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Abstract: Timely and accurate regional crop-yield estimates are crucial for guiding agronomic
practices and policies to improve food security. In this study, a crop-growth model was integrated
with time series of remotely sensed data through deep learning (DL) methods to improve the accuracy
of regional wheat-yield estimations in Henan Province, China. Firstly, the time series of moderate-
resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) were
input into the long short-term memory network (LSTM) model to identify the wheat-growing region,
which was further used to estimate wheat areas at the municipal and county levels. Then, the leaf
area index (LAI) and grain-yield time series simulated by the Crop Environment REsource Synthesis
for Wheat (CERES-Wheat) model were used to train and evaluate the LSTM, one-dimensional
convolutional neural network (1-D CNN) and random forest (RF) models, respectively. Finally,
an exponential model of the relationship between the field-measured LAI and MODIS NDVI was
applied to obtain the regional LAI, which was input into the trained LSTM, 1-D CNN and RF
models to estimate wheat yields within the wheat-growing region. The results showed that the linear
correlations between the estimated wheat areas and the statistical areas were significant at both the
municipal and county levels. The LSTM model provided more accurate estimates of wheat yields,
with higher R2 values and lower root mean square error (RMSE) and mean relative error (MRE)
values than the 1-D CNN and RF models. The LSTM model has an inherent advantage in capturing
phenological information contained in the time series of the MODIS-derived LAI, which is important
for satellite-based crop-yield estimates.

Keywords: winter wheat; yield estimation; remote sensing; deep learning; CERES-Wheat

1. Introduction

An accurate crop-yield estimation is essential for food security, crop management and
policy-making [1,2]. A crop-growth model is a powerful tool used to simulate daily growth
and development of crops and estimate yields at field-level scales [3]. However, the need
to define the input parameters of crop-growth models over large geographical regions
restricts the application of these models for regional crop-yield estimates. Remote-sensing
observations have the advantages of real-time monitoring of crop growth and estimating
yields over large areas [4,5]. In particular, multitemporal satellite data can reflect the growth
conditions of crops throughout growth and development stages and have been widely
used to estimate regional yields [6–8]. However, remotely sensed data cannot effectively
characterize the mechanistic responses of crop growth and development to environments
and agronomic management practices. Therefore, both remote-sensing observations and
crop-growth models have advantages and disadvantages, and their combination provides
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an improved way to monitor crop growth and estimate yields on regional scales [9,10]. The
integration of crop-growth models and satellite observations can be achieved through an
agricultural-data-assimilation framework, which has been increasingly used for regional
crop-yield estimation [11–15]. Data assimilation is an effective means of coupling satellite
observations with crop-growth models and integrating the crop-mechanism process into
satellite-based yield estimation. Xie [16] assimilated the Landsat-retrieved leaf area index
(LAI) into the Crop Environment REsource Synthesis for Wheat (CERES-Wheat) model,
using an ensemble Kalman-filter algorithm, which improved the estimation accuracy of re-
gional wheat yields. Huang [17] used a scheme that assimilated remote-sensing reflectance
values in the coupled WOFOST–PROSAIL model to obtain yield estimates of winter wheat
in Hebei Province, China. However, data-assimilation methods generally require a large
amount of computation in the forward simulation process of a crop-growth model. The
higher spatial resolutions of satellite imagery result in an increased computational cost for
data-assimilation processes, which makes large-scale practical applications difficult [18,19].

Existing methods establish empirical regression models of a remotely sensed vege-
tation index (VI) and crop yields, which tend to be specific to a given year or area, thus
requiring new field measurements for recalibrating the regression models before they are
applied to other years or regions [18,20–22]. A scalable satellite-based crop-yield mapper
(SCYM), which was developed by Lobell [23], used simulations from a crop-growth model
to train a linear regression model. The trained regression model, which related crop yields
to a remotely sensed VI during the crop growing season, was then applied to satellite
images to rapidly estimate regional crop yields. The SCYM method has the advantage
of leveraging physiological information contained in a crop-growth model to interpret
remotely sensed observations in a scalable way, and it is easier to implement than a data-
assimilation method due to its lower computation and data requirements [24]. Additionally,
crop model simulations could be a good alternative to field measurements, which are costly
and time-consuming methods to train DL models. However, linear regression models
were mostly used in these studies for crop-yield estimates, while there were complicated
nonlinear relationships between independent variables (such as remotely sensed VIs and
LAI) and crop yields. Consequently, potential improvements to the SCYM, such as the ap-
plication of machine learning or deep learning (DL) methods to simulations of crop-growth
models, can better deal with nonlinear relationships between simulated state variables and
grain yields than linear regression models, to improve crop-yield estimates.

