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Abstract: Rapid progress on disaster detection and assessment has been achieved with the develop-
ment of deep-learning techniques and the wide applications of remote sensing images. However, it
is still a great challenge to train an accurate and robust disaster detection network due to the class
imbalance of existing data sets and the lack of training data. This paper aims at synthesizing disaster
remote sensing images with multiple disaster types and different building damage with generative
adversarial networks (GANs), making up for the shortcomings of the existing data sets. However,
existing models are inefficient in multi-disaster image translation due to the diversity of disaster
and inevitably change building-irrelevant regions caused by directly operating on the whole image.
Thus, we propose two models: disaster translation GAN can generate disaster images for multiple
disaster types using only a single model, which uses an attribute to represent disaster types and a
reconstruction process to further ensure the effect of the generator; damaged building generation
GAN is a mask-guided image generation model, which can only alter the attribute-specific region
while keeping the attribute-irrelevant region unchanged. Qualitative and quantitative experiments
demonstrate the validity of the proposed methods. Further experimental results on the damaged
building assessment model show the effectiveness of the proposed models and the superiority
compared with other data augmentation methods.

Keywords: GAN; image generation; data augmentation; remote sensing disaster image

1. Introduction

Rapid detection and assessment after the occurrence of disaster play a very important
role in humanitarian assistance and disaster recovery. The applications of deep-learning
models in remote sensing have attracted much attention recently. Among them, as the
building damage assessment data set represented by the xBD data set [1] has been open
source, researchers have proposed several building detection and damage assessment
models based on deep neural networks (DNNs) [2–4]. DNNs such as convolutional neural
networks (CNNs) need a substantial amount of training data. Compared with the large
data sets of natural images, the limited labeled remote sensing data becomes an obstacle to
train a DNN well, especially in building damage data sets. Moreover, there is an obvious
class imbalance in the xBD data set; specifically, the sample size of the damaged buildings
in the three categories (minor damage, major damage, and destroyed) is far less than that
of the no-damage buildings [1]. This problem makes it difficult for the model to extract the
features of buildings damaged by different types of disasters, thus affecting the accuracy of
the assessment model.

The fact proves that, among the existing models of damage building assessment
based on the xBD data set, the accuracy of minor damage and major-damage categories is
obviously lower than that of the no-damage category, which means that minor damage and
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major damage classes belong to the hard classes [1–4]. To address this problem, scholars
also put forward several data augmentation strategies to improve the class imbalance.
To be more specific, Shen et al. [2] apply the CutMix as a data augmentation method
that combines the hard-classes images with random images to reconstruct new samples,
Hao et al. [3] adopt the common data augmentation method such as horizontal flipping
and random cropping during training, and Boin et al. [4] mitigate class imbalance with
oversampling. Although the aforementioned methods have a certain effect on improving
the accuracy of hard classes, in fact, these are deformation and reorganization of the
original samples; more seriously, these may degrade the quality of images, thus affecting
the rationality of the features extracted by the feature extractor. Essentially, the above
methods do not add new samples and rely on human decisions and manual selection of
data transformations, whereas it takes much manpower and material resources to collect
and process remote sensing images of damaged buildings to make new samples.

Recently, generative adversarial networks (GANs) [5] and their variants have been
widely used in the field of computer vision, such as image-to-image translation [6–8]
and image attribute editing [9–12]. GANs aim to fit the real distribution of data by a
Min-Max game theory. The standard GAN contains two parts: the generator G and
discriminant D, by adversarial training, making the generator generate images gradually
close to the real images. In this way, GAN has become an effective framework to generate
random data distribution models so that scholars naturally associate that GAN can learn
the data distribution of data samples and generate samples as close as possible to the
training data distribution. In fact, this trait can be used as the data augmentation method.
It is not uncommon to generate images using GAN as a data augmentation strategy
currently [13–16], which also has been proven effective in different computer vision tasks.

Moreover, scholars also use GAN-based models to translate or edit satellite images
in remote sensing fields [17–19]. Specifically, Li et al. [17] designed a translation model
based on GAN to translate optical images to SAR images, which reduces the gap between
two types of images. Benjdira et al. [18] design an algorithm that reduces the domain shift
influence using GAN, considering that the images in the target domain and source domain
are usually different. Moreover, Iqbal et al. [19] propose domain adaptation models to
better train built-up segmentation models, which is also motivated by GAN methods.

The remote sensing images in xBD [1] data set have unique characteristics, which are
quite different from natural images or other satellite images data sets. First, the remote
sensing images include seven different types of disasters, and each class of disaster has its
own traits, such as the way to destroy buildings. Second, the remote sensing images are
collected from different countries and different events so that the density and damage level
of buildings may be various. In order to design effective image generation models, we need
to consider the disaster types and the traits of damaged buildings. However, the existing
GAN-based models are inefficient in the multi-attribute image translation task; specifically,
it is generally necessary to build several different models for every pair of image attributes.
This problem is not conducive to the rapid image generation of multiple disaster types.
In addition, most existing models directly operate on the whole image, which inevitably
changes the attribute-irrelevant region. Nevertheless, the data augmentation for specific
damaged buildings typically needs to consider the building region. Thus, to solve both
problems in existing GAN-based image generation and more adapt to remote sensing
disaster image generation tasks, we try to propose two image generation models that aim
at generating disaster images with multiple disaster types and concentrating on different
damaged buildings, respectively.

