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Abstract: The current widely used bathymetric inversion model based on multispectral satellite
imagery mostly relies on in-situ depth data for establishing a liner/non-linear relationship between
water depth and pixel reflectance. This paper evaluates the performance of a dual-band log-linear
analysis model based on physics (P-DLA) for bathymetry without in-situ depth data. This is done
using WorldView-2 images of blue and green bands. Further, the pixel sampling principles for
solving the four key parameters of the model are summarized. Firstly, this paper elaborates on
the physical mechanism of the P-DLA model. All unknown parameters of the P-DLA model are
solved by different types of sampling pixels extracted from multispectral images for bathymetric
measurements. Ganquan Island and Zhaoshu Island, where accuracy evaluation is performed for the
bathymetric results of the P-DLA model with in-situ depth data, were selected to be processed using
the method to evaluate its performance. The root mean square errors (RMSEs) of the Ganquan Island
and Zhaoshu Island results are 1.69 m and 1.74 m with the mean relative error (MREs) of 14.8% and
18.3%, respectively. Meanwhile, the bathymetric inversion is performed with in-situ depth data using
the traditional dual-band log-linear regression model (DLR). The results show that the accuracy of
the P-DLA model bathymetry without in-situ depth data is roughly equal to that of the DLR model
water depth inversion based on in-situ depth data. The results indicate that the P-DLA model can still
obtain relatively ideal bathymetric results despite not having actual bathymetric data in the model
training. It also demonstrates underwater microscopic features and changes in the islands and reefs.

Keywords: remote sensing; bathymetry; multispectral; without in-situ depth data; dual-band; dual-
band log-linear analysis model based on physics

1. Introduction

Shallow water depth is an important hydrologic element that is fundamental to
marine science research, ecological protection, resource utilization, military activities,
optical sensing, and marine surveying [1,2]. Compared with common ship-borne and
airborne bathymetry, satellite remote sensing observation requires continuous monitoring
with higher spatial coverage. Indeed, it also acquires data over controversial, hazardous,
or remote areas. As the most widespread source of remote sensing images, multispectral
remote sensing is suitable for bathymetric remote sensing for complete data records and
high spatial resolution [3,4].

At present, the shallow water bathymetry methods by multispectral satellite remote
sensing can be generally classified into two categories according to whether the in-situ
depth data is involved in the training and calibration of the model. These categories are the
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traditional semi-theoretical and semi-empirical models and the semi-analytical optimiza-
tion algorithm, both of which have comparable estimation accuracies in optically shallow
water. The half-theory half-experience bathymetric inversion model uses a certain amount
of actual bathymetric data (ship-borne multi-beam/single-beam acoustic measurements,
airborne laser radar bathymetry, and electronic charts) as input values to solve the model
parameters and applies the parametric model in the bathymetric inversion of the research
regions. However, this model cannot perform remote sensing bathymetric inversions in
areas without in-situ depth data. The most widely studied and applied shallow water
bathymetry model without in-situ depth data is the hyperspectral optimization process ex-
emplar (HOPE), proposed by Lee et al. [5,6] in 1998. This algorithm takes advantage of the
narrow and continuous spectra of hyperspectral remote sensing to invert the bathymetry
and inherent optical parameters of seawater using non-linear optimization. In recent
years, the algorithm has been used to study the applicability of the HOPE model to lim-
ited multispectral bands and its improved algorithms for multispectral remote sensing
bathymetry [3,7–9]. The WorldView-2 image is an example. Lee et al. [10] introduced the
HOPE model into multispectral satellite remote sensing images for bathymetry without
in-situ depth data and discussed the impact of the number of limited bands and bandwidth
range in the images on bathymetry. Liu Yongming et al. [7] proposed an unmixing-based
multispectral optimization process exemplar method (UMOPE) for precise bathymetric
surveying through a linear combination of variable endmembers with three fixed end-
members. Xia Haoyang et al. [3] proposed a comprehensive approach combined with the
logarithmic ratio model and semi-analytic model (L-S), and the relatively ideal bathymetric
inversion results based on the data of four bands in different multispectral images were
obtained. With remote sensing images of multiple satellites, Wei Jianwei et al. [11] utilized
the HOPE model for bathymetric inversion in several shallow water areas with different
types of sediments in the Bahamas, Florida, and Hawaii.

Even though significant research has been done on the HOPE model in multispectral
bathymetry, the model requires many optical parameters. Further, its precision is directly
affected by the settings of initial parameters and iterative steps. In addition, the mea-
surement results of this model are somewhat uncertain due to the underestimation of the
water depth in deep waters. The P-DLA model is rarely studied, as proposed by Chen
Benqing et al. [12]. Based on the radiative transfer mechanism, this algorithm first analyzes
and formulates a dual-band log-linear analysis model. Following this, it uses different
types of sampling pixels directly extracted from multispectral images to solve all unknown
model parameters for bathymetric measurements. With a perfect physical mechanism, this
algorithm has the advantage of an accurate water depth still being obtained without in-situ
depth data participating in model training and fitting.

In this paper, the physical mechanism of the P-DLA model and the principles for
estimating key parameters are first described in detail. Then, two regions in the South
China Sea are selected for the shallow water-sounding experiments with the P-DLA model,
and the accuracy is verified by the in-situ depth dataset. At the same time, the DLR model
based on the semi-theoretical and semi-empirical algorithm is used for the water depth
inversion in the same areas. Further, the performance and applicability of the shallow
water bathymetry with or without in-situ depth data are evaluated and compared. Finally,
this paper summarizes the pixel sampling principles for solving the four key parameters of
the P-DLA model to reduce the uncertainty of the sampling process.

