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Abstract: Accurate quantification of vertical structure (or 3D structure) and its change of a city is
essential for understanding the evolution of urban form, and its social and ecological consequences.
Previous studies have largely focused on the horizontal structure (or 2D structure), but few on 3D
structure, especially for long time changes, due to the absence of such historical data. Here, we
present a new approach for 3D reconstruction of urban history, which was applied to characterize
the urban 3D structure and its change from 1986 to 2017 in Shenzhen, a megacity in southern China.
This approach integrates the contemporary building height obtained from the increasingly available
data of building footprint with building age estimated based on the long-term observations from
time-series Landsat imagery. We found: (1) the overall accuracy for building change detection was
87.80%, and for the year of change was 77.40%, suggesting that the integrated approach provided an
effective method to cooperate horizontal (i.e., building footprint), vertical (i.e., building height), and
temporal information (i.e., building age) to generate the historical data for urban 3D reconstruction.
(2) The number of buildings increased dramatically from 1986 to 2017, by eight times, with an
increased proportion of high-rise buildings. (3) The old urban areas continued to have the highest
density of buildings, with increased average height of buildings, but there were two emerging new
centers clustered with high-rise buildings. The long-term urban 3D maps allowed characterizing
the spatiotemporal patterns of the vertical dimension at the city level, which can enhance our
understanding on urban morphology.

Keywords: urban form; vertical structure; building height; change detection; building age; spatiotem-
poral pattern

1. Introduction

Rapid urbanization is increasingly becoming one of the most pressing issues world-
wide [1,2]. With massive population moving into cities, the cities tend to grow more
vertically in addition to outward expansion [3,4]. Such changes in urban form have remark-
able social and ecological consequences, and thereby urban sustainability [4–7]. Numerous
studies have been conducted to characterize urban form and its change from a horizontal
(i.e., 2D) perspective, and to examine the social and ecological impacts [8–13]. However,
while the importance of the vertical dimension (i.e., 3D) of a city has been widely recog-
nized, far fewer studies have been conducted from the vertical dimension perspective, with
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a few exceptions [14–17]. This is largely due to the lack of historical data that can be used
to quantify the 3D structure of cities. It is important, therefore, to develop approaches that
can accurately quantify vertical structure (or 3D structure) and its change of a city.

With the wide availability of Light Detection and Ranging (LiDAR) data and the
satellite and airborne stereo imagery, Digital Elevation Models (DEMs) and Digital Surface
Models (DSMs) can be obtained at a large spatial extent for urban 3D structure study [18–21].
Recently, the building footprints with the height attribute, typically measured as the number
of floors, have been increasingly available for many cities [16,17,22]. Based on the data
mentioned above, the spatial pattern of vertical structure can be characterized by building
physical indexes such as building height and volume, and building geometry, such as
density, surface roughness, sky view factor, and canopy breadth ratio [4,15,23,24]. However,
such data in general only include contemporary information of buildings. Without the
information of building age (i.e., when the buildings were built), we are not able to
quantitatively examine the changes in the 3D structure of cities, as what is frequently
carried out for the 2D structure of cities.

Integrating the contemporary information of building height with the temporal in-
formation of building age detected based on long-term observations from time-series
remotely sensed imagery may provide an effective method to address this issue. Facilitated
by the archive opening and the technological advances in data storage and processing,
numerous studies have been conducted to develop approaches to identify when the land
cover change occurs by using time-series Landsat or Sentinel imagery [25–28]. Using this
temporal information, such as when cropland was abandoned and re-cultivated [29] or
when forest was recovered from pest disease and/or fire disturbance [30], appropriate man-
agement strategies of vegetation can be developed. These approaches were also applied to
identify the year when urban expansion occurred [31,32] and to examine the trajectories of
impervious surface cover [33]. While few studies have been conducted to directly identify
when buildings were constructed, there are a few studies based on similar topics. For
example, Uhl and Leyk (2019) conducted built-up area change analysis based on Landsat
time-series data, using building footprints as spatial constrained [34]. Huang et al. (2020)
and Wen et al. (2019) used time-series satellite images with a very high spatial resolution
to detect newly constructed building areas [35,36]. Such successful cases indicated that the
integration of contemporary building height with change detection on building age using
long-term observations from time-series remotely sensed data has the potential for urban
3D reconstruction.

