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Section S1. Mapping units generation.

For parcels, we first used the OpenStreetMap (OSM) data to generate road buffers. Initiated
in 2004 as a volunteer effort, OSM is a substantial global spatial database that maps a variety of
point, line, and polygon features. The positional accuracy of mapped features (*20 m) is mainly
determined by the positioning technologies (e.g.,, GPS) employed and references used while
digitizing these features. It has been reported that road features from OSM largely surpassed the
accuracy of other publicly available global datasets such as Global Roads Open Access Data Set
(¥500 m) (Haklay 2010), and the high precision and wide coverage make OSM the best available
seamless dataset (Barrington-Leigh and Millard-Ball 2017; Meijer et al. 2018). We downloaded
all the road data from https://www.openstreetmap.org/. Similar to Kennedy et al. (2019), we
grouped road features of OSM as either “highway”, “motorway”, “trunk”, “primary”, or
“secondary” into a single layer of major roads, grouped road features coded as “tertiary”,
“unclassified”, and “residential” into another layer of minor roads, and considered features
coded as “tracks” as track roads. We then created buffers according to the given width of
different roads, which was estimated based on a nationwide sampling experiment with 2669
samples for major roads and 2358 samples for minor roads across 322 prefecture-level cities in
China (Gong et al. 2020). After that, we overlapped the road buffers with the 30-m resolution
global urban boundaries (GUB) data in 2018 (Li et al. 2020) to extract initial urban parcels.
Different from the commonly used administrative boundaries, the urban boundaries we used
mark a physical region that consists of not only the built-up areas but also the associated natural

lands in the urban center such as greenspace and water bodies (Li et al. 2020). Furthermore, to



mitigate the influence from water bodies, we excluded water pixels in these parcels using the
10-m resolution FROM-GLC10 land cover product (Gong et al. 2019). Both the GUB and FROM-
GLC10 datasets were accessed from http://data.ess.tsinghua.edu.cn/. More detailed information
about parcel generation can be referred to Gong et al. (2020).

For objects, we adopted an object-based segmentation approach, the simple non-iterative
clustering (SNIC) algorithm (Achanta and Susstrunk 2017), to segment the multispectral
Sentinel-2 imagery (see Section S4 for an introduction of this data) into homogeneous units. The
SNIC is a bottom-up, seed-based segmentation approach that groups neighboring pixels together
into clusters based on input data and parameters such as compactness, connectivity, and
neighborhood size (Achanta and Susstrunk 2017). It has been widely used in various studies
including land use and land cover classification (Ghorbanian et al. 2020; Tassi and Vizzari 2020;
Tu et al. 2020a), cropland mapping (Brinkhoff et al. 2020; Paludo et al. 2020; Yang et al. 2021),
wildfire monitoring (Crowley et al. 2019), and wetland inventory (Amani et al. 2019). The
implementation of SNIC generated a set of homogeneous objects.

Specifically, road widths for buffering major roads and minor roads were set to 36 m and 8
m, respectively. Parameters for SNIC segmentation were designated as follows: compactness
was set to 1 to achieve larger clusters, connectivity was set to 8, the neighborhood size was set
to 8 to avoid tile boundary artifacts, and the seeds were created in a square pattern using a super-
pixel seed spacing of 16 pixels. We intersected all segmented objects with the derived parcels to
make sure that each object spatially corresponded to a parcel. As a summary, we generated a

total of 5824 parcels and 58,311 objects in our study area.



Section S2. Base models and parameter tuning in ensemble learning.

During ensemble learning, five base models including Random Forest, Extremely
Randomized Trees, Gradient Boosted Decision Trees (CatBoost), Light Gradient Boosting
Machine (LightGBM), and Neural Networks were utilized for object-based urban land use
classification in this study. For each base model, we tested its performance under 20 sets of
parameter combinations and chose values with the highest overall accuracy as the optimal
parameters. Table S4 lists the tuned optimal parameters for all base models. An introduction to
each base model and its parameter settings was provided as followed.

