tering reflectance. tv

d and ts
d are the upward and downward diffuse transmittances, respectively.
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ρr(λ) can be predicted given solar-sensor angular geometries and the air pressure at
the surface through radiative transfer simulation with less than ~1% error [13,14,33]. The
Rayleigh corrected reflectance (ρrc(λ)) can be derived as follows:

ρrc(λ) = ρTOA(λ)− ρr(λ) = ρa(λ) + tv
d(λ)t

s
d(λ)ρwn(λ) (3)

To solve ρwn using Equation (3), the aerosol reflectance in the visible wavelengths is
estimated first from the observed aerosol reflectance at the two NIR wavelengths or UV
wavelengths based on the “dark pixel” assumption.

2.1. NASA-STD AC Algorithm

The NASA-STD AC algorithm uses a bio-optical model iterative process based on the
Gordon and Wang method [12] for turbid water atmospheric correction. This method uses
80 types of aerosols built from the AERONET observations and vector radiative transfer
code for the ocean-atmosphere system [21] and is currently the default AC algorithm
of the SeaDAS software. It first uses the NIR band “dark pixel” method to obtain the
water-leaving reflectance of the visible bands at 443 and 555 nm and then inputs the
water-leaving reflectance at 443- and 555-nm bands into the bio-optical model (OBPG
OC3 algorithm [34]) to determine chlorophyll concentration. Next, the backscattering
coefficient at the 660-nm band is calculated according to the chlorophyll-a concentration,
and the backscattering coefficient in the NIR band bbp(NIR) is calculated according to the
relationship between 660 nm and the water backscattering coefficient in the NIR band [35].
The NIR water-leaving reflectance can then be calculated.

2.2. UV AC Algorithm

He et al. [30] studied a large number of in-situ water-leaving spectra of turbid estuary
water bodies such as the Yangtze River, Mississippi River, and Orinoco River; they found
that due to the high suspended solids concentration in the water body, the NIR radiation
from water increased significantly. Meanwhile, due to the strong absorption of detritus,
water-leaving radiance is significantly low in UV, which can be neglected [30]. Therefore,
AC can be carried out through the UV band, that is, the UV algorithm. For the GOCI,
He et al. [2] used 412 nm to estimate aerosol scattering. It first assumes the reflectance
from water at 412 nm is 0, the aerosol scattering reflectance at 412 nm is equal to Rayleigh
scattering correction reflectance (ρrc), and then estimates the aerosol scattering reflectance
at 865 nm using the medium precision extrapolation model [12]. Next, it assumes that
the 865 nm aerosol scattering reflectance is approximately the contribution of aerosol
scattering in all bands (ρa(λ)). The normalized water-leaving reflectance and remote
sensing reflectance of water can be obtained by removing ρa(λ).

2.3. UV-NIR Jointed AC Algorithm

Through the analysis of the NASA-STD AC algorithm and specific implementation
process of the UV AC (412 nm) algorithm, the starting point of the UV AC (412 nm) and
NASA-STD AC is to assume that the water leaving reflectance of 412-nm or 865-nm band
is zero; and the reflectance after Rayleigh correction is regarded as the contribution of
aerosol scattering, which is then extrapolated to other bands’ aerosol scattering rates to
complete AC. Therefore, the pixel can be divided into pixels processed by the UV or NIR
AC algorithm according to the reflectance after Rayleigh correction at the 412-nm waveband
and the 865-nm waveband. When ρrc(412) < ρrc(865), the UV AC (412 nm) algorithm
should be used, otherwise, use the NIR AC algorithm. The flowchart of integrating UV
and NIR AC algorithms is shown in Figure 1.
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(a) We use the GOCI Rayleigh scattering lookup table to perform Rayleigh scattering
correction on the apparent reflectance of the TOA and obtain the Rayleigh scattering
corrected reflectance for the 412-, 443-, 490-, 555-, 660-, 680-, 745-, and 865-nm bands.