2. Dual-Band Log-Linear Analysis Model Based on Physics (P-DLA)
2.1. Formula Deduction

According to the single and quasi-single scattering theories and the single radiative
transfer process in optically shallow water, the subsurface remote sensing reflectance (rrs)
can be expressed as follows [5,13,14]:

rrs = rdp
rs [1− exp(−gH)] +

ρ

π
exp(−gH) (1)
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where rdp
rs is the subsurface remote sensing reflectance in optical deep waters, H is the water

depth, and ρ is the bottom reflectance modified by air-sea transmittance. Further, g is the
sum of the diffuse attenuation coefficients, which is approximated as g = kd +

(
kC

u + kB
u
)
/2.

Additionally, kd is the averaged diffuse attenuation coefficient of the perpendicular down-
welling irradiance, kB

u is the averaged diffuse attenuation coefficient of perpendicular
upwelling irradiance from sediments reflectance, and kC

u is the averaged diffuse attenua-
tion coefficient of the averaged perpendicular upwelling irradiance from the water column.

A single-band log-linear model is obtained as follows by the logarithmic calculation
and simplification of Equation (1) [15,16]:

X = -gH + lnr∗b (2)

where X = ln
(

rrs-r
dp
rs

)
, ln

(
r∗b
)
= ln

(
rb-rdp

rs

)
.

Considering that the blue and green bands are highly water permeable in visible
light, these two bands are introduced into the model. The DLR model is conveyed as the
following generalized vector equation [17]:

⇀
α ·

⇀
X =

⇀
α ·

⇀
lnrb −

(
⇀
α ·⇀g

)
H (3)

where
⇀
X = [X1, X2], ln

(
⇀
r b

)
=
[
lnr∗b1, lnr∗b2

]
,
⇀
g = [g1, g2],

⇀
α = [α1, α2]. These are the

optimal band rotation coefficient unit vectors in the blue and green bands, and
∣∣∣⇀α ∣∣∣ = 1.

By analyzing the formula, the P-DLA model without the in-situ depth data is obtained as
follows for the bathymetric estimation:

[α1, α2] ∗ [X1, X2] = [α1, α2] ∗ [lnr∗b1, lnr∗b2]− {[α1, α2] ∗ [g1, g2]} ∗ H (4)

α1lnr∗b1 + α2lnr∗b2 = (α1lnr∗b1 + α2lnr∗b2)− (α1g1 + α2g2) ∗ H (5)

H = [
−1/g2

g1/g2 ∗ α1 + α2
] ∗ [α1X1 + α2X2 − (α1lnr∗b1 + α2lnr∗b2)] (6)

where (α1, α2) is the weighted eigenvector of the blue and green bands, (α1ln
(
r∗b1
)
+

α2ln
(
r∗b2
)
) is the bottom parameters, (g1/g2) is the ratio of the attenuation coefficients in the

blue and green bands, and (g2) is the sum of the green band diffuse attenuation coefficients.
In the dual-band coordinate space, the optimal band rotation coefficient unit vector

(α1, α2) is linearly transformed for the spectral reflectance of the blue and green bands in
the dataset ( X1 ∼ X2), which are sampled for different types of sediments. This is done to
obtain the new variable (Y), which is not affected by the change of the sediment type and
has the greatest linear correlation with the water depth. Based on this, α1ln

(
r∗b1
)
+ α2ln

(
r∗b2
)

equals the origin parameter of Y at a water depth of zero (on water boundaries). Finally, Y
is scaled to the water depth H through the parametric factor ( −1/g2

g1/g2∗α1+α2
), which is related

to the inherent optical properties of g1/g2 and g2 of the blue and green wavebands. Based
on this, the shallow water depth is measured through all aforementioned parametric factors
estimated by the multispectral remote sensing images.

2.2. Optimal Band Rotation Coefficient Unit Vector

α1, α2 are the weighted eigenvectors of the blue and green bands, and Y is the scalar
variable related to water depth. When the rotation coefficients of the two bands are optimal,
the optimal band rotation coefficient unit vector ([α1, α2]) causes the Y-value to be linearly
related to the water depth and unaffected by the change of the bottom sediment types.
Assuming that water properties are spatially uniform, the optimal band rotation coefficient
unit vector should be perpendicular to the line connecting all data points of the vector
X for all types of sediments at the same depth, which is analyzed from the perspective
of geometric relationships [17]. Therefore, the estimation of the optimal band rotation
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coefficient of the unit vector with the pixels at the same depth of shallow water is a key step
for the P-DLA model. Nonetheless, without relying on the prior data on the in-situ field
measurements or laser radar detection, it is challenging to acquire spectral information
about pixels at the same depth as the research regions. Regardless of the drastic changes in
the submarine topography, when the spatial resolution of the multispectral remote sensing
images is high enough (2 m in this paper), the water depth of the two adjacent pixels
parallel with the coastlines may be deemed approximate. In the P-DLA model, a method
based on adjacent pixel pairs is adopted. More specifically, a dataset of a group of adjacent
pixel pairs (A, B)i is uniformly extracted at random from high-resolution remote sensing
images of various sediments at different depths. By minimizing the adjacent pixel pairs
(A, B)i corresponding to the optimal band rotation coefficient unit vector, the final optimal
band rotation coefficient unit vector [α1, α2] is calculated.