In recent image generation studies, StarGAN [6] has proven to be effective and efficient
in multi-attribute image translation tasks; moreover, SaGAN [10] can only alter the attribute-
specific region with the guidance of the mask in face. Inspired by these, we propose the
algorithm called DisasterGAN, including two models: disaster translation GAN and
damaged building generation GAN. The main contributions of this paper are as follows:
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(1) Disaster translation GAN is proposed to realize multiple disaster attributes image
translation flexibly using only a single model. The core idea is to adopt an attribute
label representing disaster types and then take in as inputs both images and disaster
attributes, instead of only translating images between two fixed domains such as the
previous models.

(2) Damaged building generation GAN implements specified damaged building attribute
editing, which only changes the specific damaged building region and keeps the rest
region unchanged. Exactly, mask-guided architecture is introduced to keep the model
only focused on the attribute-specific region, and the reconstruction loss further
ensures the attribute-irrelevant region is unchanged.

(3) To the best of our knowledge, DisasterGAN is the first GAN-based remote sensing
disaster images generation network. It is demonstrated that the DisasterGAN method
can synthesize realistic images by qualitative and quantitative evaluation. Moreover,
it can be used as a data augmentation method to improve the accuracy of the building
damage assessment model.

The rest of this paper is organized as follows. Section 2 shows the related research
about the proposed method. Section 3 introduces the detailed architecture of the two
models, respectively. Then, Section 4 describes the experiment setting and shows the
results quantitatively and qualitatively, while Section 5 discusses the effectiveness of the
proposed method and verifies the superiority compared with other data augmentation
methods. Finally, Section 6 makes a conclusion.

2. Related Work

In this section, we will introduce the related work from four aspects, which are close
to the proposed method.

2.1. Generative Adversarial Networks

Since GANs [5] has been proposed, GANs and their variants [20,21] have shown re-
markable success in a variety of computer vision tasks, specifically, image-to-image transla-
tion [6], image completion [7,8,12], face attribute editing [9,10], image super-resolution [22],
etc. GANs aim to fit the real distribution of data by a Min-Max game theory. The standard
GAN consists of a generator and a discriminator, and the idea of GANs training is based on
adversarial learning to train generator and discriminator simultaneously. The goal of the
generator is to generate realistic images, whereas the discriminator is trained to distinguish
the generated images and true images. For the original GAN, it has problems that the
training process is unstable, and the generated data is not controllable. Therefore, scholars
put forward conditional generative adversarial network (CGAN) [23] as the extension
of GAN. Additional conditional information (attribute labels or other modalities) was
introduced in the generator and the discriminator as the condition for better controlling
the generation of GAN.

2.2. Image-to-Image Translation

GAN-based image-to-image translation task has received much attention in the re-
search community, including paired image translation and unpaired image translation.
Nowadays, image translation has been widely used in different computer vision fields
(i.e., medical image analysis, style transfer) or the preprocessing of downstream tasks (i.e.,
change detection, face recognition, domain adaptation). There have been some typical mod-
els in recent years, such as Pix2Pix [24], CycleGAN [7], and StarGAN [6]. Pix2Pix [24] is the
early image-to-image translation model, which learns the mapping from the input and the
output through the paired images. It can translate the images from one domain to another
domain, and it is demonstrated in synthesizing photos from label maps, reconstructing
objects from edge maps tasks. However, in some practical tasks, it is difficult to obtain
paired training data, so that CycleGAN [7] is proposed to solve this problem. CycleGAN
can translate images without paired training samples due to the cycle consistency loss.
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Specifically, CycleGAN learns two mappings: G : X → Y (from source domain to target
domain) and the inverse mapping F : Y → X (from target domain to source domain),
while cycle consistency loss tries to enforce F(G(X)) ≈ X. Moreover, scholars find that the
aforementioned models can only translate images between two domains. So StarGAN [5] is
proposed to address the limitation, which can translate images between multiple domains
using only a single model. StarGAN adopts attribute labels of the target domain and extra
domain classifier in the architecture. In this way, the multiple domain image translation
can be effective and efficient.

2.3. Image Attribute Editing

Compared with the image-to-image translation, we also need to focus on more detailed
part translation in the image instead of the style transfer or global attribute in the whole
image. For example, the above image translation models may not apply in the eyeglasses
and mustache editing in the face [25]. We pay attention to face attribute editing tasks
such as removing eyeglasses [9,10] and image completion tasks such as filling the missing
regions of the images [12]. Zhang et al. [10] propose a spatial attention face attribute editing
model that only alters the attribute-specific region and keeps the rest unchanged. The
model includes an attribute manipulation network for editing face images and a spatial
attention network for locating specific attribute regions. In addition, as for the image
completion task, Iizuka et al. [12] propose a global and locally consistent image completion
model. With the introduction of the global discriminator and local discriminator, the model
can generate images indistinguishable from the real images in both overall consistency and
details.