(b) According to the reflectance of 412- and 865-nm Rayleigh scattering correction, the
applicable area of the AC algorithm is divided. The pixels of ρrc(412) < ρrc(865) are
the area of using the UV AC (412 nm) algorithm; the pixels of ρrc(412) > ρrc(865) are
the area of using the NIR AC algorithm.

(c) The UV and NASA-STD AC algorithms are applied to the applicable areas of the UV
and NIR AC algorithms obtained in step 2 to obtain the remote sensing reflectance (Rrs).

(d) We utilize the UV AC (412 nm) algorithm for the pixels that have failed to use the
NASA-STD AC algorithm and identify the pixels with the same remote sensing
reflectance of the UV algorithm and NIR remote sensing reflectance; we use the UV
AC (412 nm) remote sensing reflectance results on the shore side, and NASA-STD AC
remote sensing reflectance results on the far shore side are accepted.

(e) Finally, we integrate the remote sensing reflectance results of the UV algorithm
application area, the NIR algorithm application area, and the transition area to obtain
the whole AC result.

2.4. Simulated, GOCI and In-Suit Data
2.4.1. Simulated Top of Atmospheric (TOA) Reflectance

The NASA-STD, KOSC, and MUMM AC algorithms use NIR bands to estimate aerosol
reflectance. We use simulated datasets to evaluate the accuracy of these three NIR AC
algorithms and select the most accurate AC algorithm to combine with the UV AC (412 nm)
algorithm. To generate a set of aerosol data containing broad aerosol properties, the Second
Simulation of a Satellite Signal in the Solar Spectrum Vector Version 1.1 (6SV1.1) [36–38]
was used to simulate aerosol reflectance. The input parameters are shown in Table 1. The
solar and satellite geometry, zenith angle, and azimuth angle were extracted from the GOCI
L2P file.
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Table 1. Parameters and values used in generating aerosol reflectance using 6SV1.1.

Parameters Values

Atmospheric Profile Midlatitude Summer
Aerosol Model Continental, Marine
Aerosol Optical Thickness (at 550 nm) 0.1, 0.2
Target Altitude Sea Level
Sensor Altitude Sensor Satellite Level

The simulated hyperspectral ocean color dataset provided by Nechad et al. [39] was
used in this study because it consists of 5000 samples with a broad range of apparent
optical properties (AOP) and inherent optical properties (IOP) ranging from 350 to 900 nm.
The ranges of chlorophyll-a suspended sediment concentration and absorption coefficients
(443 nm) of colored dissolved organic matter are 0~214.41 (mg/m3), 0~492.77 (g/m3), and
0~14.83 (1/m), respectively. The water-leaving reflectance spectra with zero solar and
sensor zenith angles were used since they are equivalent to normalized water-leaving
reflectance, and we do not need to consider the bidirectional reflectance distribution
function effect. One simulated ρwn was selected for one simulated aerosol reflectance. The
simulated Rayleigh-corrected reflectance was obtained by combining simulated aerosol
and ρwn using ρrc(λ) = ρa(λ) + tv

d(λ)t
s
d(λ)ρwn(λ). A total of 20,000 Rayleigh-corrected

reflectance spectra were obtained.

2.4.2. GOCI and In-Suit Data

The spectra of in-situ Rrs were derived from Aerosol Robotic NETWORK-Ocean Color
(AERONET-OC https://aeronet.gsfc.nasa.gov/new_web/ocean_color.html accessed date
4 October 2021) observations [40] and two Chinese ocean observation platforms (Station
Muping and Station Dongou) locations are illustrated in Figure 2. The level 1B GOCI
images collocated with in-situ samples were downloaded from the Korea Ocean Satellite
Center (http://kosc.kiost.ac.kr/ accessed date 4 October 2021). Match-ups between the
in-situ and GOCI-retrieved Rrs were selected based on locations and overpass times. The
slight difference in the wavelength between the in-situ and satellite-retrieved values was
ignored. First, 3 × 3 pixel boxes were extracted from the GOCI image centered on the
measurement sites. Second, a coefficient of variation (CV, which is the standard deviation
divided by mean values) was calculated for each band to account for spatial homogeneity
of the pixels within each 3 × 3 box. Match-ups with CV values > 0.2 in 3 × 3 pixel boxes
were excluded. Finally, the mean value of the remaining pixels was calculated. The in-suit
data and the number of observations for each site are given in Table 2.
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Table 2. In-suit data location, description, and number of match-ups.

