Bora Flow Characteristics in a Complex Valley Environment
Abstract
:1. Introduction
2. Methodology
2.1. Measurement Site and Instrumentation
2.2. Data Analysis
2.3. Data Collection
2.4. Data Quality
3. Turbulence Characteristics of the Flow above the Vipava Valley
3.1. Turbulence Intensity
3.2. Assessment of Turbulence Integral Length Scale
- (1)
- Mean values of , and did not monotonically increase with the height for all investigated Bora episodes, as suggested by standards (Equations (8) and (9)), but varied. In most wind episodes, those values both increased and decreased with the height;
- (2)
- Mean profile was found to have smaller values than both approximations given by ESDU and EC;
- (3)
- Mean profile was found to have larger values than approximated by ESDU;
- (4)
- While both and were found to moderately agree with ESDU, showed a slightly better agreement;
- (5)
- Mean profile was found to have considerably larger values than those approximated by ESDU, as well as having larger values than both mean and .
3.3. Periodicity of the Flow above the Vipava Valley
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABL | Atmospheric Boundary Layer |
AGL | Above the Ground Level |
DBS | Doppler Beam Swinging |
CWE | Computational Wind Engineering |
DWL | Doppler Wind Lidar |
EC | Eurocode |
LOS | Line-of-Sight |
NE | Northeast |
SE | Southeast |
SNR | Signal-to-Noise Ratio |
SW | Southwest |
UNG | University of Nova Gorica |
Appendix A
Appendix B
Wind Episode | Turbulence Quantity | Height (m) | Median | Mean | Min | Max | |
---|---|---|---|---|---|---|---|
1 | (%) | 110 | 60.91 | 58.62 | 6.10 | 47.47 | 68.38 |
140 | 41.53 | 42.88 | 5.30 | 35.66 | 53.13 | ||
180 | 39.29 | 40.15 | 6.40 | 32.06 | 55.20 | ||
(%) | 110 | 46.22 | 44.83 | 5.51 | 33.71 | 52.66 | |
140 | 34.90 | 36.05 | 5.64 | 31.26 | 51.76 | ||
180 | 33.64 | 35.53 | 7.56 | 29.14 | 55.03 | ||
(%) | 110 | 13.80 | 13.37 | 1.49 | 10.37 | 15.26 | |
140 | 11.79 | 11.77 | 1.80 | 9.64 | 16.33 | ||
180 | 11.89 | 11.47 | 2.09 | 8.16 | 16.21 | ||
2 | (%) | 80 | 33.30 | 35.25 | 5.96 | 27.21 | 49.37 |
110 | 32.07 | 32.82 | 7.89 | 24.37 | 54.69 | ||
140 | 35.50 | 37.04 | 6.71 | 28.10 | 51.98 | ||
180 | 50.40 | 51.04 | 6.51 | 38.30 | 61.85 | ||
(%) | 80 | 26.67 | 28.98 | 5.56 | 22.25 | 43.34 | |
110 | 28.11 | 28.47 | 3.75 | 23.60 | 34.91 | ||
140 | 31.37 | 32.90 | 4.04 | 28.38 | 41.36 | ||
180 | 41.97 | 43.35 | 6.47 | 35.84 | 56.56 | ||
(%) | 80 | 8.30 | 9.03 | 1.80 | 7.14 | 12.68 | |
110 | 7.45 | 8.39 | 1.82 | 6.79 | 12.28 | ||
140 | 8.29 | 9.10 | 2.01 | 7.41 | 14.97 | ||
180 | 11.52 | 11.95 | 2.33 | 8.69 | 18.35 | ||
3 | (%) | 80 | 43.62 | 45.53 | 7.52 | 33.91 | 63.70 |
110 | 46.35 | 46.03 | 7.13 | 34.29 | 60.40 | ||
140 | 47.43 | 48.33 | 8.97 | 32.91 | 63.03 | ||