2.4. Data Augmentation

Training a suitable deep-learning model is inseparable from a large amount of labeled
data, especially in supervised learning. However, it is difficult to collect large data in
some tasks. Standard data augmentation is usually based on geometric transformations,
such as color transformations, cropping, flipping [13]. Moreover, using GANs to generate
images as a data augmentation has attracted much attention recently, which is common
in person re-identification [14,15], license plate recognition [16], few-shot classifier [13].
The GAN-based data augmentation model can directly learn the data distribution, which
generates samples that are enforced to be close to the training data distribution [13]. To
be more exact, Zhong et al. [10] use CycleGAN [7] to transfer labeled training images to
each camera. In this way, the original training data set has been augmented. The model is
demonstrated effective, which can be used as a data augmentation method to eliminate
camera style differences in person re-identification. Wu et al. [16] propose PixTextGAN,
which can generate synthetic license plate images with reasonable text details to enrich
the existing license plate data set, thus improving the license plate recognition accuracy.
Similar to the above tasks, adequate remote sensing images that used for training building
damage assessment model is difficult to collect. In order to model the complex traits of
damage, a large amount of damaged building data is indispensable. That is the motivation
of our research, proposing a reasonable GAN model as a data augmentation strategy.

In conclusion, we introduce these four aspects of related work in order to make readers
better understand the motivation and background of our proposed method. Specifically,
the proposed method DisterGAN includes disaster translation GAN and damaged building
generation GAN, which may be regarded as image-to-image translation and image attribute
editing tasks, respectively. Moreover, we also try to generate damaged building images to
make up for the limitation of the existing data as a data generation method.

3. Methods

In this section, we will introduce the proposed remote sensing image generation
models, including disaster translation GAN and damaged building generation GAN. The
aim of disaster translation GAN is to generate the post-disaster images with disaster
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attributes, while the damaged building generation GAN is to generate post-disaster images
with building attributes.

3.1. Disaster Translation GAN

We first describe the framework of disaster translation GAN. The architecture is
shown in Figure 1. Our model is inspired by StarGAN [6], which is introduced simply in
Section 2.2. Then, we discuss the objective function and architecture in detail.

Figure 1. The architecture of disaster translation GAN, including generator G and discriminator D. D has two objectives,
distinguishing the generated images from the real images and classifying the disaster attributes. G takes in as input both
the images and target disaster attributes and generates fake images, with the inverse process that reconstructing original
images with fake images given the original disaster attributes.

3.1.1. Proposed Framework

The goal of disaster translation GAN is to learn mapping functions between disaster
images among different disaster attributes. As shown in Figure 1, pre-disaster images X and
post-disaster images Y are the paired images. Each image has the corresponding disaster
attribute Cd. Cd means the disaster type of the image; thus, the Cd of the X can be defined
as 0 uniformly, and the Cd of Y can be defined as Cd = {1, 2, 3, 4, 5, 6, 7} according to 7
types of disasters, respectively. The detailed information of Cd can be seen in Section 4.1. As
for the generator, the mapping G(X, Cd)→ Y translates X into Y conditioned on the target
disaster attribute Cd. In addition, we introduce the discriminator Dsrc with an auxiliary
classifier Dcls, where Dsrc aims to distinguish between Y and generated images and X′ and
Dcls aims to classify the images.

To achieve this, we train the D and the G with the following training process. (a)
Train D to distinguish between true images and fake images and classify the images. (b) G
takes as input both the X and the target attributes Cd, then outputs fake images. (c) G tries
to generate images indistinguishable from the real images and classifiable as the target
attributes by D. (d) G tries to reconstruct the original images from the fake images and the
original attributes.

3.1.2. Objective Function

Disaster translation GAN is trained with the objective function including three types
of loss function, i.e., the adversarial loss, the attribute classification loss, and the reconstruct
loss, which are introduced as follows, respectively.

Adversarial Loss. To make the generated images indistinguishable from the real images,
we adopt the strategy of adversarial learning to train the generator and the discriminator
simultaneously. The adversarial loss is defined as

Ladv = EX [log Dsrc(X)] + EX,Cd [log(1− Dsrc(X′))], (1)
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where the Dsrc(X) is the probability distribution over sources given by D. The generator
G and the discriminator D are adversarial to each other. The training of the G makes the
adversarial loss as small as possible, while the D tries to maximize it.

Attribute Classification Loss. As mentioned above, our goal is to translate the pre-
disaster images into the generated images of attributes Cd. Therefore, the attributes not
only need to be correctly generated but also need to be correctly classified. To achieve
this, we adopt attribute classification loss when we optimize both the generator and the
discriminator. Specifically, we adopt the real images and their true corresponding attributes
to optimize the discriminator and use the target attributes and the generated images to
optimize the generator. The specific formula is shown below.

LD
cls = EX,Cd [− log Dcls(Cd|Y)] , (2)

where Dcls(cd|Y ) represents a probability distribution over attribute labels computed by D.
In the experiment, the X and Y are both real images, in order to simplify the experiment,
only the Y are inputted as the real images, and the corresponding attributes are target
attributes. By optimizing this objective function, the classifier of discriminator can learn to
identify the attribute.