Stations Lat
(◦N)

Lon
(◦E)

Time-
Window Data Period Number of

Match-Ups

Gageocho 33.94 125.59 ±0.5 h October 2011–May 2012 10
Ieodo 32.12 125.18 ±0.5 h December 2013–February 2018 20

Socheongcho 37.42 124.73 ±0.5 h May 2016–May 2019 8
Dongou 27.68 121.70 ±0.5 h January 2020–October 2020 25
Muping 37.68 121.35 ±0.5 h September 2020–September 2020 6

2.5. Performance Assessment

For quantitative performance assessment of the AC algorithms, different statistical
matrices were used, namely, mean absolute percentage deviation (APD), root mean square
error (RMSE), and the bias, as well as correlation coefficient (R2).

APD =
1
N

N

∑
i=1

∣∣∣∣Yi − Xi
Xi

∣∣∣∣× 100% (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(Yi − Xi)
2 (5)

Bias =
1
N

N

∑
i=1

(Yi − Xi) (6)

where Xi, Yi, and N are the in-situ value, retrieved value, and sample number, respectively.

3. Results
3.1. Evaluation of NIR Algorithms Using Simulated Data

Figures 3–5 and Table 3 compare AC results obtained by the KOSC algorithm, MUMM,
and NASA-STD algorithm for the bands of 412, 443, 490, 555, 660, and 680 nm. The color
in the figures represents the probability density of the scattered points; the redder the
color, the greater the probability density. The solid black line is the 1:1 line, and the green
dashed line is the fitting line of each band. It is clear that Rrs retrieval accuracy depends
on the AC algorithm. The KOSC algorithm overestimates Rrs in all bands. The MUMM
and NASA-STD algorithms overestimate Rrs in the 443 and 490 bands. Table 3 shows
that the inversion values of the three NIR AC algorithms have a high correlation with the
simulated remote sensing reflectance. In the 490-, 555-, 660-, and 680-nm bands, R2 > 0.94;
in the 443-nm band, the KOSC and NASA-STD algorithms have R2 > 0.8, and the MUMM
algorithm has R2 = 0.74. The correlation in the 412-nm band is relatively low, and the R2

of the KOSC, MUMM, and NASA-STD algorithms are 0.61, 0.54, and 0.61, respectively.
The results of the three algorithms all show that at 490 and 555 nm, the remote sensing
reflectance obtained is in good agreement with the simulated reflectance, and the APDs
of the three algorithms in these two bands are between 12.14% and 20.94% and between
5.39% and 13.52%, respectively.
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Table 3. Statistical results for the retrieved values of Rrs obtained with KOSC, MUMM, and NASA-
STD algorithms.

Algorithm Rrs (λ) APD RMSE Bias R2 Slope Intercept N

KOSC

412 nm 109.95 0.0026 0.0023 0.61 1.08 0.0021 16808
443 nm 55.77 0.0020 0.0016 0.82 1.16 0.0011 16807
490 nm 18.67 0.0012 0.0009 0.96 1.12 0.0003 16817
555 nm 5.39 0.0007 0.0003 0.99 1.09 0.0004 16824
660 nm 68.32 0.0011 0.0009 0.99 1.23 0.0005 16826
680 nm 72.36 0.00132 0.0011 0.99 1.24 0.0006 16824