For any adjacent pixel pair (A, B)i, the difference between YA and YB (defined as
∆SHi) after applying the optimal band rotation coefficient unit vector, can be expressed
as follows:

∆SHi = |YA −YB|i (7)

∆SHi =
∣∣∣(α1XA

1 + α2XA
2

)
−
(

α1XB
1 + α2XB

2

)∣∣∣
i

(8)

where i is an adjacent pixel pair, and A and B correspond to two different types of sediments,
respectively. After permutation, the formula is transformed as follows:

∆SHi =
∣∣∣α1(XA

1 − XB
1 ) + α2

(
XA

2 − XB
2

)∣∣∣
i

(9)

where ∆SHi is the Y-value pair of the optimal band rotation coefficient unit vector for
the X1 difference (conveyed as ∆X1) and X2 (conveyed as ∆X2) difference in the spectral
reflectance of the blue and green bands of any adjacent pixel pair.

Once the optimal band rotation coefficient unit vector is estimated, and the water
depth is equal for each adjacent pixel pair, the differences in any Y-value pair and the sum
of such differences are, theoretically, zero. However, under the actual conditions of the
water environment, the water properties and reflectance of sediments exhibit variability
that cannot be fully manually eliminated in adjacent pixel pairs of different spaces. The
optimal band rotation coefficient unit vector cannot ensure that the sum of the differences
in the Y-value pair of all sampled adjacent pixel pairs is zero. Therefore, the formula is
solved as follows based on the minimum function (argmin):

f (α1, α2) = argmin

[
n

∑
i=1

(∆SHi)
2

]
(10)

where f is the minimum function, n is the number of adjacent pixel pairs, and
∣∣∣⇀α ∣∣∣ = 1.

Notably, α = [−1, 1] is the value when the blue and green bands are not rotated and do not
represent the optimal solution.

2.3. Bottom Parameters

If ln
(
r∗b
)

of the two bands for a given sediment layer are known, α1ln
(
r∗b1
)
+ α2ln

(
r∗b2
)

is calculated based on the optimal band rotation coefficient unit vector ([α1, α2]). Nonethe-
less, there are multiple types of sediments mixed in actual water environments. Minor
differences generally exist in albedo among different types of sediments and cannot be
fully eliminated. Hence, in actual calculations, the albedo of the different sediments should
be fully considered and used.

In general, there are one or more types of sediments, such as coral reefs, coral reef
sand, algae, and other sediments that the naked eye cannot recognize on the waterline.
These sediments are the same as those mixed in shallow water areas. Suppose the spatial
resolution of remote sensing images is quite high (2 m for the WorldView − 2 remote



Remote Sens. 2021, 13, 4331 5 of 21

sensing images used in this paper). In that case, the water depth should be approximately
zero for most pixels near the instantaneous coastlines [18]. Assuming that the water depth
on the waterline is zero, then α1X1 + α2X2 may be approximated as α1ln

(
r∗b1
)
+ α2ln

(
r∗b2
)
.

As mentioned above, when [α1, α2] is optimal, α1X1 + α2X2 is approximate among different
types of sediments. Therefore, in this paper, a certain number of pixels from various
sediments are sampled near the waterline, and data on the reflectance of sediments is
extracted. From this, the sediment parameters of the research regions are calculated based
on the mean α1ln

(
r∗b1
)
+ α2ln

(
r∗b2
)

of various sediments. In the near-infrared bands, the
images of the water bodies appear black since the water is highly absorptive. Therefore,
the waterline is directly recognized through near-infrared images.

Pixels were gathered from different types of sediments near the waterline of Ganquan
Island. Further, the relationship between the sediment parameters and the sediment-related
reference water depth obtained by three different methods was calculated. The three
methods used are (i) the single-band water depth inversion model (see Formula (2)), (ii) the
dual-band log-linear analysis model when α = [−1, 1], and (iii) the dual-band log-linear
analysis model when α is the optimal band rotation coefficient unit vector. Meanwhile,
the reflectance of the green band is shown in Figure 1. Figure 1 shows that the change of
water depth caused by different sediments was less than that of the other two methods
when α is optimal. Furthermore, the computed reference water depth related to the bottom
is generally 0–1 m. This indicates that the estimation of the bottom parameters via the
waterline significantly alleviates the effects of the changes in the type of sediments upon
the water depth.
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Figure 1. The reference water depth values along the waterline were obtained from three different
bottom parameters and green band reflectance (Ganquan Island).

2.4. Ratio between Diffuse Attenuation Coefficients of the Blue and Green Bands

g1/g2 can be obtained from the linear regression equation constructed by the X1 ∼ X2
dataset. The following formula can be deduced by applying Formula (2) to the blue and
green bands of remote sensing images, respectively, and eliminating the water depth
variable (H):

X1 = (g1/g2) ∗ X2 + (lnr∗b1 − (g1/g2) ∗ lnr∗b2) (11)

X1 = (g1/g2) ∗ X2 + β (12)
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where lnr∗b1 − (g1/g2) ∗ lnr∗b2 is the characteristic exponent of the sediment type (defined
as β), which varies among the different types of sediments:

β = lnr∗b1 − (g1/g2) ∗ lnr∗b2 (13)