Similarly, we use the generated images X′ to optimize the generator so that it can
generate images that can be identified as the corresponding attribute, as defined below

LG
cls = EX,Cd [− log Dcls(Cd

∣∣X′)] . (3)

Reconstruction Loss. With the use of adversarial loss and attribute classification loss,
the generated images can be as realistic as true images and be classified to their target
attribute. However, these losses cannot guarantee that the translation only takes place in
the attribute-specific part of the input. Based on this, construction loss is proposed to solve
this problem, which is also used in CycleGAN [15].

Lrec = EX,Cg
d ,Cd

[
∥∥∥X− G(G(X, Cd), Cg

d )
∥∥∥

1
] (4)

Here, Cg
d represents the original attribute of inputs. G is adopted twice, first to translate

an original image into the one with the target attribute, then to reconstruct the original
image from the translated image, for the generator to learn to change only what is relevant
to the attribute.

Overall, the objective function of the generator and discriminator are shown as below:

minLD = −Ladv + λclsLD
cls (5)

minLG = Ladv + λclsLG
cls + λrecLrec, (6)

where the λcls, λrec is the hyper-parameters to balance the attribute classification loss and
reconstruction loss, respectively. In this experiment, we adopt λcls = 1, λrec = 10.

3.1.3. Network Architecture

The specific network architecture of G and D are shown in Tables 1 and 2. I, O, K, P,
and S, respectively, represent the number of input channels, the number of output channels,
kernel size, padding size, and stride size. IN represents instance normalization, and ReLU
and Leaky ReLU are the activation functions. The generator takes as input an 11-channel
tensor, consisting of an input RGB image and a given attribute value (8-channel), then
outputs RGB generated images. Moreover, in the output layer of the generator, Tanh is
adopted as an activation function, as the input image has been normalized to [−1, 1].
The classifier and the discriminator share the same network except for the last layer. For
the discriminator, we use the output structure such as PatchGAN [24], and we output a
probability distribution over attribute labels by the classifier.
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Table 1. Architecture of the generator.

Layer Generator, G

L1 Conv(I11, O64, K7, P3, S1), I N, ReLU
L2 Conv(I64, O128, K4, P1, S2), IN, ReLU
L3 Conv(I128, O256, K4, P1, S2), IN, ReLU
L4 Residual Block(I256, O256, K3, P1, S1)
L5 Residual Block(I256, O256, K3, P1, S1)
L6 Residual Block(I256, O256, K3, P1, S1)
L7 Residual Block(I256, O256, K3, P1, S1)
L8 Residual Block(I256, O256, K3, P1, S1)
L9 Residual Block(I256, O256, K3, P1, S1)

L10 Deconv(I256, O128, K4, P1, S2), IN, ReLU
L11 Deconv(I128, O64, K4, P1, S2), IN, ReLU
L12 Conv(I64, O3, K7, P3, S1), Tanh

Table 2. Architecture of the discriminator.

Layer Discriminator, D

L1 Conv(I3, O64, K4, P1, S2), Leaky ReLU
L2 Conv(I64, O128, K4, P1, S2), Leaky ReLU
L3 Conv(I128, O256, K4, P1, S2), Leaky ReLU
L4 Conv(I256, O512, K4, P1, S2), Leaky ReLU
L5 Conv(I512, O1024, K4, P1, S2), Leaky ReLU
L6 Conv(I1024, O2048, K4, P1, S2), Leaky ReLU

L7 src: Conv(I2048, O1, K3, P1, S1);
cls: Conv(I2048, O8, K4, P0, S1) 1;

1 src and cls represent the discriminator and classifier, respectively. These are different in L7 while sharing the
same first six layers.

3.2. Damaged Building Generation GAN

In the following part, we will introduce the damaged building generation GAN in
detail. The whole structure is shown in Figure 2. The proposed model is motivated by
SaGAN [10].

Figure 2. The architecture of damaged building generation GAN, consisting of a generator G and a discriminator D. D
has two objectives, distinguishing the generated images from the real images and classifying the building attributes. G
consists of an attribute generation module (AGM) to edit the images with the given building attribute, and the mask-guided
structure aims to localize the attribute-specific region, which restricts the alternation of AGM within this region.
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3.2.1. Proposed Framework

The training data of the model includes pre-disaster images X, post-disaster images Y,
and the corresponding building attributes Cb. Among them, Cb means whether the image
contains damaged buildings; specifically, the Cb of the X can be defined as 0 uniformly
while the Cb of Y is expressed as Cb = {0, 1} according to whether there are damaged
buildings in the image. The specific information of data can refer to Section 4.1.

We train generator G to translate the X into the generated images Y′ with target
attributes Cb, formula as below:

Y′ = G(X, Cb) (7)

As Figure 2 shows, we can see the attribute generation module (AGM) in G, which
we define as F. F takes as input both the pre-disaster images X and the target building
attributes Cb, outputting the images YF, defined as:

YF = F(X, Cb) (8)

As for the damaged building generation GAN, we only need to focus on the change of
damaged buildings. The changes in the background and undamaged buildings are beyond
our consideration. Thus, to better pay attention to this region, we adopt the damaged
building mask M to guide the damaged building generation. The value of the mask M
should be 0 or 1; specially, the attribute-specific regions should be 1, and the rest regions
should be 0.