Random Forest is a classic machine learning algorithm that consists of a large ensemble of
regression trees. It is operated by constructing a multitude of decision trees at training time and
outputting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees (Ho 1995, 1998). The majority “vote” of all the trees is used
to assign a final class for each unknown. RF corrects for the overfitting problem of decision tree
algorithms (Breiman 2001). The most important parameter for Random Forest is “n_estimators”,
which is the number of decision trees used during the training process. According to Oshiro et
al. (2012), as the number of trees grows, it does not always mean the performance of the forest
is significantly better than previous forests (fewer trees), and there is a threshold beyond which
there is no significant gain. In this study, the parameter “n_estimators” in Random Forest was
set between 50 to 300. The parameter “criterion” was set to “gini” and “entropy”, which

represented the function to measure the quality of a split.



Extremely Randomized Trees is yielded by adding one further step of randomization to
Random Forest. While similar to ordinary random forests in that they are an ensemble of
individual trees, there are two main differences: first, each tree is trained using the whole
learning sample (rather than a bootstrap sample), and second, the top-down splitting in the tree
learner is randomized (Geurts et al. 2006). Instead of computing the locally optimal cut-point for
each feature under consideration (e.g., based on the Gini impurity), a random cut-point is
selected (Geurts et al. 2006). This value is selected from a uniform distribution within the
feature's empirical range (in the tree's training set). The parameter settings of Extremely
Randomized Trees were the same as those of Random Forest.

CatBoost is a machine learning algorithm that uses gradient boosting on decision trees
(Dorogush et al. 2018). One of the differences between CatBoost and other gradient boosting
trees is its advanced processing of the categorical features, which helps to maintain a high level
of accuracy (Al Daoud 2019). In CatBoost, the parameter “iterations” indicates the maximum
number of trees that can be built when solving machine learning problems. The parameter
“learning_rate” is the speed used for reducing the gradient step, which affects the overall time of
training. When the number of iterations decreases, the learning rate needs to be increased
(Prokhorenkova et al. 2017). In this study, “iterations” was set from 5000 to 50000 and
“learning_rate” was set from 0.01 to 0.5.

Similar to CatBoost, LightGBM is a gradient boosting framework developed based on the
decision tree algorithm as well (Ke et al. 2017). It implements a highly optimized histogram-

based decision tree learning algorithm, which yields great advantages on both efficiency and



memory consumption (Machado et al. 2019). One main parameter in LightGBM is the number of
leaves (“num_leaves”) that controls the complexity of the tree mode. Besides, “min_data_in_leaf”
is a very important parameter that prevents over-fitting in a leaf-wise tree. Setting it to a large
value can avoid growing too deep a tree, but may cause under-fitting. In this study, “num_leaves”
was set between 30 and 200, “min_data_in_leaf” was set between 2 and 30, and “learning_rate”
was set from 0.01 to 0.5.

Figure S1 shows the architecture of Neural Networks used in this study. It shares similar
design choices as the models of Cheng et al. (2016) and Howard and Gugger (2020). Our network
applies a separate embedding layer to each categorical feature, where the embedding dimension
is selected proportionally to the number of unique levels observed for this feature (Guo and
Berkhahn 2016). For multivariate data, the individual embedding layers enable our network to
separately learn about each categorical feature before its representation is blended with other
variables (Erickson et al. 2020). The embeddings of categorical features are concatenated with
the numerical features into a large vector which is both fed into a 3-layer feedforward network
as well as directly connected to the output predictions via a linear skip-connection (Figure S1).
In Neural Networks, the parameter “num_epoch” is the number of training epochs that controls
the training time models and the parameter “batch_size” defines the number of samples that will
be propagated through the network. Activate functions were tested with “relu”, “softrelu”, and

“tanh”, respectively. More details about the structure and parameters of Neural Networks can be

found in Erickson et al. (2020).



Section S3. Quantifying influencing factors of land use mix.
1. Calculating potential variables that influence land use mix

In this study, 19 specific variables from the four aspects of geography, socioeconomy,
accessibility, and landscape were included to represent the potential influencing factors of urban
land use mix.

1.1. Geography
1.1.1. Mean of elevation (elevation)

The Shuttle Radar Topography Mission (SRTM) V3 product is a digital elevation model
(DEM) that uses interferometric radar data to obtain near-global elevation information at 1
arcsec resolution (approximately 30 m). The dataset has undergone a void-filling process using
open-source data (ASTER GDEM2, GMTED2010, and NED), as opposed to other versions that
contain voids or have been void-filled with commercial sources (Farr et al. 2007). We acquired
the DEM data covering the study area of Ningbo from the Google Earth Engine (GEE) platform
(https://earthengine.google.com/) (Gorelick et al. 2017). We then calculated the average
elevation value for each parcel.