Assuming that shallow water properties are uniform in nature, the ratio of the atten-
uation coefficients between the blue and green bands is conveyed as g1/g2 and remains
spatially unchanged. Therefore, g1/g2 is deemed as the slope of the regression equation
established with the dataset X1 ∼ X2. By collecting the dataset, X1 ∼ X2 on the same
type of submarine sediments at varying water depths (coral reef sand) from multispectral
remote sensing images with high spatial resolution, a unitary linear regression equation is
created. Specifically, the ratio of the attenuation coefficients between the blue and green
bands (g1/g2) is determined, as shown in Figure 2. The determination coefficient (R2) of
the fitting equation is 0.902, close to 1. Therefore, it is well-fitted. It is reasonable to assume
that the shallow water properties are uniform in this method. However, the water body
itself is still affected by chlorophyll-a, suspended solids, and bottom sediments.
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2.5. Diffuse Attenuation Coefficients of the Green Band Estimated by QAA

QAA (quasi-analytical algorithm [QAA]) was proposed and constantly updated by
Lee et al. [19]. Based on the radiative transfer principles, it can determine the absorption
coefficient (a), backscattering coefficient (bb), and other inherent optical properties of
water. This is done by analyzing data on remote sensing reflectance and inverting the
corresponding water quality parameters depending on the inherent optical properties
of water [10,19–25]. From the above, it is known that g2 = kd +

(
kB

u + kC
U
)
/2, where kd,

kB
u , and kC

u are closely related to the solar zenith angle, the satellite zenith angle, and the
inherent optical properties (IOPs) of seawater. This is especially true for the absorption
coefficient (a) and the backscattering coefficient (bb) [6,25]. In this paper, QAA_v6, the latest
version of QAA is used [26], and its calculation process is as follows:

rdp
rs (λ) = [p0 + p1u]u(λ) (14)

u(λ) =
−p0 +

√
(p0)

2 + 4p1 ∗ rdp
rs (λ)

2p1
(15)
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rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
(16)

u = bb/(a + bb) (17)

where Rrs is the remote sensing reflectance of the surface water received by the satellite
sensor, λ is the representative wavelength of the images, u is a Gordon parameter [27],
and p0 and p1 are constants of the water model. These are taken as 0.0895 and 0.1247,
respectively, in type I marine water in high scattering regions [19].

The absorption coefficient of the green band of multispectral remote sensing images
(agreen) is calculated using the QAA − 555 algorithm, as shown in Equation (16) [19,25],
where the central wavelength of the red and green bands are 640 nm and 555 nm, respectively.

agreen = agreen
w + 0.56


 rdp

rs_red

rdp
rs_green

1.7

− 0.03

 (18)

where rdp
rs_green and rdp

rs_red are the optical deep subsurface remote sensing reflectance’s of
the green and red bands, respectively, and agreen

w is the averaged pure water absorption
coefficient of the green band [25].

Agreen
w =

∫ λ2
λ1

RSRi(1/aw(λ))dλ∫ λ2
λ1

RSRi(λ)dλ
(19)

agreen
w = 1/Agreen

w (20)

where λ1 and λ2 are the spectral wavelength ranges of the green and red bands of the
satellite images, RSRi(λ) is the spectral response function of a certain band, and aw(λ) is
the average absorption coefficient of the pure water at a certain wavelength [28].

If agreen is known, bgreen
b is calculated as follows:

bgreen
b =

ugreen ∗ agreen

1− ugreen
(21)

Once agreen and bgreen
b are known, kd is determined as follows:

kd = (1 + m0 ∗ θs)agreen +

(
1− γ

bgreen
bw

bgreen
b

)
∗m1 ∗

(
1−m2e−m3∗agreen

)
bgreen

b (22)

bgreen
bw =

∫ λ2
λ1

RSRi(λ)bbw(λ)dλ∫ λ2
λ1

RSRi(λ)dλ
(23)

bbw(λ) = 0.00144(λ/500)−4.32 (24)

where m0 − m3 and γ are model constants independent of different properties and the
spectral wavelength of the water column. These are taken as 0.005, 4.26, 0.52, 10.8, and
0.265, respectively [25]. Further, θs is the solar zenith angle, and bbw(λ) is the backscattering
coefficient of the pure water at a certain wavelength.

kC
u =

1
cos(θv)

(
agreen + bgreen

b

)
∗ DC

u (25)

DC
u = 1.03(1 + 2.4u)0.5 (26)

kB
u =

1
cos(θv)

(
agreen + bgreen

b

)
∗ DB

u (27)
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DB
u = 1.04(1 + 5.4u)0.5 (28)

g2 = kd +
(

kB
u + kC

u

)
/2 (29)

where θv is the satellite zenith angle, DC
u and DB

u are the optical amplification coefficients of
the increased scattering from the water column and water bottom, respectively. When u is
less than 0.6, DC

u and DB
u are generally in the range of 1.2–1.7 and 1.1–2.2, respectively [5,29].

3. Study Areas and Data Processing
3.1. The Study Areas and Datasets

The shallow water (0–20 m) around Ganquan Island and Zhaoshu Island in the South
China Sea is used for the bathymetry experiment, which belongs to Case I marine water
(Figure 3). Ganquan Island is located in Yongle Atoll of the Xisha Islands, with a central
longitude and latitude of (16◦30′N, 111◦35′E). The terrestrial area of the Ganquan Island
is oval, where the pilot zone is approximately 2 km long from the north to the south and
nearly 1 km wide from the east to the west. This terrestrial area is composed of land with
an approximate area of 0.6 km2, and the waters nearly cover an area of 1.1 km2. The mean
water depth is 8.9 m, and the water depth changes slowly and relatively hierarchically.
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Zhaoshu Island is north of Qilian Island in the Xuande Islands at a central longitude
and latitude of (16◦59′N, 112◦16′E). It extends from the northwest to the southeast,
including land that approximately covers an area of 6.7 km2 and pilot waters with an area
of 5.6 km2. In this area, the mean water depth is 7.5 m. Spurs and grooves are widely
distributed on reef slopes northeast and west of the island. The variations in the water
depth are drastic, somewhat impacting the precision of the water depth inversion.