180 | 50.95 | 51.18 | 10.19 | 34.52 | 68.19 | ||
(%) | 80 | 41.69 | 41.59 | 6.83 | 29.56 | 63.71 | |
110 | 40.70 | 41.09 | 6.03 | 29.88 | 54.70 | ||
140 | 41.39 | 41.98 | 5.47 | 31.61 | 54.57 | ||
180 | 43.47 | 45.08 | 6.60 | 33.93 | 62.37 | ||
(%) | 80 | 15.23 | 15.32 | 2.52 | 10.06 | 19.55 | |
110 | 15.75 | 15.73 | 2.45 | 11.34 | 19.27 | ||
140 | 17.18 | 16.45 | 2.74 | 11.79 | 19.93 | ||
180 | 17.59 | 17.37 | 2.71 | 12.23 | 21.72 | ||
4 | (%) | 80 | 47.30 | 50.99 | 13.03 | 38.96 | 83.27 |
110 | 48.91 | 52.44 | 14.21 | 37.60 | 86.72 | ||
140 | 52.40 | 56.85 | 15.45 | 39.45 | 85.27 | ||
180 | 54.89 | 60.51 | 14.64 | 45.22 | 95.95 | ||
(%) | 80 | 43.43 | 50.03 | 14.40 | 35.64 | 77.66 | |
110 | 41.37 | 47.09 | 14.60 | 32.45 | 76.06 | ||
140 | 44.89 | 46.90 | 12.64 | 32.21 | 65.73 | ||
180 | 49.04 | 51.08 | 11.74 | 35.23 | 78.93 | ||
(%) | 80 | 15.09 | 16.23 | 3.29 | 11.75 | 22.53 | |
110 | 16.37 | 17.00 | 3.18 | 13.90 | 24.56 | ||
140 | 17.44 | 17.37 | 3.49 | 13.91 | 27.24 | ||
180 | 16.89 | 17.50 | 3.40 | 12.81 | 24.21 | ||
5 | (%) | 80 | 31.12 | 32.04 | 5.73 | 25.92 | 50.59 |
110 | 30.27 | 30.89 | 7.15 | 21.43 | 54.50 | ||
140 | 31.84 | 32.58 | 5.99 | 23.91 | 51.88 | ||
180 | 42.01 | 43.96 | 9.30 | 25.32 | 64.39 | ||
(%) | 80 | 29.62 | 30.69 | 6.62 | 22.17 | 57.75 | |
110 | 29.23 | 29.63 | 5.22 | 20.93 | 46.62 | ||
140 | 30.79 | 30.88 | 4.49 | 24.00 | 40.58 | ||
180 | 39.70 | 40.66 | 7.43 | 27.09 | 55.80 | ||
(%) | 80 | 9.63 | 9.84 | 1.56 | 7.35 | 13.75 | |
110 | 9.72 | 9.89 | 1.81 | 6.50 | 14.47 | ||
140 | 10.08 | 10.06 | 1.76 | 7.06 | 14.29 | ||
180 | 12.18 | 12.11 | 2.04 | 8.28 | 17.06 | ||
6 | (%) | 80 | 42.23 | 47.17 | 12.67 | 30.48 | 79.37 |
110 | 40.23 | 46.99 | 15.41 | 27.17 | 82.58 | ||
140 | 59.68 | 58.98 | 8.74 | 35.01 | 77.08 | ||
180 | 70.54 | 69.22 | 9.25 | 37.68 | 85.04 | ||
(%) | 80 | 36.91 | 42.54 | 12.79 | 26.79 | 76.26 | |
110 | 32.24 | 40.72 | 14.46 | 23.91 | 73.33 | ||
140 | 46.37 | 49.65 | 12.19 | 29.16 | 80.72 | ||
180 | 61.43 | 60.06 | 9.78 | 28.74 | 77.95 | ||
(%) | 80 | 11.62 | 14.38 | 5.39 | 8.34 | 28.02 | |
110 | 11.03 | 14.40 | 6.18 | 7.73 | 29.12 | ||
140 | 14.94 | 16.56 | 4.62 | 9.44 | 27.21 | ||
180 | 17.84 | 18.57 | 3.37 | 11.01 | 28.10 | ||
7 | (%) | 80 | 20.61 | 20.42 | 2.69 | 15.05 | 24.57 |
110 | 18.13 | 17.95 | 3.01 | 11.04 | 22.25 | ||
140 | 17.61 | 17.92 | 3.49 | 10.86 | 25.46 | ||
180 | 29.26 | 27.22 | 7.92 | 16.17 | 38.34 | ||
(%) | 80 | 20.75 | 20.60 | 3.90 | 12.11 | 26.54 | |
110 | 18.89 | 17.67 | 3.25 | 9.81 | 21.45 | ||
140 | 16.94 | 16.63 | 3.98 | 9.17 | 26.40 | ||
180 | 18.02 | 18.80 | 4.40 | 13.01 | 31.04 | ||
(%) | 80 | 6.04 | 6.14 | 0.94 | 3.96 | 7.53 | |
110 | 5.42 | 5.19 | 0.99 | 3.12 | 6.77 | ||
140 | 4.83 | 4.75 | 0.85 | 3.08 | 6.43 | ||