1.1.2. Mean of NDVI (ndvi)

We extracted the average normalized difference vegetation index (NDVI) value for each
parcel based on the NDVI band in the processed Sentinel-2 data (see Section S4). NDVI reflects
the vegetation coverage of parcels with larger NDVI values indicate more greenspaces.

1.1.3. Fractions of clay, sand, and silt (fra_clay, fra_sand, fra_silt)



Soil texture, defined as the combination of mineral particles of different sizes and diameters
in the soil, is one of the physical properties of the ground surface. It is regarded as an important
basis for soil utilization and management, and is closely related to soil aeration, fertilizer and
water retention, and farming rotation. China’s soil texture data is compiled based on the 1:1
million (~1000 m) soil type map and soil profile data obtained from the second national soil
survey. Soil texture is divided into three types of sand, silt, and clay according to different
contents. Each type of data reflects the content of particles of different textures by percentage.
We acquired the soil texture data from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). For each parcel, we
calculated fractions of clay, sand, and silt, respectively.

1.2. Socioeconomy
1.2.1. Number of business and commercial points (business, commercial)

We counted the total numbers of business and commercial points of parcels using the Baidu
POI data (see Section S4). These two variables reflect the vitality of streets.

1.2.2. Mean of population (pop)

We calculated the average population for each parcel using the WorldPop data (see Section
S4).

1.2.3. Mean of nighttime light (ntl)

We calculated the average light intensity for each parcel using the Luojia-1 NTL data (see
Section S4).

1.2.4. Mean of house price (house_price)



We obtained the house price data from Lianjia (https://m.lianjia.com/), one of the largest
real estate brokerage firms in China. Specifically, we first collected an expansive set of house lists
using the web-crawling Python program. Second, we cleaned the original data by removing
errors and redundancy, and then geocoded physical addresses for each record with Baidu Map
API. To ensure the consistency of house tenancy and structure, we further removed properties
that were not commodity apartments, such as subsidized housing from work units. In the end,
we included a total of 3133 house price records within the study area of Ningbo.

Since these house price records were point data with geographical coordinates, we further
interpolated them into a raster surface using the inverse distance weighted (IDW) approach.
Specifically, in IDW analysis, the output cell size was set to 100 m, the exponent of distance was
set to 2, and the search distance was set to 3000 m. Lastly, we calculated the mean house price
for each parcel according to the IDW interpolation result.

1.3. Accessibility
1.3.1. Distances to bus and subway stations (dis_bus, dis_subway)

We separated bus and subway categories from the obtained Baidu POI data respectively
and then calculated the Euclidean distance of each parcel to the nearest bus (subway) station.
1.3.2. Distances to railway and roads (dis_railway, dis_major_road, dis_minor._road, dis_track_road)

Using the regrouped OSM data (as processed in Section S1), we calculated the minimum
Euclidean distances of each parcel to the railway and to roads of major, minor, and track,
respectively.

1.4. Landscape



1.4.1. Shape index of parcel (shape)

The shape index (SI) of each parcel was calculated according to the following equation:

0.25P

SI =

(1)

where P and A denotes the perimeter and area of the parcel, respectively. SI represents the
deviation between the shape of a parcel and the square of the same area. A larger SI value
indicates a more complicated parcel shape.

1.4.2. Richness index of parcel (richness)

In Equation (S2), the richness index (RI) was defined as:
c
RI =~ (S2)

where C is the total number of objects within a given parcel and A is the area of the parcel. RI
characterizes the richness of parcels with higher RI values indicate richer landscapes.
2. Exploring the association between land use mix and potential variables

One problem in multivariate analysis (MVA) is the collinearity between variables, especially
when the number of variables is large. Since MVA requires all the variables to be independent, it
is necessary to remove the collinearity in advance. Here we adopt the principal components
analysis (PCA) to linearly transform correlated variables into a smaller number of uncorrelated
variables, which is achieved by projecting the original data into the reduced PCA space using the
eigenvectors of the covariance matrix (Wold et al. 1987). The resulting projected data are
essentially linear combinations of the original data capturing most of the variance in the data

(Jolliffe and Cadima 2016). Each combination is called a principal component (PC). Normally, the

10



first PC (PC1) explains the most variance in the original data with each subsequent component
explaining less. PCA is particularly useful in reducing the dimensionality of data and removing
the collinearity of variables (Ringnér 2008), and had been utilized in many MVA studies that
measure abstract concepts such as urban deprivation or neighborhood inequality (Havard et al.
2008; Lalloué et al. 2013; Langlois and Kitchen 2001; Messer et al. 2006).