In this study, we present a new approach for 3D reconstruction of urban history,
which was applied to characterize the urban 3D structure and change, using the city of
Shenzhen as a case study. This approach integrates the contemporary building footprint
with long-term time-series Landsat imagery. Specifically, the objectives are to: (1) develop
a new approach that can be used for 3D reconstruction of urban history; (2) test the new
approach in the megacity of Shenzhen and investigated the spatiotemporal patterns of the
3D structure of the city from 1986 to 2017.

2. Study Area and Data
2.1. Study Area

We selected Shenzhen, a megacity in southeast coastal China to test our approach.
Shenzhen consists of ten urban districts and has an area of 1997 km2 (Figure 1). It has a
total population of 13.43 million in 2019, with a population density of 6,729 person/km2.
Developed land in Shenzhen has been expanding dramatically since the later 1970s. The
size of developed land in 2017 was more than 30 times to that in the1970s [37]. Additionally,
Shenzhen also grew dramatically in the vertical dimension [38]. Building density, shape,
height, and spatial configuration varied greatly in Shenzhen, showing remarkable spatial
heterogeneity (Figure.1). Such diversity and complexity of buildings in Shenzhen make it
ideal to test our approach.
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Figure 1. The geographical location of Shenzhen. The parcel in the lower left shows the building
footprint in 2017 and the pictures display four types of building with different floors.

2.2. Data
2.2.1. Annual Landsat Imagery and Land Cover Maps

We estimated the year in which the building was built (i.e., building age) based on
annual time-series land cover maps from 1986 to 2017, generated using time-series Landsat
imagery acquired in 1986–2017. These maps included four land cover types, vegetation,
water, developed land, and barren land, and the overall accuracies of them ranged from
88.00% to 95.50% [39]. For the map generation, we first acquired the Landsat TM, ETM+,
and OLI imagery which covers the path/row of 122/44 and 121/44 by referencing the
Worldwide Reference System-2 (WRS-2) from the United States Geological Survey (USGS).
We then selected 68 scenes with cloud cover under 10% and mosaicked the imagery to
obtain the annual Landsat data which covers the entire study area. In order to reduce the
seasonal impacts caused by cloud cover removal and make the most use of each scene, we
generated the time-series of maximum Normalized Difference Vegetation Index (NDVI) on
the Google Earth Engine (GEE) platform (https://earthengine.google.com/, accessed on
30 September 2021) and used them as auxiliary data. The land cover map for each year
was generated using the random forest classifier which the maximum number of resulting
decision trees was 100 and the active variable for determining the best splits for each tree
was 3 [40,41].

2.2.2. Building Footprint

The building footprint in 2017 with height attribute, formatted in a vector layer,
was obtained from the Bureau of Planning and Natural Resources in Shenzhen. This
data, generated by photogrammetry and field investigation [42], covers the entire city of
Shenzhen and contains approximately 567,000 buildings. We classified the buildings into
four types according to the standard from the Code for Design of Civil Buildings, including
low-rise building (1–3 stories), multi-story building (4–6 stories), middle-rise building
(7–9 stories), and high-rise building (≥10 stories). The percentages of the four types of
buildings were 51.9%, 31.0%, 12.5%, and 4.5% in 2017, respectively. We also collected the
transportation network in 2017 from the Open Street Map, which was used to generate

https://earthengine.google.com/
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the analysis units. Such transportation network consists of highways and trunk roads at
primary, secondary, and tertiary levels.

3. Method

The proposed approach for the 3D reconstruction of urban history includes two steps.
First, the approach detects the constructed year (building age) for each contemporary
building by change detection based on the long-term observations from the time-series
Landsat imagery/land cover data and thereby generates a map of buildings with the
attribute of constructed year (age). Second, the approach transfers the current building
heights to the building footprint with ages for the historical 3D mapping (Figure 2). Here,
we conducted the post-classification comparison for change analysis to determine the
building age for each building. We additionally compared the availability of different
spatial units because we found buildings in a city varied greatly in size, with some smaller
than a pixel with a spatial resolution of 30 m and some covering several pixels. We
then chose the unit with the best accuracy on building age estimation and applied the
approach to characterize the spatiotemporal pattern of urban 3D structures from 1986 to
2017 in Shenzhen.
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Figure 2. Overview of the flowchart for the approach that integrates the contemporary building height with change
detection on building age estimation by using the time-series remote sensing data and its application for the urban 3D
structure characterization.