180 | 5.89 | 6.01 | 1.25 | 4.02 | 7.64 | ||
8 | (%) | 80 | 20.09 | 19.98 | 2.92 | 15.82 | 24.22 |
110 | 17.81 | 17.48 | 2.89 | 13.45 | 20.86 | ||
140 | 15.33 | 15.64 | 2.32 | 11.87 | 18.57 | ||
180 | 14.72 | 15.31 | 2.52 | 11.84 | 18.61 | ||
(%) | 80 | 19.47 | 19.60 | 4.31 | 13.61 | 26.89 | |
110 | 17.59 | 17.02 | 3.40 | 12.00 | 22.38 | ||
140 | 14.59 | 16.02 | 2.87 | 13.54 | 20.92 | ||
180 | 13.40 | 14.59 | 2.75 | 10.99 | 17.99 | ||
(%) | 80 | 6.13 | 5.97 | 0.90 | 4.12 | 6.93 | |
110 | 5.53 | 5.22 | 0.87 | 3.33 | 6.12 | ||
140 | 4.81 | 4.73 | 0.63 | 3.49 | 5.48 | ||
180 | 4.37 | 4.37 | 0.49 | 3.52 | 4.97 |
Label | Turbulence Quantity | Height (m) | Median | Mean | Min | Max | |
---|---|---|---|---|---|---|---|
1 | (m) | 110 | 27.21 | 33.37 | 13.81 | 18.55 | 54.69 |
140 | 47.95 | 46.37 | 18.59 | 17.89 | 70.25 | ||
180 | 42.32 | 40.68 | 16.60 | 16.28 | 62.94 | ||
(m) | 110 | 27.57 | 29.30 | 7.13 | 19.52 | 42.50 | |
140 | 32.76 | 33.59 | 7.91 | 22.54 | 47.51 | ||
180 | 43.05 | 46.37 | 27.91 | 16.69 | 112.87 | ||
(m) | 110 | 35.08 | 40.19 | 17.17 | 24.16 | 85.02 | |
140 | 71.65 | 71.67 | 13.56 | 50.34 | 91.96 | ||
180 | 88.32 | 89.58 | 32.29 | 39.59 | 145.31 | ||
2 | (m) | 80 | 33.63 | 53.26 | 39.07 | 17.83 | 145.47 |
110 | 33.78 | 59.64 | 56.99 | 21.93 | 201.03 | ||
140 | 63.22 | 61.13 | 36.25 | 24.31 | 160.76 | ||
180 | 39.92 | 50.15 | 23.42 | 23.06 | 91.33 | ||
(m) | 80 | 23.19 | 29.25 | 11.53 | 16.73 | 48.41 | |
110 | 42.63 | 40.86 | 12.74 | 23.49 | 67.96 | ||
140 | 45.17 | 51.48 | 17.83 | 31.34 | 89.88 | ||
180 | 57.65 | 64.29 | 25.25 | 33.18 | 107.74 | ||
(m) | 80 | 60.27 | 63.56 | 26.01 | 28.87 | 123.37 | |
110 | 65.20 | 82.37 | 54.57 | 34.51 | 257.51 | ||
140 | 79.24 | 97.81 | 58.87 | 34.36 | 234.22 | ||
180 | 72.65 | 82.17 | 51.31 | 20.73 | 244.24 | ||
3 | (m) | 80 | 92.54 | 122.02 | 83.00 | 34.24 | 365.20 |
110 | 89.77 | 111.57 | 65.96 | 33.19 | 300.91 | ||
140 | 77.10 | 99.92 | 62.55 | 37.58 | 322.51 | ||
180 | 67.76 | 85.76 | 59.54 | 44.69 | 342.20 | ||
(m) | 80 | 80.11 | 96.23 | 54.85 | 35.03 | 240.56 | |
110 | 90.23 | 100.94 | 54.83 | 45.50 | 250.42 | ||
140 | 94.20 | 106.19 | 50.44 | 52.12 | 231.46 | ||
180 | 96.09 | 121.70 | 60.77 | 41.29 | 280.28 | ||
(m) | 80 | 92.67 | 135.35 | 130.61 | 47.01 | 648.41 | |
110 | 116.97 | 172.50 | 169.69 | 61.40 | 869.76 | ||
140 | 150.15 | 200.15 | 169.65 | 81.23 | 870.30 | ||
180 | 162.44 | 220.75 | 182.35 | 99.10 | 901.32 | ||
4 | (m) | 80 | 60.23 | 60.03 | 22.88 | 26.34 | 113.62 |
110 | 53.81 | 58.45 | 19.30 | 35.46 | 101.22 | ||
140 | 61.70 | 62.62 | 17.87 | 37.12 | 96.94 | ||
180 | 69.78 | 76.20 | 29.86 | 38.89 | 143.38 | ||
(m) | 80 | 66.99 | 69.60 | 32.95 | 31.81 | 146.91 | |
110 | 63.06 | 75.29 | 31.49 | 44.15 | 139.99 | ||