MUMM

412 nm 59.47 0.0015 0.0010 0.54 0.82 0.0016 19778
443 nm 51.24 0.0017 0.0013 0.74 0.82 0.0021 19783
490 nm 20.94 0.0011 0.0006 0.94 0.86 0.0016 19783
555 nm 13.52 0.0008 0.0004 0.99 0.93 0.0011 19783
660 nm 62.40 0.0008 0.0003 0.99 0.89 0.0008 19783
680 nm 48.23 0.0007 0.0004 0.99 0.89 0.0008 19783

NASA-
STD

412 nm 40.16 0.0013 −0.0005 0.61 1.08 0.0008 17888
443 nm 20.27 0.0010 −0.0002 0.85 1.16 0.0007 19300
490 nm 12.14 0.0008 −0.0003 0.96 1.07 0.0008 19424
555 nm 7.27 0.0006 −0.0002 1.0 1.04 0.0006 19440
660 nm 11.54 0.0003 −0.0004 0.99 1.05 0.0002 19408
680 nm 7.17 0.0003 0.00006 0.99 1.07 0.0002 19441
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Figure 6 shows the APDs of Rrs retrieved using the KOSC, MUMM, and NASA-STD
algorithms. The three algorithms all show the same pattern, and the APD decreases as the
simulated Rrs increases. However, the APD of the NASA-STD algorithm is always the
smallest. So, we choose the combination of NASA-STD and UV algorithms.
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3.2. AC Algorithm Applicable Area Division

The division result is shown in Figure 7. The application area of the UV algorithm
is mainly distributed in the offshore areas of Hangzhou Bay, the Yangtze River Estuary,
and Subei Shoal. The application area of the NIR algorithm is mainly located offshore.
In the clean water body far from the shore, most of the pixels on the image belong to the
applicable area of the NIR algorithm.

The UV AC (412 nm) algorithm and NASA-STD NIR AC algorithm are respectively
applied to the areas shown in Figure 7, and the inverted remote sensing reflectance Rrs
is shown in Figure 8. The UV algorithm shows good Rrs distribution in the 412–680 nm
band. We use the NASA-STD NIR algorithm in the area where the NIR AC algorithm is
applied. Good remote sensing reflectance results can be obtained in clear water bodies far
offshore, but NASA-STD fails in the nearshore area (white area in Figure 8). Because the
water there is still turbid, SeaDAS sets the flag of the pixels as turbid. Pixels cannot be
processed using the NASA-STD NIR algorithm. We use the UV AC (412 nm) algorithm for
processing these pixels.
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Figure 8. Atmospheric correction Rrs distributions (unit: sr−1) at (a–f) 412, 443, 490, 555, 660, 680 nm
on the Changjiang Estuary on 1 March 2016 by applying NASA-STD and UV algorithms to the
applicable areas of NIR and UV. The black is the area where the NASA-STD algorithm fails, and the
white is the cloud.

The UV algorithm can be used for effective inversion where the application area of the
NIR algorithm cannot be retrieved, which increases the coverage area of the remote sensing
reflectance products. However, this method has a clear dividing line in the area where the
remote sensing reflectance of the UV and NIR algorithms intersect (Figure 9). The remote
sensing reflectance jumps a lot there, which does not conform to the actual ocean water
condition and is not continuous in space. It is necessary to smooth the transition from the
UV algorithm to the NIR algorithm.
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Figure 9. UV-NIR atmospheric correction Rrs distributions (unit: sr−1) at (a–f) 412, 443, 490, 555, 660, 680 nm on the
Changjiang Estuary on 1 March 2016 by applying the UV algorithm to the NASA-STD algorithm failure area. The red line in
panel (a) refers to the location and direction of the transect used in Figure 10.
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Figure 10. Comparison of Rrs extracted from the pixel along the red arrow in Figure 9a at wavelengths
of (a) 412, (b) 443, (c) 490, (d) 555, (e) 660, and (f) 680 nm. Zero on the x-axis indicates the location is
the closest to the coast.