3.1. Change Detection for Building Age Estimation

Two methods, post-classification comparison and pre-classification change detection,
can be used to detect the developed land change and then identify the year in which the
building was built [43–45]. Here, we used the post-classification comparison for change
detection. We first calculated the time series of fractional land cover (TSFLC) for every
land cover type in each analysis unit and constructed the land cover trajectories. We
then segmented the time-series into fragments based on the TSFLC change magnitude and
detected the land cover change. The year in which the change occurred was recorded in this
process. Here, the key step is to determine the threshold of the TSFLC change magnitude.
We used two thresholds, that is, threshold b for detecting the abrupt and gradual changes
of land cover, and threshold a for constraining the error generated from the land cover
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classification accuracy. If the TSFLC change magnitude between two neighboring years
was larger than b, we considered abrupt change occurred. If cumulative change magnitude
for more than two years was larger than b, we considered gradual change. More details
can be found in Jing et al. (2021) [39]. As we focused on the building change in this study,
the fractional changes of developed land were used to identify the constructed year, which
is to capture the latest year of the developed land change.

Different spatial units, such as street block, parcel, and pixel, have been used to detect
the land cover change and then identify the timing of the occurrence of change [33,46–48].
Buildings in a city can vary greatly in size, ranging from smaller than the size of a Landsat
TM/ETM+/OLI pixel (i.e., 30 m) to containing quite a few pixels (Figure 3c). Therefore,
the choice of analysis unit may affect the accuracy of change detection. Consequently,
we compared the impact of different analysis units on the accuracy of change detection
to choose the appropriate analytical unit. Specifically, we tested the approach using
four different units, including street block, building group, single building, and pixel
(Figure 3a,b) and validated the accuracies of age estimation.
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Figure 3. Comparisons between the size of analysis units and the spatial resolution of Landsat
imagery. (a) shows the contemporary buildings with different sizes in the street blocks, represented
by the SPOT 6 imagery with a spatial resolution of 1.5 m. (b) shows the analysis units of street block,
building group, and single building. (c) shows the differences between buildings with different sizes
and Landsat imagery with the spatial resolution of 30 m, and changes within the analysis units.

Street blocks, labeled as Unit 1, are commonly considered the basic management units
in urban areas. Here, we generated Unit 1 by the transportation network in 2017 and the
values of a and b were 2% and 20%, respectively [33]. The building group, labeled as Unit 2,
was determined by buildings with the same height in a street block and the threshold a
and b were set as 10% and 50% [49,50]. The single building was labeled as Unit 3 and the
thresholds of a and b were also set as 10% and 50%, respectively. A pixel, labeled as Unit 4,
is the basic unit of land cover maps and there is no fractional change. Consequently, the
values of a and b were 0 and 100%, respectively. Once the constructed year of each unit
was determined, the timing information was aggregated to the buildings, except for the
unit of a single building.
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3.2. Accuracy Assessment

We used two matrices to assess the accuracies of change detection, including accuracy
on building position (spatial accuracy) and that on building age (temporal accuracy). We
first evaluated the accuracy of distinguishing change from no change because buildings
that were constructed before 1986 had existed. We then validated the accuracies of the
building age estimation by comparing the observed year and reference year of building
construction [46]. We randomly sampled 1000 buildings in the method testing area by the
stratified random sampling method and then implemented the visual interpretation by
referencing the Landsat images, the very high-resolution historical imagery from Google
Earth, and the LianjiaTM, a housing market platform for the building age validation.

3.3. Urban 3D Reconstruction

After estimating the building ages, we further transferred the current building height
to the building footprint with different ages for the historical data generation. Here, we
introduced the building footprint with height attribute in 2016 as an example. Based on the
building age map in 1986–2017, we removed the buildings that were built after 2016 and
then transferred the contemporary building height, acquired from the building footprint
with height attribute in 2017, to generate the 3D map in 2016. We then generated the annual
3D maps in 1986–2015 by the same method and statistically analyzed the spatiotemporal
pattern of the 3D structure by two basic indices, building number and building height.

4. Results
4.1. Comparisons of Change Detection for Building Age Estimation

A comparison of the results from the accuracy assessment showed that the change
detection using Unit 2, building group, achieved the highest overall accuracy in distinguish-
ing change from no-change, as well as the best user’s accuracy and producer’s accuracy,
with values of 87.80%, 87.20%, and 90.17%, respectively (Table 1). For the change detection
using the other three units, the overall accuracies were greater than 84.00%. The user’s
accuracies of change for Unit 1 and 3 were close (83.36% and 83.39%, respectively), whereas
that for Unit 4 was slightly lower (81.68%), suggesting these three units were less able to
identify the spatial information on building location, compared with Unit 2.