140 | 74.50 | 92.98 | 50.93 | 36.87 | 208.35 | ||
180 | 79.85 | 87.23 | 49.60 | 43.28 | 225.29 | ||
(m) | 80 | 77.28 | 79.40 | 25.84 | 44.73 | 125.29 | |
110 | 104.08 | 100.36 | 24.89 | 54.91 | 140.82 | ||
140 | 114.88 | 112.31 | 34.81 | 53.46 | 171.63 | ||
180 | 123.29 | 119.93 | 31.44 | 61.61 | 162.18 | ||
5 | (m) | 80 | 93.74 | 98.34 | 40.78 | 29.74 | 187.96 |
110 | 72.70 | 80.69 | 52.14 | 27.25 | 273.98 | ||
140 | 66.59 | 81.37 | 46.01 | 27.12 | 186.17 | ||
180 | 74.57 | 86.21 | 60.68 | 27.84 | 324.17 | ||
(m) | 80 | 54.78 | 59.81 | 22.93 | 30.10 | 141.43 | |
110 | 75.26 | 78.22 | 30.12 | 32.33 | 157.00 | ||
140 | 86.69 | 97.22 | 38.55 | 47.81 | 195.73 | ||
180 | 84.20 | 96.66 | 54.96 | 41.04 | 261.64 | ||
(m) | 80 | 110.40 | 115.65 | 37.31 | 59.78 | 197.77 | |
110 | 123.04 | 130.57 | 41.89 | 69.77 | 289.18 | ||
140 | 134.42 | 149.25 | 52.74 | 91.53 | 313.54 | ||
180 | 125.94 | 138.69 | 73.00 | 34.10 | 330.13 | ||
6 | (m) | 80 | 58.42 | 80.40 | 63.06 | 18.24 | 365.50 |
110 | 61.91 | 78.81 | 58.92 | 27.51 | 343.89 | ||
140 | 40.97 | 62.99 | 58.42 | 25.29 | 356.09 | ||
180 | 49.40 | 75.36 | 63.32 | 29.89 | 341.25 | ||
(m) | 80 | 54.88 | 72.65 | 54.31 | 28.20 | 286.26 | |
110 | 60.81 | 77.79 | 55.23 | 28.19 | 312.24 | ||
140 | 62.08 | 71.76 | 48.78 | 27.44 | 258.06 | ||
180 | 61.42 | 73.90 | 45.18 | 30.65 | 246.03 | ||
(m) | 80 | 86.36 | 94.84 | 40.43 | 39.01 | 221.49 | |
110 | 122.62 | 128.38 | 50.17 | 49.33 | 252.67 | ||
140 | 104.35 | 114.53 | 59.70 | 30.05 | 301.63 | ||
180 | 103.96 | 114.96 | 70.35 | 33.48 | 314.81 | ||
7 | (m) | 80 | 62.05 | 65.59 | 33.76 | 27.10 | 138.49 |
110 | 44.91 | 62.76 | 37.85 | 31.87 | 158.78 | ||
140 | 41.29 | 48.97 | 17.51 | 32.56 | 94.73 | ||
180 | 40.78 | 58.52 | 67.12 | 26.38 | 315.58 | ||
(m) | 80 | 62.62 | 67.67 | 27.80 | 34.90 | 148.72 | |
110 | 64.32 | 77.89 | 31.66 | 48.59 | 140.84 | ||
140 | 77.47 | 87.24 | 37.35 | 41.24 | 166.82 | ||
180 | 67.99 | 86.52 | 56.10 | 45.16 | 279.69 | ||
(m) | 80 | 83.74 | 109.77 | 84.48 | 54.05 | 398.95 | |
110 | 83.22 | 94.14 | 36.09 | 54.81 | 180.29 | ||
140 | 96.53 | 98.37 | 30.50 | 63.02 | 187.93 | ||
180 | 78.98 | 105.90 | 112.47 | 32.42 | 518.24 | ||
8 | (m) | 80 | 63.91 | 79.29 | 57.46 | 30.28 | 204.88 |
110 | 50.90 | 61.55 | 24.15 | 36.52 | 97.82 | ||
140 | 39.60 | 64.81 | 48.03 | 31.51 | 154.56 | ||
180 | 57.76 | 75.16 | 54.87 | 32.49 | 203.19 | ||
(m) | 80 | 50.10 | 69.17 | 55.84 | 39.48 | 206.17 | |
110 | 67.25 | 71.85 | 17.94 | 53.91 | 108.87 | ||
140 | 75.67 | 91.80 | 32.78 | 62.54 | 152.80 | ||
180 | 100.62 | 125.20 | 104.36 | 55.21 | 377.60 | ||
(m) | 80 | 77.07 | 83.82 | 33.23 | 47.56 | 133.57 | |
110 | 161.57 | 198.06 | 126.50 | 73.27 | 429.44 | ||
140 | 179.95 | 206.12 | 94.74 | 95.62 | 383.66 | ||
