Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product
Abstract
:1. Introduction
2. Study Area, Data and Methods
2.1. Study Area
2.2. Data
2.2.1. Eddy Covariance Flux Data
2.2.2. Meteorological Data
2.2.3. MODIS Data
2.3. Methods
- (1)
- Variable selection and data matching. Crop photosynthesis is a complicated process affected by shortwave radiation, air temperature, vapor pressure deficit, soil edaphoclimatic conditions and fertilization at the canopy scale, etc. Meanwhile, at the ecosystem level, GPP is closely related to light, water and canopy phenology [23,45]. Based on the previous literature as well as our current available data, nine input explanatory variables, NDVI, LAI, FPAR, DSR, daily maximum air temperature (Tmax), daily minimum air temperature (Tmin), daily mean air temperature (Tmean), VPD, and RH, were chosen for predicting the GPP dynamics in the NYRD region. As RF model training requires a large number of samples, MODIS data were linearly interpolated from 8-day/16-day to daily values to match the input parameters, following a previous study by Reitz et al. [19].
- (2)
- RF model construction, training and testing. In this paper, 90% (the rest 10%) of the EC data at Shouxian and Dongtai during the entire observation period were employed to train (validate) the RF model, and 100% of the EC data at Dafeng were applied to validate the model. The Shouxian and the Dafeng sites were independent of each other with a negligible autocorrelation between them, as these sites are about 300–400 km far away from each other (Figure 1). Here, a 10-fold cross-validation (CV) algorithm was applied to weaken the overfitting [20]. In 10-fold CV experiments, all the training data at the Shouxian and Dongtai sites during the entire observation period were randomly partitioned into ten equal-sized subsamples. Of the ten subsamples, nine subsamples were used as the training data and the remaining one was the testing data. This CV process was repeated ten times, with all ten subsamples used exactly once as the testing data. The ten results from the folds were averaged to produce a single estimation. To select the best model, we adjusted the four hyperparameters of the RF model based on Bayesian optimization [46,47]: the number of trees to grow (n_estimators), the minimum sample number placed in a node prior to the node being split (msplit), maximum number of features considers to split a node (Mfeatures), and the maximum number of levels in each decision tree (Mdepth). Three statistical metrics—the index of agreement (IA) [48], the coefficient of determination (R2), and the root mean square error (RMSE)—were used to examine the simulated performance of the 10-fold CV results. The range of IA is 0–1, and a better correspondence between the observed and modeled results often occurs when it approaches 1 [49]. Therefore, n_estimators = 219, msplit = 2, Mfeatures = 9, and Mdepth = 32 were set for the final RF model.
- (3)
- GPP upscaling. The general relationships between GPPRF and explanatory data were first trained at site level, and then applied regionally by using regional surface meteorological stations of explanatory variables as follows: GPPRF VS f (Tmax, Tmin, Tmean, VPD, RH, NDVI, LAI, FPAR, DSR).
- (4)
- MOD17A2H GPP product calibration. Based on the upscaled results of GPPRF and GPPMOD at the station scale, a relationship between GPPRF and GPPMOD was built. The calibration function was then applied from the site scale to the regional scale.
3. Results
3.1. Intraseasonal Variations of GPP
3.2. Driving Factors of GPP on a Seasonal Scale
3.3. Random Forest Model Evaluation
3.4. Upscaled GPP
3.5. Calibration of the MOD17A2H GPP Product
4. Discussion
4.1. Complexity of the Drivers of Spatio-Temporal Variation in GPP
4.2. Potential Discrepancy between GPPEC and GPPMOD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, X.Y.; Pei, Y.Y.; Zheng, Z.P.; Dong, J.W.; Zhang, Y.; Wang, J.B.; Chen, L.J.; Doughty, R.B.; Zhang, G.L.; Xiao, X.M. Underestimates of Grassland Gross Primary Production in MODIS Standard Products. Remote Sens. 2018, 10, 1771. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, H.; Lin, A.; Zou, L.; Qin, W.; Du, Q. Evaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sens. 2017, 9, 418. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Sebastian, K.; Scherr, S. Pilot Analysis of Global Ecosystems: Agroecosystems; WRI: Washington, DC, USA, 2000. [Google Scholar]