However, the temporal accuracies of building age estimation varied greatly when
using different units of analysis (Figure 4). The building-based validation between the
visually interpreted reference and the change detected revealed that Unit 2 had the highest
overall accuracy on building age identification, with the value of 77.40% (two-year toler-
ance), which was higher than that by the other units, with the overall accuracies of 69.40%,
71.30%, and 68.60%, respectively (Figure 4). The error matrix displayed by the bubble
chart also revealed that the proportion of those yearly producer’s accuracy below 50% was
nearly 40%; that is, the samples emerged below the diagonal in the matrix, suggesting all of
the units caused many omission errors on building age estimation. Comparatively, except
for the omission errors, the user’s accuracies from Unit 3 and 4 were also lower, indicating
the commission errors occurred at the same time when using the single building and the
pixel as units of analysis to identify building age (Figure 4c,d).
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Comparing the building age maps generated by the change detection using the four
units in the testing area, the spatial patterns were similar, in which the relatively new
buildings appeared along with the urban expansion from the west to the east (Figure 5).
However, the details varied by different unit sizes. The building age from the street block
and the building group were similar, but the street block had more homogenous timing
information. The ages identified by the single building and pixel were more heterogeneous,
which the buildings in the group with the same roof shape and height were identified as
having different constructed years (Figure 5). For example, building construction years in
the same residential area were identified as 1986, 1991, 1994, 1999, and 2009.

Table 1. Error matrix for assessing the ability to distinguish the change from no-change categories.

Unit 1 Street
Block

Reference

No-Change Change Total User’s Acc. (%)

Detected
No-change 373 38 411 90.75

Change 98 491 589 83.36
Total 471 529 1000

Producer’s Acc. (%) 79.19 92.82
Overall Acc. (%) 86.40

Unit 2 Building
Group

Reference

No-Change Change Total User’s Acc. (%)

Detected
No-change 401 52 453 88.52

Change 70 477 547 87.20
Total 471 529 1000

Producer’s Acc. (%) 85.14 90.17
Overall Acc. (%) 87.80

Unit 3 Single
Building

Reference

No-Change Change Total User’s Acc. (%)

Detected
No-change 377 57 434 86.87

Change 94 472 566 83.39
Total 471 529 1000

Producer’s Acc. (%) 80.04 89.22
Overall Acc. (%) 84.90

Unit4 Pixel
Reference

No-change Change Total User’s Acc. (%)

Detected
No-change 364 52 416 87.50

Change 107 477 584 81.68
Total 471 529 1000

Producer’s Acc. (%) 77.28 90.17
Overall Acc. (%) 84.10

Note: Acc. represents accuracy.
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Figure 4. The temporal accuracies of building age estimation by using the four analysis units. The
panels (a–d) represent the error matrixes for assessing the ability to identify the building age. The first
column is the validation from year by year and the second one is from two-year tolerance verification,
respectively. The size of the bubble indicates the number of samples.
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We update the building age attribute for each building based on the approach that
used building group as the analysis unit. Results showed that older buildings that were
constructed before the 1990s largely clustered in the Luohu district, with some old buildings
dispersed in the western coastal regions (Figure 6). In contrast, the relatively new buildings
that were constructed after the 2010s were distributed in the northeast and northwest of the
city. The results also demonstrated the detailed representation of the settlement structure in
which the old buildings were more crowded, whereas those were primarily new buildings
that had more open space (Figure 6a,b).
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Figure 6. The spatial pattern of building age in Shenzhen during the period of 1986–2017. Panel
(a) represents the spatial patterns of the older buildings and (b) shows that of the relatively new
buildings.

4.2. Spatiotemporal Patterns of the 3D Structure in Shenzhen

The number of buildings in Shenzhen increased dramatically from 71,000 in 1986 to
567,000 in 2017, but with varied rates of increase during different periods. The annual
growth rate in number of buildings was 3.3% in 1986–1990, but dramatically increased to
18.3% in 1990–1995, and then reached the highest value of 24.5% in 1995–2000. After the
year 2000, the growth rate showed a slowdown trend, with an annual growth rate of 6.7%
in 2000–2005, 2.6% in 2005–2010, and 1.7% in 2010–2017, respectively (Figure 7a).