The water is limpid in both research regions, where the underwater sediments are
mainly coral reef sand, coral reefs, algae, and so on [3,30,31]. With striking differences in
the water depth, they have visibly limpid shallow sea areas and deep-water areas, where
the bottom cannot be seen. These water bodies are suitable for conducting multispectral
remote sensing water depth inversion.

All satellite remote sensing images in these two study areas are collected from the
WorldView− 2 standard multispectral images of four bands (blue, green, red, and near-
infrared 1), with a spatial resolution of 2 m. The spectral bandwidth ranges are as follows:
450–510 nm in the blue band, 510–580 nm in the green band, 630–690 nm in the red
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band, and 770–895 nm in the near-infrared 1 band. The WorldView− 2 satellite remote
sensing images of Ganquan Island and Zhaoshu Island were generated on 2 April 2014,
and 11 March 2017, respectively (Table 1). Two remote sensing images are pre-processed
by radiometric calibration, atmospheric correction, geometric correction, and land-water
separation. Among them, radiation calibration converts dimensionless digital values in
remote sensing images into relative physical values (apparent radiance).

Lλ =
DN ∗ absCalFactor
e f f ectiveBandwidth

(30)

where, Lλ is the radiance value received by the sensor, and the unit is W/
(
m2 · µm · sr

)
.

Further, absCalFactor is the absolute scaling factor, and the unit of e f f ectiveBandwidth is
in µm. The metadata information is stored in the *.IMD file.

Table 1. Parameter information of WorldView-2 images in two regions.

Research
Regions

Acquisition
Date

Cloud
Fraction

Solar Zenith
Angle

Satellite
Zenith Angle

Tidal
Height/m

Ganquan
Island 2 April 2014 0.1% 19.4◦ 36.3◦ 0.78

Zhaoshu
Island

11 March
2017 0.6% 31.6◦ 27.6◦ 0.21

In the study of ocean optical remote sensing, only about 10% of the energy received
by satellite sensors is radiated from the water body. Therefore, it is necessary to carry out
the atmospheric correction to remove the scattering and reflection effects from atmospheric
molecules and aerosols [30,32,33]. The FLAASH atmospheric correction model developed
by the Air Force Research Laboratory, Hanscom AFB, and Spectral Sciences, Inc. is based
on the MODTRAN (MODerate resolution atmospheric TRANsmission) [34]. In this paper,
the FLAASH module integrated into the environment for visualizing images (ENVI) was
used for atmospheric correction of the images. For Zhaoshu Island, the cloud fraction of
WorldView− 2 images was 0.6%. Some cloud-containing areas of Zhaoshu Island were
masked to reduce the impacts of cloud-borne areas upon the precision of this experiment.

The ground truth depth data was selected to evaluate the precision of the water depth
estimation results for the research regions to quantitatively evaluate the effectiveness of
this bathymetric inversion algorithm without in-situ depth data (Figure 4). The data on
the in-situ depths of Ganquan Island was acquired on 9 January 2013, from the lidar point
cloud data gathered by the SHOAL− 3000 airborne lidar bathymetry system of the Optech
firm. The horizontal precision of lidar depths was 2.5 m, and the bathymetric precision
was 0.15 m. The in-situ depth data of Zhaoshu Island was acquired on 2 March 2014 by a
Chinese research institute in combination with single-beam and manual measurements.
The overall bathymetric precision was better than 1% of the water depth (Table 2). This
paper’s in-situ water depth data is the steady-state water depth based on the theoretical
depth datum. Meanwhile, the water depth (H) extracted by the bathymetric inversion
model was the instantaneous depth of the sea level calculated at the time of the image
transit. Thus, the tidal correction was completed with the following formula:

H = Z− tide (31)

where H is the instantaneous water depth of the images when the remote satellite transits,
Z is the seawater depth measured under the steady-state, and tide is the instantaneous
tidal level measured when the satellite transits. The global tidal model was used to obtain
the tidal values in the study areas.
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Table 2. Information on the actual water depth of the two research regions.

Research
Regions Data Source Acquisition

Date Data Precision Number of Points with
In-Situ Depth Data

Mean Water
Depth

Ganquan
Island

SHOAL− 3000 Airborne
Lidar detection system 9 January 2013 0.15 m 437 −8.95 m

Zhaoshu
Island

Combination of
single-beam and manual

measurements
2 March 2014 1% above the Precision

of Water Depth 1900 −7.45 m

3.2. Collection of Sample Pixels

After the pre-processing of the WorldView− 2 images, four different types of sample
pixels were collected from the two regions, and the spectral information on the remote
sensing reflectance of each sample was directly extracted. The four types of sample pixels
correspond to the unknown parameters of the P-DLA model without in-situ depth data.
This includes adjacent pixel pairs with different depths, typical sediment pixels near the
waterline, pixels of the same sediment from different water depths (sandy sediments are
adopted in this paper), and the deep-water pixels of adjacent shallow water areas. The
specific distribution of the sampling points is shown in Figure 5.