As the guidance of M, we only reserve the change of attribute-specific regions, while
the attribute-irrelevant regions remain unchanged as the original image, formulated as
follows:

Y′ = G(X, Cb) = X·(1−M) + YF·M (9)

The generated images Y′ should be as realistic as true images. At the same time, Y′

should also correspond to the target attribute Cb as much as possible. In order to improve
the generated images Y′, we train discriminator D with two aims, one is to discriminate
the images, and the other is to classify the attributes Cb of images, which are defined as
Dsrc and Dcls respectively. Moreover, the detailed structure of G and D can be seen in
Section 3.2.3.

3.2.2. Objective Function

The objective function of damaged building generation GAN includes adversarial
loss, attribute classification loss, and reconstruction loss. We will cover that in this section.
It should be emphasized that the definitions of these losses are basically the same as these
in Section 3.1.2, so we provide a simple introduction in this section.

Adversarial Loss. To generate synthetic images indistinguishable from real images, we
adopt the adversarial loss for the discriminator D

LD
src = EY[log Dsrc(Y)] + EY′

[
log(1− Dsrc(Y′))

]
, (10)

where Y is the real images, to simplify the experiment, we only input the Y as the real
images, Y′ is the generated images, Dsrc(Y) is the probability that the image discriminates
to the true images.

As for the generator G, the adversarial loss is defined as

LG
src = EY′

[
− log Dsrc(Y′)

]
, (11)

Attribute Classification Loss. The purpose of attribute classification loss is to make the
generated images closer to being classified as the defined attributes. The formula of Dcls
can be expressed as follows for the discriminator

LD
cls = EY,Cg

b

[
− log Dcls(c

g
b |Y)

]
(12)
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where Cg
b is the attributes of true images, and Dcls(c

g
b |Y ) represents the probability of an

image being classified as the attribute Cg
b . The attribute classification loss of G can be

defined as
LG

cls = EY′ [− log Dcls(cb
∣∣Y′ )] (13)

Reconstruction Loss. The goal of reconstruction loss is to keep the image of the attribute-
irrelevant region mentioned above unchanged. The definition of reconstruction loss is as
follows

LG
rec = λ1EX,cg

b ,cb
[(
∥∥∥X− G(G(X, cb), cg

b)
∥∥∥

1
] + λ2EX,cg

b
[(
∥∥∥X− G(X, cg

b)
∥∥∥

1
] (14)

where cg
b is the attribute of the original images, while cb is the target attribute and λ1, λ2 are

the hyper-parameters. We adopt λ1 = 1, λ2 = 10 in this experiment. To be more specific,
the first part can be understood that the input image returns to the original input after
being transformed twice by the generator; that is, the first generated images Y′ = G(X, cb)
input the generator again to make G(Y′, cg

b) as close as possible to X. The second part is to
guarantee that input image X is not modified when edited by its own attribute cg

b .
Overall, the objective function of the generator and discriminator are shown below

minLG = LG
src + LG

cls + LG
rec (15)

minLD = LD
src + LD

cls (16)

3.2.3. Network Architecture

The specific network architecture of the attribute generation module (AGM) and D
are shown in Tables 3 and 4. The definition of I, O, K, P, S, IN, ReLU, and Leaky ReLU can
be seen in Section 3.1.3. The AGM takes as input a 4-channel tensor, including an input
RGB image and a given attribute value, then outputs RGB generated image.

Table 3. Architecture of attribute generation module (AGM).

Layer Attribute Generation Module, AGM

L1 Conv(I4, O32, K7, P3, S1), I N, ReLU
L2 Conv(I32, O64, K7, P3, S1), I N, ReLU
L3 Conv(I64, O128, K4, P1, S2), IN, ReLU
L4 Conv(I128, O256, K4, P1, S2), IN, ReLU
L5 Residual Block(I256, O256, K3, P1, S1)
L6 Residual Block(I256, O256, K3, P1, S1)
L7 Residual Block(I256, O256, K3, P1, S1)
L8 Residual Block(I256, O256, K3, P1, S1)
L9 Deconv(I256, O128, K4, P1, S2), IN, ReLU

L10 Deconv(I128, O64, K4, P1, S2), IN, ReLU
L11 Deconv(I64, O32, K4, P1, S2), IN, ReLU
L12 Conv(I32, O3, K7, P3, S1), Tanh

Table 4. Architecture of the discriminator.

Layer Discriminator, D

L1 Conv(I3, O16, K4, P1, S2), Leaky ReLU
L2 Conv(I16, O32, K4, P1, S2), Leaky ReLU
L3 Conv(I32, O64, K4, P1, S2), Leaky ReLU
L4 Conv(I64, O128, K4, P1, S2), Leaky ReLU
L5 Conv(I128, O256, K4, P1, S2), Leaky ReLU
L6 Conv(I256, O512, K4, P1, S2), Leaky ReLU
L7 Conv(I512, O1024, K4, P1, S2), Leaky ReLU

L8 src: Conv(I1024, O1, K3, P1, S1);
cls: Conv(I1024, O1, K2, P0, S1) 1;

1 src and cls represent the discriminator and classifier, respectively. These are different in L8 while sharing the
same first seven layers.
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4. Experiments and Results

In this section, we first introduce the data set, then illustrate implementation de-
tails and show the visualization results of the models, respectively. Next, we perform a
quantitative evaluation index (FID) to evaluate the generated images.