Shenzhen was dominated by low-rise buildings, but the percentage of low-rise build-
ings decreased from 62.1% in 1986 to 51.9% in 2017. The percentage of middle-rise buildings
also exhibited a similar change: change decreased from 15.6% in 1986 to 12.5% in 2017.
In contrast, the percentage of the multi- and high-rise buildings increased from 19.8% in
1986 to 31.0% in 2017, and 2.5% to 4.5%, respectively. The average value of building height
increased from 10.8 m to 12.3 m in 1986–2017, but the change magnitude of the new build-
ings between two neighboring years varied from different periods. The newly constructed
buildings in 2007–2017 were higher than those in the other periods, with average values
from 13.7 m to 28.0 m (Figure 7b).



Remote Sens. 2021, 13, 4339 11 of 17

The average of building height smoothly increased in the entire city, but with great
variations in space and time. Changes in building height showed that urban form in
Shenzhen shifted from a single center to multiple centers (Figure 8). The contemporary
building height in 2017 exhibited a highly spatial heterogeneity, with the high-rise and
middle-rise buildings mostly clustered in four regions, including location 1 in the Luohu
and Futian districts, location 2 in the Nanshan district, location 3 in the Longgang district,
and location 4 in the Longhua district, and the low-rise buildings dominantly distributed
in the northwestern and northeastern areas of Shenzhen (Figure 8). However, in the 1980s,
there was only one center located in the Luohu district, the oldest urban area in Shenzhen
(Figures 6 and 8). Comparing the maps of building height in 1986–2017, the creation
of these four centers was corresponding with the urban growth process (Figure 8). The
changes in the building height also showed that the buildings in older urban areas were
higher than those in new urban areas.
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5. Discussion
5.1. The Approach Reliability for 3D Reconstruction of Urban History

The results indicated that change detection using building group as the unit of analysis
provided an effective method to estimate the building age, with the overall accuracy of
87.80% for building location identification and 77.40% for building age estimation (Table 1
and Figure 4). In this study, the accuracy of change detection depends on the change
magnitude calculated from the developed land proportion within the analysis unit. We
found the size and shape of building footprint varied greatly within the city, with some
of them covering several pixels whereas others were smaller than one pixel (Figure 3).
Consequently, it is crucially important to select the appropriate unit for analysis, in which
the annual developed land with a spatial resolution of 30 m would be aggregated to the
analytical unit to identify the building age.

First, using a fixed unit, especially an object-based unit without considering the
boundary change, to measure the imagery spectral/land cover over time will cause partial
change on the space within a unit during the process of land cover change [51,52]. Such
partial change within a unit flatted the abrupt changes on the imagery spectral/land cover
trajectory and thus fuzzed the change magnitude for the change detection [28,47,48]. When
using the block as the unit, once the magnitude of developed land reached the threshold b,
the timing information was recorded and then was assigned to all of the buildings inside
the block, including those were built later than the year where changes were identified. This
would result in omission errors for building age estimation (Table 1, Figure 4a). Although
the gradual change was also considered in the change detection process, the variations of
the block size reduced the change detection ability of a fixed threshold. Comparatively,
grouping buildings within a block can reduce the unit size and then improve the impact
from the partial change. Additionally, unlike a street block, it consists of several groups
that might be constructed in different periods; the building group that was used as unit
of analysis in this study is likely to be built in the same time [35]. Consequently, using
building group as a unit to identify the time of change can effectively reduce omission
errors (Table 1, Figures 3 and 4b).

However, continually reducing the unit size does not result in higher temporal accu-
racy on building age estimation (Table 1 and Figure 4). Although the pixel-based change
detection has been successfully used for capturing the time of land cover change [53,54],
its application to identify the building age was not very successful because the trajectory
of developed land proportion in a single building polygon, overlaying across pixels, are
fluctuant when the sources of annual land cover maps are imprecise. Such temporal in-
consistency significantly affects the temporal segmentation on the trajectory of land cover
proportion by simply setting a certain threshold [33]. As a result, numerous omission and
commission errors occurred at the same time when using the single building, as well as the
pixel, to identify the building age. This problem, however, can be largely eliminated by the
building group because enlarging the unit size allowed us to temporally smooth the time
series of continuous products, and then remove such noise.