3.3. Evaluation

Multiple types of indicators for the evaluation can quantitatively evaluate the bathy-
metric estimation results of the P-DLA model without in-situ depth data. In this paper,
the root mean square error (RMSE), the mean absolute error (MAE), the mean relative
error (MRE), and the correlation coefficient (r) were used as the main indicators for the
evaluation. RMSE and MRE are expressed as follows:

RMSE =

√
∑n

i=1 (xi − yi)
2

n
(32)
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MRE =
1
n

n

∑
i=1

|xi − yi|
yi

(33)
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4. Results
4.1. Estimated Parameters

First, the spectral information on the geographic coordinates and pixels is extracted
from different sampling points. Next, the parameters necessary for the model are respec-
tively calculated according to the above formulas (Table 3). Finally, the model-determined
parameters are applied in the formulas to estimate the water depth of the whole remote
sensing image by inversion.

Table 3. Estimated Parameters of Two Regions.

α1 α2 α1lnr*
b1+α2lnr*

b2 g1/g2 g2

Ganquan
Island −0.755 0.655 0.329 0.716 0.143

Zhaoshu
Island −0.674 0.738 −0.043 0.894 0.178
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4.2. Bathymetric Estimated Results

The bathymetric results estimated by the P-DLA model without in-situ depth data
are shown in Figures 6 and 7, respectively. As shown, the grey zone in the middle denotes
the land above sea level. The peripheral white zone is the deep-water optical zone to
which bathymetric inversion does not apply. Further, the yellow zone of Zhaoshu Island is
shrouded with a thin cloud. The P-DLA model estimates the underwater depth pixel by
pixel. Therefore, the resolution of the digital elevation model (DEM) and remote sensing
images from the inversion results are the same height of 2 m. Figures 6 and 7’s inversion
results show that the water depth ranged from 0–20 m, and the water depth variation
trend is consistent with the actual water depth materials and previous literature [3,8].
From the local details of the figures, this method inverts detailed underwater topographic
features of Ganquan Island and Zhaoshu Island. An example is the bathymetric estimated
results of the northwest reef front slope of Zhaoshu Island (Figure 7b). The landform of the
underwater reef ridge trough in the northeast-southwest direction is displayed. Because
these slopes are windward, where the oxygen content is high in the seawater, coral reefs
grow relatively well, and spurs and grooves arise from perennial seawater erosion.
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4.3. Accuracy Evaluation

The mean absolute error, mean relative error, root mean square error, and correlation
coefficient between the water depth of the two research regions measured by the P-DLA
model and the actual water depth were calculated. Related indicators for evaluation are
listed in Table 4. For Ganquan Island and Zhaoshu Island, the RMSE values were 1.69 m
and 1.74 m, the MRE values were 14.8% and 18.3%, and the r values were 0.914 and
0.895, respectively. This demonstrates that using the P-DLA model for bathymetry can
produce a reasonable estimation of shallow water depth. However, the overall bathymetric
results of Ganquan Island outperform those of Zhaoshu Island due to its steadier changes
in submarine sediments. Furthermore, there is less in-situ depth data for the precision
validation in Ganquan Island than in Zhaoshu Island.
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Table 4. Precision evaluation for the overall water depth estimation.

RMSE/m MAE/m MRE r

Ganquan Island 1.692 1.348 0.148 0.914
Zhaoshu Island 1.744 1.385 0.183 0.895

This paper measured water depth every 5 m and obtained the precision evaluation
results of four different water depth ranges to better evaluate the bathymetric estimation
results of the two regions obtained from the P-DLA model. As shown in Table 5, the RMSE
was close to 2 m, and the MRE was about 40% at water depths between 0 m and 5 m
for both islands. In these areas, the inversion precision was relatively poor. This can be
explained by the multiple types of sediments being mixed in the near-coastal areas of
the two regions. Consequently, the water properties change significantly, the sea surface
is easily affected by the scattering of natural phenomena (e.g., beachcomber, whitecap),
and the apparent optical properties change significantly. At the water depth of the two
regions ranging from 5–15 m, the RMSE was better than 1.5 m, and the MRE was below
15%. The inversion precision of the model was high. At the water depths ranging between
15 m and 20 m, the RMSE was 2.67 m and 3.23 m, and the MRE was 15.4% and 22.5% for
Ganquan Island and Zhaoshu Island, respectively. The RMSE and MRE increased in the
shallow seawater depth, demonstrating that this model exhibits weaker inversion capacity
in optically deep-water zones.

Table 5. Precision evaluation for varying water depths.

Research Regions Indicators for
Evaluation 0–5 m 5–10 m 10–15 m 15–20 m

Ganquan Island
RMSE/m 1.805 1.456 1.708 2.674
MAE/m 1.493 1.165 1.362 2.238

MRE 0.375 0.129 0.123 0.154

Zhaoshu Island
RMSE/m 2.084 1.416 1.477 3.230
MAE/m 1.755 1.098 1.204 2.962

MRE 0.426 0.141 0.113 0.225
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5. Discussion
5.1. Comparison of Water Depth Inversion with and without In-Situ Depth Data

The DLR model is a common semi-theoretical and semi-empirical bathymetric in-
version model. It solves unknown parameters based on in-situ depth data and band
reflectivity for passive optical remote sensing bathymetric inversion. The applicability
and inversion precision of this model have been fully studied and verified. According
to previous research findings, under different water qualities and bottom conditions, the
overall RMSE and MRE of the bathymetric inversion using the DLR model were 1–3 m
and 15–30%, respectively [30,35–37]. In this experiment, the in-situ bathymetric samples of
the two regions were divided into training and validation samples at a ratio of 7:3. From
them, the training samples were used to establish linear model relationships between the
multi-band reflectivity of multispectral remote sensing images and in-situ depth data. The
validation samples were utilized to evaluate the precision of the linear water inversion
model. For details of the DLR model, refer to Table 6. In the formula, B1 represents the
blue band. Meanwhile, B2 denotes the green band.