180 | 251.85 | 225.94 | 102.50 | 81.45 | 344.09 |
References
- Köpp, F. Doppler Lidar for Atmospheric Remote Sensing and Aircraft Safety Operations. In Laser in der Umweltmeßtechnik/Laser in Remote Sensing; Springer: Berlin/Heidelberg, Germany, 1994; pp. 150–159. [Google Scholar]
- Mortensen, N. Wind measurements for wind energy applications—A review. In Proceedings of the 16th British Wind Energy Association Conference’, Stirling, Scotland, 15–17 September 1994; pp. 353–360. [Google Scholar]
- Zhang, H.; Xu, T.; Zong, Y.; Tang, H.; Liu, X.; Wang, Y. Influence of meteorological conditions on pollutant dispersion in street canyon. Procedia Eng. 2015, 121, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Dirks, R.; Czyzyk, S.; Cohn, S.A.; Vosper, S.; et al. The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Am. Meteorol. Soc. 2008, 89, 1513–1534. [Google Scholar] [CrossRef]
- Krishnamurthy, R.; Calhoun, R.; Billings, B.; Doyle, J. Wind turbulence estimates in a valley by coherent Doppler lidar. Meteorol. Appl. 2011, 18, 361–371. [Google Scholar] [CrossRef]
- Gan, C.; Salim, S. Numerical analysis of fluid–structure interaction between wind flow and trees. In Proceedings of the World Congress on Engineering, London, UK, 2–4 July 2014; Volume 2, pp. 1218–1223. [Google Scholar]
- Laidlaw, D.J.; Osborn, J.; Morris, T.J.; Basden, A.G.; Gendron, E.; Rousset, G.; Townson, M.J.; Wilson, R.W. Automated wind velocity profiling from adaptive optics telemetry. Mon. Not. R. Astron. Soc. 2020, 491, 1287–1294. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-Dimm+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kiselev, A.; Kovadlo, P.; Kolobov, D.Y.; Lukin, V.; Tomin, V. Method for estimating the altitudes of atmospheric layers with strong turbulence. Atmos. Ocean. Opt. 2020, 33, 295–301. [Google Scholar] [CrossRef]
- Liu, Z.; Barlow, J.F.; Chan, P.W.; Fung, J.C.H.; Li, Y.; Ren, C.; Mak, H.W.L.; Ng, E. A Review of Progress and Applications of Pulsed Doppler Wind LiDARs. Remote Sens. 2019, 11, 2522. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, D.W.; McGowan, J.G.; Rogers, A.L.; Manwell, J.F. Validation of Doppler lidar for wind resource assessment applications. In Proceedings of the American Wind Energy Association WindPower 2007 Conference and Exhibition, Los Angeles, CA, USA, 3–7 June 2007. [Google Scholar]
- Krishnamurthy, R.; Boquet, M.; Osler, E. Current Applications of Scanning Coherent Doppler Lidar in Wind Energy Industry. In Proceeding of the EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2016; Volume 119, p. 10003. Available online: https://www.epj-conferences.org/articles/epjconf/abs/2016/14/epjconf_ilrc2016_10003/epjconf_ilrc2016_10003.html (accessed on 31 August 2020).