4.1. Data Set

Our research is based on the open-source xBD data set [1], which is the largest dam-
aged building remote sensing data set for building damage assessment so far. The as-
sessment of building damage is a joint evaluation standard based on the existing disaster
assessment standard [26,27], which classifies the damaged buildings into four categories
(no damage, minor damage, major damage, destroyed). The data source of the xBD data set
comes from Maxar/DigitalGlobe open data program, consisting of remote sensing images
with RGB bands, a resolution equal to or less than 0.8 m GSD. For better generalization of
the model, developers choose seven different types of disaster events in various parts of
the world. The complete xBD data set contains 22,068 remote sensing images with the size
of 1024 × 1024, covering 19 different disaster events and 850,736 buildings, seeing more
information in the work of [1].

To adapt to the model training in this study, we have performed a series of processing
on the xBD data set and obtained two new data sets (disaster data set and building data set).
First, we crop each original remote sensing image (size of 1024× 1024) to 16 remote sensing
images (size of 256 × 256), getting 146,688 pairs of pre-disaster and post-disaster images.
Then, labeling each image with the disaster attribute according to the types of disasters,
specifically, the disaster attribute of the pre-disaster image is 0 (Cd = 0), and the attribute of
the post-disaster image can be seen in Table 5 in detail. In the disaster translation GAN,
we do not need to consider the damaged building, so the location and damage level of
buildings will not be given in the disaster data set. The specific information of the disaster
data set is shown in Table 5, and the samples of the disaster data set are shown in Figure 3.

Table 5. The statistics of disaster data set.

Disaster
Types Volcano Fire Tornado Tsunami Flooding Earthquake Hurricane

Cd 1 2 3 4 5 6 7
Number/

Pair 4944 90,256 11,504 4176 14,368 1936 19,504

Figure 3. The samples of disaster data set, (a,b) represent the pre-disaster and post-disaster images according to the seven
types of disaster, respectively, each column is a pair of images.

Based on the disaster data set, in order to train damaged building generation GAN,
we further screen out the images containing buildings, then obtain 41,782 pairs of images.
In fact, the damaged buildings in the same damage level may look different based on
the disaster type and the location; moreover, the data of different damage levels in the
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xBD data set are insufficient, so we only classify the building into two categories for our
tentative research. We simply label buildings as damaged or undamaged; that is, we label
the building attributes of post-disaster images (Cb) as 1 only when there are damaged
buildings in the post-disaster image. Moreover, we label the other post-disaster images and
the pre-disaster image as 0. Then, comparing the buildings of pre-disaster and post-disaster
images in the position and damage level of buildings to obtain the pixel-level mask, the
position of damaged buildings is marked as 1 while the undamaged buildings and the
background are marked as 0. Through the above processing, we obtain the building data
set. The statistical information is shown in Table 6, and the samples are shown in Figure 4.

Table 6. The statistics of building data set.

Damage Level Including Damaged Buildings Undamaged Buildings

Cb 1 0
Number/Pair 24,843 16,948

Figure 4. The samples of building data set. (a–c) represent the pre-disaster, post-disaster images, and
mask, respectively, each row is a pair of images, while two rows in the figure represent two different
cases.

4.2. Disaster Translation GAN
4.2.1. Implementation Details

To stabilize the training process and generate higher quality images, gradient penalty
is proposed and has proven to be effective in the training of GAN [28,29]. Thus, we
introduce this item in the adversarial loss, replacing the original adversarial loss. The
formula is as follows. For more details, please refer to the work of [22,23].

Ladv = EX [Dsrc(X)]− EX,Cd [Dsrc(G(X, Cd))]− λgpEx̂[(‖5x̂Dsrc(x̂)‖2 − 1)2] (17)

Here, x̂ is sampled uniformly along a straight line between a pair of real and generated
images. Moreover, we set λgp = 10 in this experiment.

We train disaster translation GAN on the disaster data set, which includes 146,688
pairs of pre-disaster and post-disaster images. We randomly divide the data set into
training set (80%, 117,350) and test set (20%, 29,338). Moreover, we use Adam [30] as an
optimization algorithm, setting β1 = 0.5, β2 = 0.999. The batch size is set to 16 for all
experiments, and the maximum epoch is 200. Moreover, we train models with a learning
rate of 0.0001 for the first 100 epochs and linearly decay the learning rate to 0 over the next
100 epochs. Training takes about one day on a Quadro GV100 GPU.
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4.2.2. Visualization Results

Single Attributes-Generated Image. To evaluate the effectiveness of the disaster trans-
lation GAN, we compare the generated images with real images. The synthetic images
generated by disaster translation GAN and real images are shown in Figure 5. As shown in
this, the first and second rows display the pre-disaster image (Pre_image) and post-disaster
image (Post_image) in the disaster data set, while the third row is the generated images
(Gen_image). We can see that the generated images are very similar to real post-disaster
images. At the same time, the generated images can not only retain the background of pre-
disaster images in different remote sensing scenarios but also introduce disaster-relevant
features.