- Malmström, C.M.; Thompson, M.V.; Juday, G.P.; Los, S.O.; Randerson, J.T.; Field, C.B. Interannual variation in global-scale net primary production: Testing model estimates. Glob. Biogeochem. Cycles 1997, 11, 367–392. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.Y.; Li, A.N.; Tan, J.B.; Jin, H.A.; Nan, X.; Zhang, Z.J.; Bian, J.H.; Lei, G.B. Assessments of gross primary productivity estimations with satellite data-driven models using eddy covariance observation sites over the northern hemisphere. Agric. For. Meteorol. 2020, 280, 14. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Change Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Change Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef] [Green Version]
- John, R.; Chen, J.; Noormets, A.; Xiao, X.; Xu, J.; Lu, N.; Chen, S. Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. Int. J. Remote Sens. 2013, 34, 2829–2857. [Google Scholar] [CrossRef]
- Lee, B.; Kim, N.; Kim, E.-S.; Jang, K.; Kang, M.; Lim, J.-H.; Cho, J.; Lee, Y. An Artificial Intelligence Approach to Predict Gross Primary Productivity in the Forests of South Korea Using Satellite Remote Sensing Data. Forests 2020, 11, 1000. [Google Scholar] [CrossRef]
- Reeves, M.C.; Zhao, M.; Running, S.W. Usefulness and limits of MODIS GPP for estimating wheat yield. Int. J. Remote Sens. 2005, 26, 1403–1421. [Google Scholar] [CrossRef]
- Post, H.; Hendricks Franssen, H.J.; Han, X.; Baatz, R.; Montzka, C.; Schmidt, M.; Vereecken, H. Evaluation and uncertainty analysis of regional-scale CLM4.5 net carbon flux estimates. Biogeosciences 2018, 15, 187–208. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W.; Denning, A.S.; Lu, L.X.; Baker, I.T.; Corbin, K.D.; Davis, K.J. Observations and simulations of synoptic, regional, and local variations in atmospheric CO2. J. Geophys. Res.-Atmos. 2007, 112, 7410. [Google Scholar] [CrossRef] [Green Version]
- Ueyama, M.; Ichii, K.; Iwata, H.; Euskirchen, E.S.; Zona, D.; Rocha, A.V.; Harazono, Y.; Iwama, C.; Nakai, T.; Oechel, W.C. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 2013, 118, 1266–1281. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Reichstein, M.; Margolis, H.A.; Cescatti, A.; Richardson, A.D.; Arain, M.A.; Arneth, A.; Bernhofer, C.; Bonal, D.; Chen, J.; et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 2011, 116, 1566. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; Yang, Y.; Luo, J. Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements. Sustainability 2018, 10, 203. [Google Scholar] [CrossRef] [Green Version]
- Tramontana, G.; Migliavacca, M.; Jung, M.; Reichstein, M.; Keenan, T.F.; Camps-Valls, G.; Ogee, J.; Verrelst, J.; Papale, D. Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks. Glob. Change Biol. 2020, 26, 5235–5253. [Google Scholar] [CrossRef]
- Zeng, J.; Matsunaga, T.; Tan, Z.-H.; Saigusa, N.; Shirai, T.; Tang, Y.; Peng, S.; Fukuda, Y. Global terrestrial carbon fluxes of 1999–2019 estimated by upscaling eddy covariance data with a random forest. Sci. Data 2020, 7, 313. [Google Scholar] [CrossRef]
- Reitz, O.; Graf, A.; Schmidt, M.; Ketzler, G.; Leuchner, M. Upscaling Net Ecosystem Exchange Over Heterogeneous Landscapes With Machine Learning. J. Geophys. Res. Biogeosci. 2021, 126, 5814. [Google Scholar] [CrossRef]
- Cai, J.C.; Xu, K.; Zhu, Y.H.; Hu, F.; Li, L.H. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest. Appl. Energy 2020, 262, 114566. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, W.; Gao, S.; Zhang, K.; Wang, J.; Huang, N. Estimating deciduous broadleaf forest gross primary productivity by remote sensing data using a random forest regression model. J. Appl. Remote Sens. 2019, 13, e038502. [Google Scholar] [CrossRef]
- Tramontana, G.; Ichii, K.; Camps-Valls, G.; Tomelleri, E.; Papale, D. Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data. Remote Sens. Environ. 2015, 168, 360–373. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Q.; Sun, R. Comparison of Machine Learning Methods to Up-Scale Gross Primary Production. Remote Sens. 2021, 13, 2448. [Google Scholar] [CrossRef]
- Timsina, J.; Connor, D.J. Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crop. Research. 2001, 69, 93–132. [Google Scholar] [CrossRef]
- Chen, C.; Li, D.; Gao, Z.; Tang, J.; Guo, X.; Wang, L.; Wan, B. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain. Adv. Atmos. Sci. 2015, 32, 1365–1380. [Google Scholar] [CrossRef]