Table 6. Information of the DLR model.

Research
Regions

Number of
Training Samples

Number of
Validation Samples Bathymetric Inversion Model r

Ganquan
Island 305 132 −10.84 + 366.53 * log(B1) + 410.87 * log(B2) 0.900

Zhaoshu
Island 1330 570 −8.9 + (−276.18) * log(B1) + (322.21) * log(B2) 0.843

Figures 8 and 9 show the scatter plots of the actual and estimated depth on Ganquan
Island and Zhaoshu Island. The closer the scatter points of water depth are to the 1:1
standard line, the smaller the deviation between the estimated and actual water depth
at each validation point, and the higher the inversion precision. For the two regions,
the bathymetric results and scatter plots of the P-DLA model, and the DLR model are
similar. Both models cohere well with the 1:1 standard line, with their RMSE values within
1.5–2 m, and their bathymetry precisions were comparable. In estimating the water depth
of Ganquan Island with the P-DLA model, the RMSE was 1.69 m, and the r was 0.91,
which are 1.3% and 1.5% higher than those of the DLR model. The bathymetric estimation
of Zhaoshu Island by the P-DLA model suggests that the RMSE was 1.74 m and the r
was 0.89, which are 18.9% and 5.8% higher than those of DLR. This demonstrates that the
P-DLA model is useful for an accurate bathymetric inversion without in-situ depth data
and a training model on actual water depth. By comparing the scatter plots of the two
models, it was found that the scatter points of the DLR model are more discrete in the two
regions. In particular, in waters where the water depth is 0–5 m, the estimated depth is
significantly lower than the actual depth and tends to be negative. This suggests that the
P-DLA model is more applicable to shallow waters with complex water quality. However,
it is undeniable that the bathymetric estimation accuracy of both models is lower in waters
where water quality is more complicated. This phenomenon is inseparably associated
with the distribution of complex coral reef sediments and natural spurs and grooves with
dramatic changes in water depths in the two regions.
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The trend chart on the water depth changes intuitively represents underwater topo-
graphic changes and the difference between the estimated and actual water depth. Based
on the above inversion results, this paper compares the trends of water depth changes be-
tween the P-DLA and DLR models for Ganquan Island and Zhaoshu Island (see Figure 10).
The bathymetric measurements and change trends of the actual water depth were the same
in both models. As water depth gradually increased, it better reflected the underwater
topographic changes. However, the absolute difference between the water depth estimated
by the DLR model with in-situ depth data and the actual water depth exhibits steadier
changes than the P-DLA model without in-situ depth data.
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For Ganquan Island, the absolute difference between the inverted water depth of the
DLR model with in-situ depth data and the real water depth is mostly controlled within
1 m. However, the difference reaches 4–5 m in the range of 0–5 m in water depth. One
of the reasons is that the small number of sample points in the nearshore area decreases
the training fit. In the P-DLA model without in-situ depth data, the absolute difference
between the inverted and actual water depth was mostly controlled around 2 m. As the
water depth increased from 15 m to 20 m, the curve of the P-DLA model on the water depth
differences fluctuated relatively significantly. For Zhaoshu Island, the difference curve
between the bathymetric measurement results of the two models and the real water depth
showed similar fluctuations. More specifically, the water depth on the curve of the DLR
model with in-situ depth data fluctuated less than the P-DLA model without in-situ depth
data between 0 m and 2 m. On the difference curve of the P-DLA model without in-situ
depth data, the water depth fluctuated more significantly over 3 m to 4 m. Nevertheless, at
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the water depth of 10–15 m, the absolute difference of the bathymetry was lower than in
other water depth ranges, and the difference curve changes smoothly.

The difference between the estimated and actual water depth in Zhaoshu Island varied
more significantly than that in Ganquan Island, which is related to the natural conditions of
the research regions. On the one hand, it is because the sediments are more complicated in
the spurs and grooves of Zhaoshu Island. Mixed sediments in a single pixel are unfavorable
for solving model parameters. Conversely, Zhaoshu Island has a large research area (five
times bigger than Ganquan Island). Consequently, the estimated parameters of the P-DLA
model cannot be fully applied to all cases of water depth points in Zhaoshu Island.