In this study, the scikit-learn Python library (Pedregosa et al. 2011) was used to realize PCA.
Before transforming, each variable (column) in the original feature matrix X was normalized to
0-1 according to the following equation:

X; j—Xmin;

Xnorm; ; = ,(=1,2,..... ,19 S3
J

where Xnorm;; is the value in the i-th row and j-th column of the matrix after normalization;
Xij is the i-th row and j-th column value of the original matrix; Xmin; is the minimum value of the
j-th column and Xmax; is the maximum value of the j-th column. During PCA, the number of
components was set to 10. To better understand the physical meaning of each PC, we also
calculated the importance of each variable reflected by the magnitude of the corresponding
values in eigenvectors. The larger they are these absolute values, the more a specific variable
contributes to that PC.

Lastly, a multiple linear regression model was performed to analyze the association
between land use mix (complexity index (CI)) and the retained PCs according to Equation (S4):

Cl; = Bo + B1PCi1 + BoPCiy + -+ By PCi + &, (k= 1,2, ... ... ,m) (S4)
where Cl; is the observed CI value of the i-th parcel, PCik is k-th PC value of the i-th parcel,

and m is the number of PCs (equals 10 in this case). Sk represents the k-th parameter estimated

11



using the ordinary least squares method and ¢; is the i-th independent identically distributed
normal error. A positive Sk indicates a positive correlation between CI and the k-th PC, and vice
versa. All regression analyses were carried out using the statsmodels library (Seabold and
Perktold 2010) in Python and three levels of significance were tested at p<0.001, p<0.01, and
p<0.05, respectively. Noted all the analysis above was performed for the Level I category.
Section S4. Data preparation and processing.

The Sentinel-1 mission provides ground range detected (GRD) data from a dual-
polarization C-band SAR instrument. One advantage of SAR instruments is the capacity in
acquiring meaningful data in all weather conditions (even clouds) during daytime and nighttime.
The signal recorded in GRD data is the backscatter coefficient that measures the incident
microwave radiation scattered by the radiated terrain. In this study, the Sentinel-1 mean
composite for Ningbo, 2018 was processed and acquired from the GEE platform
(https://earthengine.google.com/) (Gorelick et al. 2017). Specifically, two dual-polarization
bands of VV and VH were extracted at a spatial resolution of 10 m.

Sentinel-2 is a wide-swath, high-resolution, multispectral imaging mission with a global 5-
day revisit frequency. The data includes 12 spectral bands altogether with spatial resolutions
ranging from 10 m to 60 m. In this study, only the four 10 m bands of Blue, Green, Red, and Near
Infrared (NIR) in the Level-2A surface reflectance product (Louis et al. 2016) for 2018 were used
for further analysis. Specifically, we first filtered the whole-year archive with the percentage of
cloudy pixels less than 30% using the “CLOUDY_PIXEL_PERCENTAGE” band information. Second,

we did a pixel-based quality check to screen and filter out the poor-quality surface reflectance
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values using cloud mask and quality assessment band (QA60) information. Third, we extracted
values of normalized difference vegetation index (NDVI = (NIR-Red)/(NIR+Red)) and
normalized difference water index (NDWI = (Green-NIR)/(Green+NIR)) using the retained
reflectance in the Green, Red, and NIR bands for each pixel. Finally, we calculated the average
pixel values in the image collections and derived the cloud-free Sentinel-2 mean composite for
2018. Like Sentinel-1, we processed and downloaded all the Sentinel-2 data in the GEE platform.