- Gohm, A.; Mayr, G.J.; Fix, A.; Giez, A. On the onset of bora and the formation of rotors and jumps near a mountain gap. Q. J. R. Meteorol. Soc. 2008, 134, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Mole, M.; Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.E.; Ocaña, F.; Strajnar, B.; Škraba, P.; Vučković, M.; Willis, W.B. Lidar measurements of Bora wind effects on aerosol loading. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 39–45. [Google Scholar] [CrossRef]
- Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.; Močnik, G.; Drinovec, L.; Vaupotič, J.; Miler, M.; Gosar, M.; Gregorič, A. Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sens. 2019, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Stanič, S.; Eichinger, W.; Močnik, G.; Drinovec, L.; Gregorič, A. Investigation of Aerosol Properties and Structures in Two Representative Meteorological Situations over the Vipava Valley Using Polarization Raman LiDAR. Atmosphere 2019, 10, 128. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Bervida, M.; Stanič, S.; Bergant, K.; Eichinger, W.; Strajnar, B. Lidar Observations of Mountain Waves During Bora Episodes. In Proceeding of the EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 237. Available online: https://www.epj-conferences.org/articles/epjconf/abs/2020/13/epjconf_ilrc292020_06007/epjconf_ilrc292020_06007.html (accessed on 31 August 2021).
- Bervida, M.; Stanič, S.; Bergant, K.; Strajnar, B. Near-Ground Profile of Bora Wind Speed at Razdrto, Slovenia. Atmosphere 2019, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- QINGDAO Leice Transient Technology Co., Ltd. Available online: http://leice-lidar.com/en/product-3-35.html (accessed on 24 June 2020).
- Schrader, P. Computing the statistical stability of integral length scale measurements by autoregressive simulation. In Computational Wind Engineering 1; Elsevier: Amsterdam, The Netherlands, 1993; pp. 487–496. [Google Scholar]
- VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Mole, M. Study of the Properties of Air Flow over Orographic Barrier. Ph.D. Thesis, Nova Gorica University, Nova Gorica, Slovenija, 2017. [Google Scholar]
- Slovenian Environment Agency: Monthly Bulletin. Available online: http://www.arso.gov.si/o%20agenciji/knji%C5%BEnica/mese%C4%8Dni%20bilten/bilten2019.htm (accessed on 10 September 2020).
- DARS. Arhiv Meritev. Available online: https://www.promet.si/portal/sl/merilna-mesta-sistema-burja.aspx (accessed on 10 September 2020).
- Lepri, P.; Kozmar, H.; Večenaj, Ž.; Grisogono, B. A summertime near-ground velocity profile of the Bora wind. Wind. Struct. 2014, 19, 505–522. [Google Scholar] [CrossRef]
- Fuad, M.A.Z. Coral Reef Rugosity and Coral Biodiversity; Bunaken National Park: North Sulawesi, Indonesia, 2010. [Google Scholar]
- Suomi, I.; Gryning, S.E.; O’Connor, E.J.; Vihma, T. Methodology for obtaining wind gusts using Doppler lidar. Q. J. R. Meteorol. Soc. 2017, 143, 2061–2072. [Google Scholar] [CrossRef] [Green Version]
- Report: Calibration Test of WindMast WP350. Available online: https://mgwtradenservice.com.au/wp-content/uploads/2020/06/RSV19018_A1_Calibration-of-WindMast_WP350_final-Windguard.pdf (accessed on 12 August 2020).