3.3. Comparison of AC Results

We also extracted the Rrs values for pixels along the red line in Figure 9. It covers
the high-turbidity water body of the estuary and the offshore low-turbidity water body;
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their profiles are shown in Figure 10. A distance of 0 along the x-axis indicates the location
is the closest to the coast. In general, Rrs values are low in the open ocean and high near
the coast. At ~0–100 pixels along the transect, the NASA-STD algorithm is invalid. At
the beginning of NASA-STD AC, the difference of results between the UV and NASA-
STD algorithms is relatively large. Splicing here will cause a jump, so it is necessary to
perform an algorithm conversion where the two are equal. At about 150 pixels, there is an
intersection between the UV algorithm and NASA-STD NIR remote sensing reflectance
curve, indicating that the remote sensing reflectance of the two is equal; after 150 pixels,
the remote sensing reflectance of the UV AC (412 nm) algorithm continues to decrease;
the NASA-STD NIR algorithm remote sensing changes smoothly in the 412–490 nm band,
and gradually decreases in the 555–680 nm band, but the NIR algorithm remote sensing
reflectance curve is always above the UV algorithm curve. The algorithm is switched there,
the remote sensing reflectance (Rrs) transitions smoothly in space, and there will be no
obvious dividing line.

3.4. Algorithm Performance Evaluation Using Satellite Image

The results of the new algorithm are compared with those processed by NASA-STD,
MUMM, KOSC-STD, and UV algorithms. Figures 11 and 12 show that the NASA-STD AC
algorithm does not have effective inversion values in the Changjiang Estuary and the Bohai
Sea. The data loss is more serious in Hangzhou Bay and the Subei Shoal. The inversion
effect is better in clean-water bodies far offshore. The UV AC (412 nm) algorithm can
make up for the shortcoming of the NASA-STD algorithm, namely, not have an effective
inversion value for turbid waters near the coast, but UV AC (412 nm) remote sensing
reflectance appears a lot of negative values in the clean waters of the eastern Bohai Sea,
which is displayed on the image after the negative value mask, and there are negative pixels
in the 680-nm band in the East China Sea. In clean waters, there are no high concentrations
of chlorophyll and yellow substances, and the light absorption of the water is weak. If the
412-nm band is regarded as a “dark pixel,” the Rayleigh-corrected reflectance of this band
is regarded as aerosol reflectance. Aerosol scattering ratio extrapolation will overestimate
the contribution of aerosol scattering on clean water, and the aerosols “flat” assumption
is no longer applicable, so there will be a situation where the remote sensing reflectance
of the clean-water body is negative, indicating that the UV AC (412 nm) algorithm does
not apply to the clean-water body. The UV-NIR AC algorithm can effectively perform
inversion in both near-shore turbid waters or clean ocean waters, indicating that the
combined algorithm has the advantages of both NASA-STD NIR and UV algorithms and
can effectively improve the coverage area of remote sensing reflectance.

3.5. Evaluation of UV-NIR AC Using In-Situ Data

The slope in the overall Rrs match-ups for NASA-STD, UV, and UV-NIR algorithms
are 0.801, 0.689, and 0.976, with an intercept of 0.00028, 0.00032, and 0.00009, respectively
(Figure 13). Table 4 shows that the combined algorithm has the best performance, the
RMSE is between 0.0017 and 0.0025, R2 is between 0.77 and 0.94, and the relative error is
between 12.95% and 23.37%. Among them, the relative error in the 443–660 nm band is less
than 20%; and the average relative error appears in the 490-nm band, which is 12.95%; and
the largest appears in the 412-nm band, which is 23.37%. The NASA-STD NIR algorithm
significantly underestimates the remote sensing reflectance. Bias is between −0.0029 and
−0.0011, and there is a small amount of negative values in the 412-nm band. The RMSE
is between 0.0020 and 0.0036. The relative error is between 18.35% and 26.75%, and the
average relative error is in the 412–555 nm band. The UV AC (412 nm) algorithm is slightly
better than the NASA-STD AC algorithm; The 660 nm band error is the largest, with APD
of 25.93% and a lot of negative values.
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Figure 12. Comparison of Rrs distributions (unit: sr−1) at (a–e) 490, (f–j) 555, and (k–o) 680 nm in the Bohai Sea on 26
August 2016, and processed by NASA-STD, MUMM, KOSC-STD, UV, and UV-NIR algorithms, respectively.
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Figure 13. Scatter plots of remote sensing reflectance inversion values and measured values using (a) NASA-STD algorithm,
(b) UV algorithm, and (c) UV-NIR algorithms.