Developed by Wuhan University in China, the new generation of Luojia 1-01 remote sensing
satellite was successfully launched on 2 June 2018 (Zhang et al. 2019). Compared with previous
NTL data such as the Defense Meteorological Satellite Program’s Operational Linescan System,
Luojia-1 has many advantages such as finer spatial resolution (~130 m) and higher radiometric
quantization (14 bits), which significantly enhance its capacity in detecting artificial lightings at
night (Li et al. 2019; Tu et al. 2020b). We acquired the Luojia-1 NTL imagery covering the study
area for 2018 from the Hubei Data and Application Center (http://www.hbeos.org.cn/).

WorldPop is a high-resolution, contemporary, and accurate dataset that provides estimated
population distributions at a spatial resolution of ~100 m. The data was generated by matching
and disaggregating population census to grid cells based on machine learning approaches
(Tatem 2017). We accessed the spatial demographics of Ningbo in 2018 from the WorldPop
website (https://www.worldpop.org/).

The Baidu POI data for 2018 was acquired via the Baidu Map Application Programming
Interface (API) (http://lbsyun.baidu.com/), one of the most popular web mapping services in

China. Each POl record consisted of a series of information including name, location coordinates,
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and urban function. We filtered the original POIs by excluding those irrelevant points and

reclassified them into 9 general categories including residential, business, commercial,

industrial, transportation, administrative, educational, medical, and sport and culture. After

cleaning and selecting, a total of 707,297 POI records were obtained within the study area.

Tables S1-8.

Table S1. Texture metrics used in this study.

Texture metric Formula Description

Variance NZ1N-1 A measure of heterogeneity. Variance
Z Z (—w2g@,)) increases when the gray level values
=0 j=0 differ from their mean.

Correlation NZiN-1 g (i, J) — txlty A measure of linear (_iepend_ency_ of gray

levels on those of neighboring pixels.

i=0 j=0 %%y Correlation will be high if an image
contains a considerable amount of
linear structure.

Contrast NZ1N-1 A measure of exponential difference

(i —N?*g%3,)) between the highest and lowest values
i=0 j=0 of neighboring pixels. A high value of
contrast indicates the presence of
edges, noise, or wrinkled textures in the
image.

Dissimilarity NZiN-1 A measure of linear weighted difference
Z g, DI —jl between values. It is similar to contrast.
i=0 j=0

Entropy NZ1N-1 A measure of the degree of disorder

—g(, 7)) In(g(i, j)) among pixels in the image. Images with
i=0 j=0 a larger number of gray levels have
larger entropy.

Angular second NZiN-1 Measures the uniformity (or

moment g(i,))? orderliness) of the gray level
i=0 j=0 distribution of the image; images with a

smaller number of gray levels have
larger angular second moment.

Note. All the metrics are calculated based on the gray level co-occurrence matrix (GLCM)
(Haralick et al. 1973). In all equations, N is the total number of gray levels in the image; g(ij) is
the (i,j)-th entry of the normalized GLCM, that is, g(i,j)= p(ij)/ Y.ip(ij), where p(ij) is the (ij)-th
entry of the computed GLCM; and ux, 4y and ox, oy denote the mean and standard deviations of
the row and column sums of the GLCM, respectively, that is, u=3ijig(i,j) and =i (i-p)?g(ij).
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Table S2. Summary of features used in the stage-1 mapping of EULUC-seg.

Data Features Variables Count
source
Sentinel-1 Mean and the standard deviation of VV and VV_mean, VH_mean, 2
VH bands
Standard deviation of VV and VH bands VV_std, VH_std 2
Textures (variance, correlation, contrast, VV_var, VV_corr, VV_contrast, VV_diss, VV_ent, VV_asm, VH _var, 12
dissimilarity, entropy, and angular second VH_corr, VH_contrast, VH_diss, VH_ent, VH_asm
moment) of VV and VH bands
Sentinel-2 Mean of blue, green, red, near-infrared B2 _mean, B3_mean, B4_mean, B8_mean, NDVI_mean, NDWI mean 6
bands, NDVI, and NDWI bands
Standard deviation of blue, green, red, near-  BZ2_std, B3_std, B4 std, B8_std, NDVI_std, NDWI_std 6
infrared bands, NDVI, and NDWI bands
Textures (variance, correlation, contrast, B2 var, B2_corr, B2_contrast, B2_diss, B2_ent, B2_asm, B3_var, 24
dissimilarity, entropy, and angular second B3 corr, B3_contrast, B3_diss, B3_ent, B3_asm, B4 _var, B4 _corr,
moment) of blue, green, red, and near- B4 contrast, B4 _diss, B4 ent, B4 asm, B8 var, B8_corr,
infrared bands B8 _contrast, B8_diss, B8_ent, B8_asm
Luojia-1 Mean of DN values Luojial_mean 1
Sum of DN values Luojial_sum 1
WorldPop Mean of population Pop_mean 1
Sum of population Pop_sum 1
/ Area of each object Area 1
Baidu POI  Total number of all POIs pAll 1
Total number of each type of POlIs p101, p201, p202, p301, p401, p501, p502, p503, p504 9
Proportion of each type of POIs r101, r201, r202, r301, r401, r501, r502, r503, r504 9
Total 76
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Table S3. The two-level essential urban land use categories (EULUC) classification system.