Relatively few studies investigate the changes of urban 3D structure at the city level
largely due to the limitation of data availability. In this study, the approach provides
an effective method to incorporate the contemporary building height with the year in
which the building was built, and thereby generates the historical maps for the urban
3D structure (Figures 5 and 6, and Figure 8). The building age can be considered as
an intermediate to reconstruct the urban 3D history, although the Landsat data cannot
provide the vertical information. The advantages of long-term observation, temporal
density, and ready availability from the Landsat satellite and the increasing availability
of building footprint/cadastral parcel greatly improve the application of this integrated
approach. Although the historical building footprints with height information can be
derived from the dataset of LiDAR, DEM, and nDSM alone, the data preprocessing is
expensive, complicated, and time consuming compared with the integrated approach
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presented in this study. More importantly, such a dataset is often not available in most of
the cities worldwide.

The integrated approach presented in this study also has limitations caused by some
uncertainties. First, the unit of building groups was only determined by the building
height, without considering the geometrical characteristic. The buildings can be very
different in shape, structure, and their use, with buildings having similar typological
characteristics being likely to have the same ages [35,50]. Consequently, more indicators,
especially the morphology-based indicators, might be useful to help identify building
groups. Second, the approach did not consider the building demolition and replacement so
that the 3D reconstruction of urban history can only represented the change of the buildings
that still exist today. Several studies revealed that many megacities in China have been
shifting the urban growth model from outward expansion to internal optimization, with
older buildings’ removal and replacement of impervious surfaces with greenspace [2,55].
Combining the cartographic records, such as old cadastral and topographic maps, or
very-high-resolution imagery can potentially extract the missing building footprints and
associated height information.

5.2. Implications of the 3D Reconstruction at City Scale

The spatiotemporal patterns of the vertical structure can be combined with the hori-
zontal structure for further understanding of the urban form along with the urban growth.
Previous studies showed a dramatic urban sprawl in the city of Shenzhen from a 2D struc-
ture perspective [56,57]. However, our results that the proportional number of low-rise
buildings decreased and that of the multi- and high-rise buildings increased in 1986–2017,
suggested that the urban form became more compact and thereby land use became more
efficient (Figure 8). We also observed that the land use efficiency in older urban areas was
higher than that in new ones, indicated by the contemporary pattern of the multi- and
high-rise buildings. Such difference used to exist in the early stage of urban development
although another two centers of high-rise building appeared in 2005–2017 (Figure 8). These
morphological statuses and changes may be correlated to the urban planning in which the
Luohu, Futian, and Nanshan districts were used to become the Special Economic Zone
and the dominant functions of business and residence promoted the high-rise building
construction [38].

Beyond urban expansion, the changes of urban 3D structure at the city level revealed
more detailed information on the urban form. Several studies have been conducted to
investigate the contemporary urban 3D structure at continental and finer scales [3,4,36]. Our
results revealed similar findings that the buildings in downtown were higher. However,
we also found some more details that the multiple centers clustered with high buildings
emerged in new urban areas, which was quite different from the patterns in American
and European cities. The fact that the first center in Shenzhen continued to have the most
clustered high-rise buildings may differ from the patterns in some other Chinese cities [14].

More importantly, understanding the social and ecological consequences of the
changes of vertical structure at the city level can enhance our understanding on the
interactions between the anthropogenic and natural processes, which can provide in-
sights for urban management. Previous studies revealed that the buildings with various
heights shifted the landscapes from space and then resulted in negative effects on environ-
ments [15,22]. For example, the high buildings in Luohu and Futian districts turned off the
corridors for migratory birds [22]. Understanding the information on how the building
growth changed the bird’s movements by incorporating the historical 3D structure will
support the corridor restoration. Studies have also shown positive environmental effects
of the growth of 3D structures [16,58]. For example, higher buildings can increase shade
for urban heat mitigation [16]. Additionally, cities growing in the vertical dimension may
provide more space for greening, which may have significant benefits for human physical
and mental health.
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6. Conclusions

The information on urban form characterized by 3D structure and its change is es-
sential for understanding the social and ecological effects of a city. Previously, numerous
studies have focused on the change in 2D structure, but few on 3D structure, especially for
long-term change due to the limitation of historical data. Here, we first developed a new
approach for the 3D reconstruction of urban history and then applied it to investigate the
urban 3D structure and change over time, using the city of Shenzhen as a case study. Such
an approach integrates the contemporary building height obtained from the increasingly
available data of building footprint with building age estimated based on long-term obser-
vations from time-series remotely sensed imagery. Our results suggested this integrated
approach provided an effective method to incorporate the horizontal, vertical, and tempo-
ral information for 3D reconstruction of urban history. The long-term urban 3D maps allow
characterizing the urban growth in the vertical dimension at the city level that promotes
the urban morphology understanding.
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