Table 4. Statistical results of remote sensing reflectance inversion and measured values of three
AC algorithms.

AC
Algorithm Rrs (λ) APD RMSE

(sr−1)
Bias

(sr−1) R2 Slope Intercept N

NASA-
STD

412 26.75 0.0020 −0.0014 0.77 0.84 −0.0002 49
443 19.01 0.0020 −0.0011 0.85 0.85 0.0002 57
490 18.35 0.0025 −0.0019 0.91 0.86 −0.0002 59
555 18.78 0.0036 −0.0029 0.94 0.78 0.0004 59
660 21.88 0.0025 −0.0012 0.93 0.72 0.0004 58

UV

412 21.68 0.0023 0.0006 0.71 1.10 −0.00006 53
443 17.64 0.0023 0.0003 0.80 1.04 −0.0001 54
490 15.41 0.0023 −0.0004 0.86 1.04 −0.0010 58
555 17.94 0.0028 −0.0015 0.91 1.03 −0.0021 55
660 25.93 0.0026 −0.0009 0.89 1.01 −0.0001 32

UV-NIR

412 23.37 0.0022 0.0006 0.76 1.13 −0.0003 59
443 16.89 0.0021 0.0004 0.84 1.06 −0.0001 59
490 12.95 0.0021 −0.0002 0.87 1.03 −0.0021 59
555 13.86 0.0025 −0.0012 0.92 0.99 −0.0011 59
660 19.53 0.0017 −0.0003 0.93 0.97 −0.0002 59

4. Conclusions

In this paper, the East China Sea is used as a research area, and the GOCI sensor data
are selected to study AC methods. Aimed at current problems in the AC of coastal waters
of the second type, a combined UV and NIR AC method is constructed to realize the AC of
remote sensing images of turbid coastal waters.

According to the reflectance after Rayleigh scattering correction in the 412- and 865-nm
bands, the image is divided into the applicable area of the UV algorithm and the applicable
area of the NIR algorithm. Then, the UV and NIR AC algorithms are applied to their
respective application areas. The results show that the applicable areas of the UV algorithm
are mainly distributed in the offshore areas of Hangzhou Bay, the Yangtze River Estuary,
and the Subei Shoal. The water body there is extremely turbid, and the concentration
of suspended sediment is high. The applicable areas of the NIR algorithm are mainly
distributed in clean-water bodies relatively far from the shore. The applicable area of AC is
closely related to the temporal change of tide level. Applying the UV and NASA-STD NIR
AC algorithms directly to the above areas will cause data discontinuities, and there will be
obvious boundary lines on the image.

Based on the analysis of the applicable area of AC. A combined UV and NIR AC
algorithm is proposed. Comparing the AC algorithm proposed in this paper with the UV
and NASA-STD NIR algorithms, we find that the NASA-STD NIR algorithm has the worst
accuracy (APD of 18.35–26.75%), and there is no effective inversion value in the coastal
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turbid water area. The accuracy of the UV AC (412 nm) algorithm is moderate (APD of
15.41–25.93%), and there are a small number of negative values in clean-water areas. The
combined algorithm has the highest accuracy (APD of 13.86–23.37%), compared with the
two individual algorithms: the average relative errors of 443–660 nm are decreased by
0.75–2.12%, 2.46–5.4%, 4.08–4.92%, and 2.35–6.4%, and the spatial coverage of data has also
been greatly improved.
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