Level 1

Level 11

Descriptions

01 Residential

0101 Residential

0102 Village

Residential areas with a protective gate and detailed architectural standards, including
houses, apartment buildings, etc.

Urban villages not regulated by any form of centralized urban planning, including rural
settlements, traditional dwellings, etc.

02 Commercial

0201 Business

0202 Commercial

Buildings where people work, including office buildings, and commercial office places
for finance, internet technology, e-commerce, media, etc.
Houses and buildings for commercial retails, restaurants, lodging, and entertainment.

03 Industrial

0301 Industrial

Land and buildings used for manufacturing, warehouse, mining, etc.

04 Transportation

0401 Transportation

Transportation facilities including airport, motor, bus, train stations and ancillary
facilities.

05 Public

0501 Administrative
0502 Educational

0503 Medical
0504 Sport and
cultural

0505 Park and
greenspace

0506 Undeveloped

Lands used for government, military, and public service agencies.

Lands used for education and research, including schools, universities, institutes and
their ancillary facilities.

Lands used for hospitals, disease prevention, and emergency services.

Lands used for public sports and training, cultural services, including gym centers,
libraries, museums, exhibition centers, etc.

Parks and greenspace lands used for entertainment and environmental conservation.

Raw lands without utilities, structure, or pre-defined building site and internal roads.
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Table S4. Tuned optimal parameters for each base model in ensemble learning.

Model Optimal parameters

Random Forest n_estimators: 300; criterion: entropy

Extremely Randomized Trees n_estimators: 300; criterion: entropy

CatBoost iterations: 10000; learning rate: 0.1

LightGBM num_leaves: 60; min_data_in_leaf: 21; learning rate: 0.06

Neural Networks num_epoch: 10; learning_rate: 0.005; activation: relu; batch_size: 256; dropout_probability: 0.035

17



Table S5. Confusion matrix for the Level I category of EULUC-seg. UA and PA denote user's accuracy and producer's accuracy,

respectively. Definition for each land use category can be seen in Table S3.

01 02 03 04 05 UA (%) PA (%)
01 43 0 0 0 1 97.73 93.48
02 2 18 1 0 4 72.00 85.71
03 0 0 8 0 2 80.00 88.89
04 0 0 0 5 2 71.43 100.00
05 1 3 0 0 55 93.22 85.94

OA = 85.52%, Kappa coefficient = 0.79
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Table S6. Confusion matrix for the Level II category of EULUC-seg. UA and PA denote user's accuracy and producer's accuracy,

respectively. Definition for each land use category can be seen in Table S3.

0101 0102 0201 0202 0301 0401 0501 0502 0503 0504 0505 0506 UA (%) PA (%)
0101 24 0 0 0 0 0 1 0 0 0 0 0 96.00 88.89
0102 0 18 0 0 1 0 0 0 0 0 0 0 94.74 90.00
0201 1 0 11 0 0 0 0 1 0 0 0 0 84.62 64.71
0202 0 0 2 5 2 0 0 0 0 2 1 0 41.67 100.00
0301 0 0 0 0 9 0 0 1 0 0 0 0 90.00 60.00
0401 0 1 0 0 0 5 0 1 0 0 0 0 71.43 100.00
0501 1 0 1 0 0 0 4 0 0 0 0 0 66.67 66.67
0502 0 0 2 0 1 0 1 5 0 0 3 0 41.67 50.00
0503 1 0 1 0 0 0 0 1 3 0 0 0 50.00 100.00
0504 0 1 0 0 0 0 0 1 0 3 1 0 50.00 60.00
0505 0 0 0 0 1 0 0 0 0 0 22 0 95.65 78.57
0506 0 0 0 0 1 0 0 0 0 0 1 4 66.67 100.00

7

0A = 77.93%, Kappa coefficient = 0.75

19



Table S7. Urban land use composition in Ningbo, 2018. Noted that the statistics were
calculated using the stage-1 mapping results of EULUC-seg. Definition for each land use
category can be seen in Table S3.