- Duan, Z.; Yang, Y.; Wang, L.; Liu, C.; Fan, S.; Chen, C.; Tong, Y.; Lin, X.; Gao, Z. Temporal characteristics of carbon dioxide and ozone over a rural-cropland area in the Yangtze River Delta of eastern China. Sci. Total Environ. 2021, 757, e143750. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Zhang, H.; Zhang, H.; Cai, X.; Song, Y.; Kang, L. The characteristics of methane flux from an irrigated rice farm in East China measured using using the eddy covariance method. Agric. For. Meteorol. 2018, 249, 228–238. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China data set of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Duan, Z.; Grimmond, C.; Gao, C.Y.; Sun, T.; Liu, C.; Wang, L.; Li, Y.; Gao, Z. Seasonal and interannual variations in the surface energy fluxes of a rice–wheat rotation in Eastern China. J. Appl. Meteorol. Climatol. 2021, 60, 877–891. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Krutz, J.L.; Pinnamaneni, S.R.; Sui, R. Quantifying water and CO2 fluxes and water use efficiencies across irrigated C3 and C4 crops in a humid climate. Sci. Total Environ. 2019, 663, 338–350. [Google Scholar] [CrossRef]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis; Lee, X., Massman, W., Law, B., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 7–31. [Google Scholar]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Sigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H.; Northup, B.K.; Neel, J.P.S.; Starks, P.J.; Turner, K.E.; Moriasi, D.N.; Xiao, X.; Steiner, J.L. Carbon dioxide and water vapor fluxes of multi-purpose winter wheat production systems in the U.S. Southern Great Plains. Agric. For. Meteorol. 2021, 310, 108631. [Google Scholar] [CrossRef]
- Yang, D.; Xu, X.; Xiao, F.; Xu, C.; Luo, W.; Tao, L. Improving modeling of ecosystem gross primary productivity through re-optimizing temperature restrictions on photosynthesis. Sci. Total Environ. 2021, 788, 147805. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC; 2019. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 10 July 2021). [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mod13q1v006 (accessed on 10 July 2021). [CrossRef]
- Myneni, R.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mod15a2hv006/ (accessed on 10 July 2021). [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD17A2H MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC; 2015. Available online: https://lpdaac.usgs.gov/products/mod17a2hv006/ (accessed on 10 July 2021). [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. Isprs J. Photogramm. Remote Sensing. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liu, J.; Zuo, Y.; Wang, N.; Yuan, F.; Zhu, X.; Zhang, L.; Zhang, J.; Sun, Y.; Guo, Z.; Guo, Y.; et al. Comparative Analysis of Two Machine Learning Algorithms in Predicting Site-Level Net Ecosystem Exchange in Major Biomes. Remote Sens. 2021, 13, 2242. [Google Scholar] [CrossRef]
- Xiao, J.; Zhuang, Q.; Baldocchi, D.D.; Law, B.E.; Richardson, A.D.; Chen, J.; Oren, R.; Starr, G.; Noormets, A.; Ma, S.; et al. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agric. For. Meteorol. 2008, 148, 1827–1847. [Google Scholar] [CrossRef] [Green Version]
- Baareh, A.K.; Elsayad, A.; Al-Dhaifallah, M. Recognition of splice-junction genetic sequences using random forest and Bayesian optimization. Multimed. Tools Appl. 2021, 80, 30505–30522. [Google Scholar] [CrossRef]
- Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811. [Google Scholar]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yu, Q.; Jiang, J.; Tang, Y. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau. Glob. Change Biol. 2008, 14, 757–767. [Google Scholar] [CrossRef]
- Rahman, A.F.; Sims, D.A.; Cordova, V.D.; El-Masri, B.Z. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Kumar, A.; Padre, A.; Amante, M. CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agric. For. Meteorol. 2009, 149, 1737–1750. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, Y.; Wei, S.; Li, W.; Ye, Y.; Sun, T.; Liu, W. Validation of global moderate resolution leaf area index (LAI) products over croplands in northeastern China. Remote Sens. Environ. 2019, 233, 111377. [Google Scholar] [CrossRef]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Raduly, B.; Reichstein, M.; Arain, M.A.; Cescatti, A.; Kiely, G.; et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.R.; Pokhariyal, S.; Chauhan, P.; Dadhwal, V.K. Dynamics of CO2 fluxes and controlling environmental factors in sugarcane (C4)-wheat (C3) ecosystem of dry sub-humid region in India. Int. J. Biometeorol. 2021, 65, 1069–1084. [Google Scholar] [CrossRef]