- Wang, H.; Barthelmie, R.J.; Clifton, A.; Pryor, S.C. Wind Measurements from Arc Scans with Doppler Wind Lidar. J. Atmos. Ocean. Technol. 2015, 32, 2024–2040. [Google Scholar] [CrossRef]
- Pauscher, L.; Vasiljevic, N.; Callies, D.; Lea, G.; Mann, J.; Klaas, T.; Hieronimus, J.; Gottschall, J.; Schwesig, A.; Kühn, M.; et al. An inter-comparison study of multi-and DBS lidar measurements in complex terrain. Remote Sens. 2016, 8, 782. [Google Scholar] [CrossRef] [Green Version]
- EN 1991–1–4:2005 (sl) Evrokod 1: Vplivi na konstrukcije—1-4.del: Splošni vplivi—Vplivi vetra. Available online: https://www.gzs.si/zbornica_gradbenistva_in_industrije_gradbenega_materiala/vsebina/Gradbeni-standardi/Evrokodi-evropski-standardi (accessed on 8 August 2019).
- Wiernga, J. Representative roughness parameters for homogeneous terrain. Bound. Layer Meteorol. 1993, 63, 323–363. [Google Scholar] [CrossRef]
- Bervida, M.; Patruno, L.; Stanič, S.; de Miranda, S. Synthetic generation of the atmospheric boundary layer for wind loading assessment using spectral methods. J. Wind. Eng. Ind. Aerodyn. 2020, 196, 104040. [Google Scholar] [CrossRef]
- Dyrbye, C.; Hansen, S.O. Wind Loads on Structures; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Holmes, J.D. Wind Loading of Structures; Spon Press: London, UK, 2001. [Google Scholar]
- Lepri, P.; Večenaj, Ž.; Kozmar, H.; Grisogono, B. Near-ground turbulence of the Bora wind in summertime. J. Wind. Eng. Ind. Aerodyn. 2015, 147, 345–357. [Google Scholar] [CrossRef] [Green Version]
- ESDU. Characteristics of Atmospheric Turbulence Near the Ground; Engineering Sciences Data Unit, IHS Group: London, UK, 2001. [Google Scholar]
- Flay, R.; Stevenson, D. Integral length scales in strong winds below 20 m. J. Wind. Eng. Ind. Aerodyn. 1988, 28, 21–30. [Google Scholar] [CrossRef]
- Shiau, B.S. Velocity spectra and turbulence statistics at the northeastern coast of Taiwan under high-wind conditions. J. Wind. Eng. Ind. Aerodyn. 2000, 88, 139–151. [Google Scholar] [CrossRef]
- Petkovšek, Z. Periodicity of Bora Gusts. Razprave 1976, 20, 67–75. [Google Scholar]
- Belušić, D.; Pasarić, M.; Orlić, M. Quasi-periodic Bora gusts related to the structure of the troposphere. Q. J. R. Meteorol. Soc. 2004, 130, 1103–1121. [Google Scholar] [CrossRef]
- Belušić, D.; Žagar, M.; Grisogono, B. Numerical simulation of pulsations in the bora wind. Q. J. R. Meteorol. Soc. 2007, 133, 1371–1388. [Google Scholar] [CrossRef]
Specifications | Parameter |
---|---|
Wavelength | 1.5 m Eye-safe |
Detection height range | 20–350 m |
Spatial resolution | Software configurable to any 30 heights in the range 20–350 m |
Range gate length | 30 m (fixed) |
Data updating time | 1 s–10 min (configurable) |
Wind speed range | 0–75 m/s |
Wind speed accuracy | |