Level I Level 11
Category Area (km?) Proportion (%) Category Area(km?2?) Proportion (%)
01 434.83 30.17 0101 293.09 20.34
0102 141.75 9.83
02 38.61 2.68 0201 16.61 1.15
0202 22.00 1.53
03 288.71 20.03 0301 288.71 20.03
04 14.22 0.99 0401 14.22 0.99
05 664.90 46.13 0501 10.47 0.73
0502 34.59 2.40
0503 2.71 0.19
0504 3.99 0.28
0505 597.42 41.45
0506 15.71 1.09
Total 1441.27 100.00 Total 1441.27 100.00
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Table S8. Extracted ten components from PCA and their variable weights. Red colors indicate
greater importance of variables while green colors indicate less importance of variables.

Variable Component

PC1 PC2 PCs PCs PCs PCe PC7 PCs PCq PC1o
elevation 0.05 0.05 0.15 - 007 005 0.04 010 011 0.07
ndvi 0.06 0.07 0.09 015 0.10 0.03 035 0.04 0.07
fra_clay 044 042 009 005 030 048 019 006 012 0.03
fra_sand 040 0.44 008 004 005 [0.00 000" 007 005 002 |
fra_silt 027 0.40 0.06 0.67 027 007 0.06 008
business 0.03 0.05 019 0.06 0.07 0.20
commercial 0.10 0.04 0.10
pop 011 0.11 0.08 0.12 0.21 0.22
ntl 0.04 0.02 0.14 017 012 011 027 0.34
house_price 018 005 012 016 025 0.08 015 057 053 0.03
dis_bus 000 001 002 0.16 %- 0.07
dis_subway 0.64 0.52 0.09 0.07 0.08 0.42
dis_rail 030 041 0.54 0.04 0.05 015 0.54
dis_major_road 0.21 055 0.26
dis_minor_road 0.12
dis_track_road 0.19 0.08 0.45
area . . 0.05
shape 0.03 0.04 002 030 053 016 038 056 031 0.03
richness 0.05 000 005 012 061 039 042 0.14 046 0.03
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Figures S1-4.
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Figure S1. The architecture of Neural Networks in ensemble learning. Layers with learnable

parameters are marked as blue. See Erickson et al. (2020) for more information on the
structure and parameters of Neural Networks.
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Figure S2. Comparison of multi-source data with different spatial resolutions used for urban
land use classification in this study. (a) True color composition of Sentinel-2 multispectral
imagery (10 m). (b) Normalized difference vegetation index (NDVI) band of Sentinel-2 (10 m).
(c) VV dual-polarization band of Sentinel-1 (10 m). (d) 130-m Luojia-1 nighttime lights (NTLs).
(e) 500-m WorldPop population distributions. (f) Baidu points of interest (POIs). The extent in
(a-f) was the city center of Ningbo.
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Figure S3. Comparison of object-based features derived from multi-source data in the city
center of Ningbo. (a) True color composition of Sentinel-2 multispectral imagery (10 m)
overlapped with objects derived from the segmentation results. (b) Mean of normalized
difference vegetation index (NDVI) band of Sentinel-2. (c) Mean of VV dual-polarization band of
Sentinel-1. (d) Mean of Luojia-1 nighttime lights. (e) Mean of WorldPop populations. (f) Total
number of Baidu points of interest. Noted values in (b-f) were all calculated at the object scale
(as shown in (a)).
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Sentinel-2 EULUC-seg EULUC-parcel Urban land use
Gong etal. (2020)
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Figure S4. Comparison of remotely sensed images and urban land use mapping results. (a-c)
Sentinel-2 multispectral images (true color composition). (d-f) Maps of EULUC-seg in this
study. (g-i) Maps of EULUC-parcel in this study. (j-k) Maps of EULUC-parcel produced by Gong
etal. (2020).
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