- Schmidt, M.; Reichenau, T.G.; Fiener, P.; Schneider, K. The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and inter-annual variability. Agric. For. Meteorol. 2012, 165, 114–126. [Google Scholar] [CrossRef]
- Zhang, Q.; Lei, H.M.; Yang, D.W.; Xiong, L.H.; Liu, P.; Fang, B.J. Decadal variation in CO2 fluxes and its budget in a wheat and maize rotation cropland over the North China Plain. Biogeosciences 2020, 17, 2245–2262. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, P.; Neogi, S.; Roy, K.S.; Dash, P.K.; Tripathi, R.; Rao, K.S. Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr. Cycl. Agroecosystems 2013, 95, 133–144. [Google Scholar] [CrossRef]
- Wagle, P.; Gowda, P.H.; Neel, J.P.S.; Northup, B.K.; Zhou, Y. Integrating eddy fluxes and remote sensing products in a rotational grazing native tallgrass prairie pasture. Sci. Total Environ. 2020, 712, 136407. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Kern, A.; Kljun, N. Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agric. For. Meteorol. 2013, 174–175, 43–53. [Google Scholar] [CrossRef]
- Franssen, H.J.H.; Stöckli, R.; Lehner, I.; Rotenberg, E.; Seneviratne, S.I. Energy balance closure of eddy-covariance data: A multisite analysis for European FLUXNET stations. Agric. For. Meteorol. 2010, 150, 1553–1567. [Google Scholar] [CrossRef]
- McGloin, R.; Šigut, L.; Havránková, K.; Dušek, J.; Pavelka, M.; Sedlák, P. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric. For. Meteorol. 2018, 248, 418–431. [Google Scholar] [CrossRef]
Station | Location | Altitude (m) | Period | Tave (°C) | Pave (mm) | Reference |
---|---|---|---|---|---|---|
Shouxian | (32.44°N, 116.79°E) | 27 | 15 July 2015–24 April 2019 | 16 | 1115 | [26] |
Dongtai | (32.76°N, 120.47°E) | 2 | 1 December 2014–30 November 2017 | 13 | 1484 | [29] |
Dafeng | (33.21°N, 120.28°E) | 1 | 16 November 2015–29 November 2016 | 15 | 1060 | [27] |
Crop | Climate | Location | Period | GPP | T | P | Reference |
---|---|---|---|---|---|---|---|
Wheat | Semi-humid | Shouxian, China (32.44°N, 116.79°E) | October–May, 2007–2010 | 1071 | 10 | 351 | [25] |
Temperate and semi-humid | Weishan, China (36.65°N, 116.05°E) | October–May, 2005–2016 | 1174 | – | – | [56] | |
Sub-tropical dry sub-humid | Saharanpur, India (29.87°N, 77.57°E) | December 2014–April 2015 | 621 | 20 | 224 | [54] | |
Temperate maritime | Selhausen, Germany (50.87°N, 6.45°E) | October 2007–October 2009 | 1241 | 10 | 734 | [55] | |
Semi-humid | Shouxian, China (32.44°N, 116.79°E) | November–May, 2015–2019 | 609 | 9 | 378 | This study | |
Sub-tropical monsoon | Dongtai, China (32.76°N, 120.47°E) | November–May, 2014–2017 | 848 | 9 | 298 | This study | |
Sub-tropical monsoon | Dafeng (33.21°N, 120.28°E) | November–May, 2015–2016 | 701 | 9 | 300 | This study | |
Rice | Semi-humid | Shouxian, China (32.44°N, 116.79°E) | October 2007–May 2010 | 976 | 26 | 567 | [25] |
Sub-tropical monsoon | Cuttack, India (20.45°N, 85.94°E) | July–November 2012 | 811 | – | – | [57] | |
Tropical | Laguna, Philippines (14.16°N, 120.25°E) | January–May 2008 | 778 | 26 | – | [51] | |
Semi-humid | Shouxian, China (32.44°N, 116.79°E) | June–October, 2015–2019 | 1170 | 23 | 735 | This study | |
Sub-tropical monsoon | Dongtai, China (32.76°N, 120.47°E) | June–October, 2015–2017 | 1066 | 23 | 1025 | This study | |
Sub-tropical monsoon | Dafeng, China (33.21°N, 120.28°E) | June–October, 2015–2016 | 889 | 24 | 1028 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Z.; Yang, Y.; Zhou, S.; Gao, Z.; Zong, L.; Fan, S.; Yin, J. Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sens. 2021, 13, 4229. https://doi.org/10.3390/rs13214229
Duan Z, Yang Y, Zhou S, Gao Z, Zong L, Fan S, Yin J. Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sensing. 2021; 13(21):4229. https://doi.org/10.3390/rs13214229
Chicago/Turabian StyleDuan, Zexia, Yuanjian Yang, Shaohui Zhou, Zhiqiu Gao, Lian Zong, Sihui Fan, and Jian Yin. 2021. "Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product" Remote Sensing 13, no. 21: 4229. https://doi.org/10.3390/rs13214229
APA StyleDuan, Z., Yang, Y., Zhou, S., Gao, Z., Zong, L., Fan, S., & Yin, J. (2021). Estimating Gross Primary Productivity (GPP) over Rice–Wheat-Rotation Croplands by Using the Random Forest Model and Eddy Covariance Measurements: Upscaling and Comparison with the MODIS Product. Remote Sensing, 13(21), 4229. https://doi.org/10.3390/rs13214229