Figure 5. Single attributes-generated images results. (a–c) represent the pre-disaster, post-disaster
images, and generated images, respectively, each column is a pair of images, and here are four pairs
of samples.

Multiple Attributes-Generated Images Simultaneously. In addition, we visualize the mul-
tiple attribute synthetic images simultaneously. The disaster attributes in the disaster
data set correspond to seven disaster types, respectively (volcano, fire, tornado, tsunami,
flooding, earthquake, and hurricane). As shown in Figure 6, we get a series of generated
images under seven disaster attributes, which are represented by disaster names, respec-
tively. Moreover, the first two rows are the corresponding pre-disaster images and the
post-disaster images from the data set. As can be seen from the figure, there are a variety of
disaster characteristics in the synthetic images, which means that model can flexibly trans-
late images on the basis of different disaster attributes simultaneously. More importantly,
the generated images only change the features related to the attributes without changing
the basic objects in the images. That means our model can learn reliable features universally
applicable to images with different disaster attributes. Moreover, the synthetic images are
indistinguishable from the real images. Therefore, we guess that the synthetic disaster
images can also be regarded as the style transfer under different disaster backgrounds,
which can simulate the scenes after the occurrence of disasters.
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Figure 6. Multiple attributes-generated images results. (a,b) represent the real pre-disaster images
and post-disaster images. The images (c–i) belong to generated images according to disaster types
volcano, fire, tornado, tsunami, flooding, earthquake, and hurricane, respectively.
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4.3. Damaged Building Generation GAN
4.3.1. Implementation Details

Same to the gradient penalty introduced in Section 4.2.1, we have made corresponding
modifications in the adversarial loss of damaged building generation GAN, which will not
be specifically introduced.

We train damaged building generation GAN on building data set, which includes
41,782 pairs of pre-disaster and post-disaster images. We randomly divided building data
set into a training set (90%, 37,604) and test set (20%, 4178). We use Adam [24] to train our
model, setting β1 = 0.5, β2 = 0.999. The batch size is set to 32, and the maximum epoch
is 200. Moreover, to train the model stably, we train the generator with a learning rate of
0.0002 while training the discriminator with 0.0001. Training takes about one day on a
Quadro GV100 GPU.

4.3.2. Visualization Results

In order to verify the effectiveness of damaged building generation GAN, we visualize
the generated results. As shown in Figure 7, the first three rows are the pre-disaster
images (Pre_image), the post-disaster images (Post_image), and the damaged building
labels (Mask), respectively. The fourth row is the generated images (Gen_image). It
can be seen that the changed regions of the generated images are obvious, meanwhile
preserving attribute-irrelevant regions unchanged such as the undamaged buildings and
the background. Furthermore, the damaged buildings generate by combining the original
features of the building and the surrounding, which are also as realistic as true images.
However, we also need to point out clearly that the synthetic damaged buildings are
lacking in textural detail, which is the key point of model optimization in the future.

Figure 7. Damaged building generation results. (a–d) represent the pre-disaster, post-disaster images,
mask, and generated images, respectively. Each column is a pair of images, and here are four pairs of
samples.

4.4. Quantitative Results

To better evaluate the images generated by the proposed models, we choose the com-
mon evaluation metric Fréchet inception distance (FID) [31]. FID measures the discrepancy
between two sets of images. Exactly, the calculation of FID is based on the features from
the last average pooling layer of the ImageNet-pretrained Inception-V3 [32]. For each test
image from the original attribute, we first translate it into a target attribute using 10 latent



Remote Sens. 2021, 13, 4284 15 of 18

vectors, which are randomly sampled from the standard Gaussian distribution. Then,
calculate FID between the generated images and real images in the target attribute. The
specific formula is as follows

d2 = ‖µ1 − µ2‖2 + Tr(C1 + C2 − 2(C1C2)
1/2), (18)

where (µ1, C1) and (µ2, C2) represent the mean and covariance matrix of the two distribu-
tions, respectively.

As mentioned above, it should be emphasized that the model calculating FID bases
on the pretrained ImageNet, while there are certain differences between the remote sensing
images and the natural images in ImageNet. Therefore, the FID is only for reference, which
can be used as a comparison value for other subsequent models of the same task.

For the models proposed in this paper, we calculate the FID value between the
generated images and the real images based on the disaster data set and building data set,
respectively. We carried out five tests and averaged the results to obtain the FID value of
disaster translation GAN and damaged building generation GAN, as shown in Table 7.

Table 7. FID distances of the models.

Evaluation Metric Disaster Translation GAN Damaged Building Generation GAN

FID 31.1684 21.7873

5. Discussion

In this part, we investigate the contribution of data augmentation methods, consid-
ering whether the proposed data augmentation method is beneficial for improving the
accuracy of building damage assessment. To this end, we adopt the classical building
damage assessment Siamese-UNet [33] as the evaluation model, which is widely used
in building damage assessment based on the xBD data set [3,34,35]. The code of the as-
sessment model (Siamese-UNet) has been released at https://github.com/TungBui-wolf/
xView2-Building-Damage-Assessment-using-satellite-imagery-of-natural-disasters, last
accessed date: 21 October 2021).