Wind direction accuracy |
Episode | Date | CET Time (hh:mm) | Duration (h) | Wind Speed at Different Heights above the Ground (m/s) | ||||
---|---|---|---|---|---|---|---|---|
10 m | 80 m | 110 m | 140 m | 180 m | ||||
1 | 26 November 2019 | 10:13–12:03 | 1.83 | 2.89 ± 0.49 | / | 10.11 ± 5.13 | 10.39 ± 4.21 | 9.91 ± 3.82 |
2 | 12:50–15:40 | 2.83 | 2.86 ± 0.91 | 9.21 ± 3.05 | 8.86 ± 2.73 | 7.91 ± 2.72 | 6.78 ± 3.00 | |
3 | 3 December 2019 | 8:49–12:49 | 4 | 4.80 ± 1.48 | 8.55 ± 3.50 | 8.92 ± 3.65 | 9.12 ± 3.87 | 9.19 ± 4.07 |
4 | 13:48–16:08 | 2.33 | 4.04 ± 0.84 | 6.07 ± 2.60 | 6.23 ± 2.72 | 6.23 ± 2.91 | 6.22 ± 3.08 | |
5 | 4 December 2019 | 8:49–13:49 | 5 | 7.12 ± 2.92 | 14.88 ± 4.55 | 15.07 ± 4.34 | 14.80 ± 4.46 | 14.50 ± 5.47 |
6 | 11 December 2019 | 8:25–15:55 | 7.5 | 5.00 ± 1.54 | 12.04 ± 4.53 | 12.39 ± 4.50 | 13.21 ± 5.69 | 14.44 ± 7.26 |
7 | 12 December 2019 | 10:18–13:08 | 2.83 | 2.95 ± 0.89 | 16.34 ± 3.24 | 17.26 ± 3.00 | 17.78 ± 3.02 | 17.63 ± 3.73 |
8 | 13:45–15:05 | 1.33 | 2.64 ± 1.08 | 14.28 ± 2.76 | 15.38 ± 2.62 | 16.05 ± 2.45 | 16.66 ± 2.48 |
Wind Episode | Median | Mean | Min | Max | Median | Mean | Min | Max | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | (%) | 82.23 | 82.73 | 9.94 | 54.55 | 109.03 | (%) | 26.16 | 26.17 | 3.39 | 19.13 | 36.77 |
2 | 87.44 | 87.78 | 10.04 | 62.34 | 130.39 | 24.77 | 25.11 | 2.72 | 19.01 | 31.98 | ||
3 | 88.19 | 90.31 | 14.39 | 62.58 | 130.30 | 34.24 | 34.48 | 5.73 | 22.40 | 50.22 | ||
4 | 89.78 | 88.99 | 16.52 | 56.23 | 143.15 | 33.18 | 32.22 | 4.65 | 19.37 | 40.78 | ||
5 | 96.22 | 96.35 | 9.10 | 74.85 | 119.16 | 31.21 | 31.29 | 3.29 | 22.50 | 40.01 | ||
6 | 84.49 | 86.24 | 14.58 | 50.41 | 146.73 | 28.03 | 28.92 | 5.81 | 18.37 | 48.96 | ||
7 | 95.72 | 95.20 | 11.20 | 63.83 | 123.08 | 28.28 | 28.02 | 2.79 | 19.88 | 35.06 | ||
8 | 97.19 | 98.79 | 10.92 | 80.75 | 136.39 | 29.65 | 29.89 | 2.60 | 23.61 | 34.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bervida, M.; Stanič, S.; Močnik, G.; Wang, L.; Bergant, K.; Song, X. Bora Flow Characteristics in a Complex Valley Environment. Remote Sens. 2021, 13, 4363. https://doi.org/10.3390/rs13214363
Bervida M, Stanič S, Močnik G, Wang L, Bergant K, Song X. Bora Flow Characteristics in a Complex Valley Environment. Remote Sensing. 2021; 13(21):4363. https://doi.org/10.3390/rs13214363
Chicago/Turabian StyleBervida, Marija, Samo Stanič, Griša Močnik, Longlong Wang, Klemen Bergant, and Xiaoquan Song. 2021. "Bora Flow Characteristics in a Complex Valley Environment" Remote Sensing 13, no. 21: 4363. https://doi.org/10.3390/rs13214363
APA StyleBervida, M., Stanič, S., Močnik, G., Wang, L., Bergant, K., & Song, X. (2021). Bora Flow Characteristics in a Complex Valley Environment. Remote Sensing, 13(21), 4363. https://doi.org/10.3390/rs13214363