5.2. Relationships between α1X1 + α2X2 and Actual Water Depth

The optimal band rotation coefficient unit vector, [α1, α2], is a critical parameter of
the P-DLA model. This is calculated by extracting adjacent pixels from different types of
sediments of multispectral remote sensing images at varying depths. By a linear combi-
nation of the unit vector [α1, α2] and the spectral dataset X1 ∼ X2, α1X1 + α2X2 is found
to be strongly correlated to water depth changes without being affected by variations in
sediment types. Hence, in sampling adjacent pixels in the experiment, the sample pixels
covering different types of sediments in the research regions should be as many as possible.
Scatter plots of α1X1 + α2X2 versus the actual water depth of Ganquan Island and Zhaoshu
Island are shown in Figure 11 to present this. In addition, the unary regression fitting
curves were created for the two regions. As seen on these plots and curves, most scatter
points of α1X1 + α2X2 are uniformly distributed on the regression line and highly fitted.
By comparing Figure 11 with Figures 8 and 9, the distribution of scatter points is fairly
similar. This demonstrates the strong correlation between α1X1 + α2X2 and the estimated
water depth. In Figure 11, the discreet scatter points on the regression line are primarily
impacted by slight changes in the water properties (known as mean diffuse attenuation
coefficients of bands) and α1X1 + α2X2 of different sample pixel pairs. Theoretically, these
discrete scatter points are expected to fall on the regression line when the natures of water
bodies and α1X1 + α2X2 are kept unchanged.
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Corresponding data on α1X1 + α2X2 was obtained by the linear combination of [α1, α2]
(the unit vector of a different angle of rotations) and X1 ∼ X2 (the spectral dataset) to
calculate the correlations between α1X1 + α2X2 and the actual water depth at varying
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angles (Figure 12). The rotation angles (0–90 degrees) are separated by 1◦. The results
suggest that when [α1, α2] (the optimal band rotation coefficient unit vector) corresponds
to the angle of rotations around 42◦ and 43◦, the maximum coefficient of determination,
R2, between α1X1 + α2X2 and the water depth was 0.893 for Ganquan Island and 0.803 for
Zhaoshu Island. Under the ideal state, the R2 between α1X1 + α2X2 and water depth should
be approximately one after applying the optimal band rotation coefficient unit vector.
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5.3. Principles of Sample Collection

Collecting different types of samples is a critical step for correctly estimating the
model parameters. The P-DLA model estimates its parameters (namely α1, α2, α1ln

(
r∗b1
)
+

α2ln
(
r∗b2
)
, g1/g2, and g2) by collecting different types of samples and directly extracting

pixel data from high-resolution multispectral images. Based on the theory of water ra-
diation transmission, this approach introduces blue-green bands, which simplifies the
optical measurements and water parameters necessary for the model. It makes calculations
simpler and obtains better bathymetric measurement results. Nevertheless, the selection of
different sampling points directly affects the parameters of the P-DLA model. Hence, the
following principles of sample collection are hereby summarized.

(1) Adjacent pixels collected should be parallel as much as possible to the waterline
and, one should avoid collecting adjacent pixels that are not from the same type of sed-
iments. Meanwhile, selecting “bright” and “dark” adjacent pixel pairs from the remote
sensing images is necessary.

(2) In the near-infrared and short-wave bands, water bodies absorb a significant
amount of energy from light radiation. This allows shorelines to be directly recognized
through near-infrared bands. In the sampling pixels from waterlines, different sediments
near the water-bearing body (including coral reef sand and coral reefs) are preferred to
avoid the neighboring land effect and collecting pixels with significantly high reflectance.

(3) It is necessary to collect pixel data from representative sediments (such as coral
reefs) of a research region at varying water depths to achieve better data fitting results of
the diffuse attenuation coefficient ratio in blue-green bands in collecting samples from the
same type of pixels.
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(4) In the optical deep waters studied in this paper, the maximum water depth is
around 20 m, and the images show the dark blue zone where the naked eye could not see
the bottom of the seabed. Sampling should be performed on the distinct boundary between
optical deep and shallow waters. In addition, the sampling points should be uniformly
distributed inside the research regions as far as possible in collecting each type of sample.

6. Conclusions

This study selected WorldView − 2 multispectral images of Ganquan Island and
Zhaoshu Island to carry out the water depth measurement experiments. Compared with the
traditional DLR model, the bathymetry performance and applicability based on the P-DLA
model without in-situ depth data are evaluated and verified. The following conclusions
are reached:

(1) The P-DLA model is used to measure the shallow seawater depth of the two regions
without in-situ depth data. At a seawater depth below 20 m, the RMSE, MRE, and r are
1.69 m, 14.8%, and 0.94, respectively, for Ganquan Island. Meanwhile, the RMSE, MRE,
and r are 1.74 m, 18.3 m, and 0.89, respectively, for Zhaoshu Island. The results suggest
that the precision of the depth measurement without in-situ depth data for the two regions
was almost the same as that of the DLR model with in-situ depth data. This demonstrates
that the P-DLA model is useful for an effective bathymetric estimation without employing
the training model for data on the actual water depth.

(2) Without in-situ depth data, the P-DLA model can estimate the water depth of the
experimental regions using high-resolution multispectral satellite images. Following this,
the underwater DEM graphs can be drawn to intuitively and colorfully reflect the under-
ground topographic features of coral reef plates. Even extremely tiny topographic features
can be presented clearly. For instance, the waterways around island reefs, underwater
submerged reefs, spurs, and grooves can be clearly recognized and discriminated against.

(3) Collecting different types of sample pixels is an important step for correctly esti-
mating model parameters. In this paper, the principles for sampling four types of pixels are
summarized, effectively reducing the influence of errors on the experiment in the sampling
process of random samples.

(4) Areas at depths of 0–20 m in Ganquan Island and Zhaoshu Island, South China
Sea, are the research regions of this paper, belonging to Case I water of the ocean. The
water quality is superior to the visible bottom in these research regions. Furthermore, the
concentration of chlorophyll and suspended solids is relatively low. The shortcoming of
this paper is that different water qualities and sediments were not studied concerning other
inshore regions. In the follow-up research work, efforts may be made to explore the appli-
cability of the P-DLA model for the bathymetric estimation of inshore regions. In addition,
remote sensing images with different spatial resolutions can be used to test the robustness
and bathymetry accuracy of this model, obtaining more reliable and accurate conclusions.
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