In the experiments, we use DisasterGAN, including disaster translation GAN and
damaged building generation GAN, to generate images, respectively. We compare the
accuracy of Siamese-UNet, which trains on the augmented data set and the original data
set, to explore the performance of the synthetic images. First, we select the images with
damaged buildings as augmented samples. Then, we augment these samples into two
samples, that is, expanding the data set with the corresponding generated images that take
in as input both the pre-disaster images and the target attributes. The damaged building
label of the generated images is consistent with the corresponding post-disaster images.
The building damage assessment model is trained by the augmented data set, and the
original data set is then tested on the same original test set.

In addition, we try to compare the proposed method with other data augmentation
methods to verify the superiority. Different data augmentation methods have been pro-
posed to solve the limited data problem [36]. Among them, geometric transformation
(i.e., flipping, cropping, rotation) is the most common method in computer vision tasks.
Cutout [37], Mixup [38], CutMix [39] and GridMask [40] are also widely adopted. In
our experiment, considering the trait of the building damage assessment task, we choose
geometric transformation and CutMix as the comparative methods. Specifically, we follow
the strategy of CutMix in the work of [2], which verifies that CutMix on hard classes (minor
damage and major damage) gets the best result. As for geometric transformation, we use
horizontal/vertical flipping, random cropping, and rotation in the experiment.

The results are shown in Table 8, where the evaluation metric F1 is an index to evaluate
the accuracy of the model. F1 takes into account both precision and recall. It is used in
the xBD data set [1], which is suitable for the evaluation of samples with class imbalance.
As shown in Table 8, we can observe that further improvement for all damage levels in

https://github.com/TungBui-wolf/xView2-Building-Damage-Assessment-using-satellite-imagery-of-natural-disasters
https://github.com/TungBui-wolf/xView2-Building-Damage-Assessment-using-satellite-imagery-of-natural-disasters
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the data augmentation data set. To be more specific, the data augmentation strategy on
hard classes (minor damage, major damage, and destroyed) boosts the performance (F1)
better. In particular, major damage is the most difficult class based on the result in Table 8,
while the F1 of major damage level is improved by 46.90% (0.5582 vs. 0.8200) with the
data augmentation. Moreover, the geometric transformation only improves slightly, while
the results of CutMix are also worse than the proposed method. The results show that
the data augmentation strategy is clearly improving the accuracy of the building damage
assessment model, especially in the hard classes, which demonstrates that the augmented
strategy promotes the model to learn better representations for those classes.

Table 8. Effect of data augmentation by disaster translation GAN.

Evaluation
Metric

Original
Data Set

(Baseline)

Geometric
Transformation CutMix

Disaster
Translation

GAN
Improvement

F1_no-
damage 0.9480 0.9480 0.9490 0.9493 0.0013

(0.14%)
F1_minor-
damage 0.7273 0.7274 0.7502 0.7620 0.0347

(4.77%)
F1_major-
damage 0.5582 0.5590 0.6236 0.8200 0.2618

(46.90%)

F1_destoryed 0.6732 0.6834 0.7289 0.7363 0.0631
(9.37%)

As for the building data set, the data is enhanced in the same way as above by the
damaged building generation GAN. Then, we obtain the augmented data set and the
original data set. It needs to be noted that we only classify the damage level of the building
into damaged and undamaged. The minor damage, major damage, and destroyed class in
the original data are classified as damaged uniformly. The building damage assessment
model is trained in the original data set, and the augmented data set is then tested on
the same original test set. The results are shown in Table 9. We can clearly observe that
there is an obvious improvement in damaged classes compared with the undamaged
class. Compared with the geometric transformation and CutMix, the proposed method has
proven effectiveness and superiority.

Table 9. Effect of data augmentation by damaged building generation GAN.

Evaluation Metric Original Data Set
(Baseline)

Geometric
Transformation CutMix Damaged Building

Generation GAN Improvment

F1_undamaged 0.9433 0.9444 0.9511 0.9519 0.0086
(0.91%)

F1_damaged 0.7032 0.7432 0.7553 0.7813 0.0781
(11.11%)

6. Conclusions

In this paper, we propose a GAN-based remote sensing disaster images generation
method DisasterGAN, including the disaster translation GAN and damaged building
generation GAN. These two models can translate disaster images with different disaster
attributes and building attributes, which have proven to be effective by quantitative and
qualitative evaluations. Moreover, to further validate the effectiveness of the proposed
models, we employ these models to synthesize images as a data augmentation strategy.
Specifically, the accuracy of hard classes (minor damage, major damage, and destroyed) are
improved by 4.77%, 46.90%, and 9.37%, respectively, by disaster translation GAN. damaged
building generation GAN further improves the accuracy of damaged class (11.11%). More-
over, this GAN-based data augmentation method is better than the comparative method.
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Future research can be devoted to combined disaster types and subdivided damage levels,
trying to optimize the existing disaster image generation model.
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