In recent years, machine learning methods have been integrated with remotely sensed
VIs and widely utilized to estimate crop yields [25–27]. With the development of computa-
tional technology, the ability to train multilayer algorithms on the basis of neural networks
(NNs) has become feasible; these are often referred to as DL algorithms [28]. DL methods
show superiority in feature extraction from satellite images, and combinations of extracted
features are able to approximate the complex nonlinear relationships between remotely
sensed VIs and crop yields [29–33]. Among the various DL methods, the convolutional
neural network (CNN) has shown superior performance in satellite image classification and
regression studies [28,34,35]. Nevavuori [28] applied a CNN model to predict crop yields
by using NDVI and RGB images obtained from unmanned aerial vehicles (UAVs) and
achieved high yield prediction accuracy. Zhong [36] designed a one-dimensional CNN (1-D
CNN) model to classify summer crops based on the time series of the Landsat enhanced
vegetation index (EVI), and the results showed that the 1-D CNN provided an effective
approach to analyze time series in multitemporal satellite-image classification studies.
Yang [34] investigated the ability of a CNN to estimate rice yields; the CNN was trained to
extract the features associated with rice yields from RGB and multispectral satellite images.
The results showed that the trained CNN performed well in rice-yield estimates.

Although CNN methods, which are capable of handling spatial autocorrelation in
remote-sensing images, have been widely used in crop classification and yield estimates,
they cannot fully learn the complex temporal correlations contained in multitemporal
satellite data. Phenological information about crops can be reflected in the time series
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of remotely sensed observations, which provides essential information for estimating
regional crop yields but cannot be fully extracted based on a CNN model [37,38]. A variant
of recurrent NNs (RNNs), known as the long short-term memory network (LSTM), has
recently attracted considerable attention because of its capacity to deal with time-series
data [26,39,40]. Ienco [41] evaluated the performance of the LSTM model in land-cover
classification by using time-series data of satellite images; the results demonstrated that
the use of features learned by the LSTM model could improve the classification accuracies
of traditional classifiers. Tian [42] proposed an LSTM model with an attention mechanism
for estimating wheat yield based on meteorological data, the vegetation temperature
condition index (VTCI) and LAI, and results showed that the LSTM model had a high
accuracy of yield estimates with mean absolute percentage error (MAPE) of 8.20% and
normalized root mean square error (NRMSE) of 11.15%, respectively. Wang [33] performed
winter wheat-yield predications in the main producing regions of China by combining
the LSTM and CNN models, and achieved a promising performance with the overall
determination coefficient (R2) of 0.77 and root mean square error (RMSE) of 721 kg/ha,
respectively. Schwalbert [26] predicted soybean yields in Southern Brazil in near real-time
by combining the LSTM method, weather data and remote-sensing images and compared
the performance of the LSTM method with that of linear-regression and random-forest
(RF) methods. The results showed that the yield prediction accuracy of the LSTM method
was better than that of the other methods. The LSTM model has the capacity to learn
important features from time series of satellite data because it contains a time-stepping
chain structure, similar to the way that crop-growth models work.

As one module of the decision support system for the agro-technology transfer
(DSSAT) model, the CERES-Wheat model is capable of mathematically simulating the
entire growth and development process of wheat. To couple crop-growth models and satel-
lite observations for improving the accuracy of crop-yield estimates, simulations from the
CERES-Wheat model are used to train DL models. Then multitemporal remote sensing data
are substituted into the trained DL models to obtain regional wheat yields. This method
is much less computationally intensive than the data-assimilation method. However, few
studies have estimated wheat yield by combining crop-growth models with time-series
satellite data based on DL methods. In addition, LAI can be simulated by crop-growth
models and retrieved by satellite data simultaneously, thus provisioning it as a variable
for coupling the CERES-Wheat model and satellite data. In this study, the LAI and wheat
yield time-series data simulated by the CERES-Wheat model were adopted to train the
LSTM, 1-D CNN and RF models. Then, the trained LSTM, 1-D CNN and RF models were
combined with time-series LAI derived from MODIS NDVI to estimate the regional wheat
yield in Henan Province, China. The objectives of this research were (i) to explore the
feasibility of combining DL methods, remotely sensed data and CERES-Wheat simula-
tions to estimate regional wheat yields; and (ii) to compare the accuracies in estimating
wheat yields by using the LSTM, 1-D CNN and RF methods with the time-series LAI as an
independent variable.

2. Materials and Methods
2.1. Study Area and Overall Methodology

Henan Province, which is located in Central China, was chosen as the study area
(110.35◦ E to 116.64◦ E and 31.38◦ N to 36.37◦ N) in this research and has a total area
of 54,250 km2 (Figure 1). This province has a warm temperate monsoon climate, with
an average annual rainfall of 407.7~1295.8 mm and an average annual temperature of
10.5~16.7 ◦C. The annual average sunshine ranges from 1285.7 to 2292.9 h. This province
is characterized by four distinct seasons and desirable water and temperature, which is
suitable for the growth of a variety of crops [43]. Winter wheat is generally sown between
October and November and harvested at the end of May or the beginning of June [44].
Henan Province has a large wheat planting area, accounting for 54% of the total provincial
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cultivated area, and wheat production has always accounted for more than 20% of the
national total production.
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Figure 1. Locations of the study area and the agro-meteorological stations in Henan Province, China.

The flowchart of the methodology for estimating wheat yield is shown in Figure 2.
Firstly, LAI and yield during the wheat-growing stages were simulated by the calibrated
CERES-Wheat model. Then, the time series of simulated LAI and yield at the 35 agro-
meteorological stations (shown in Figure 1) were used to train the LSTM, CNN and RF
regression models. The time series of the MODIS NDVI was input into the LSTM model to
identify the winter wheat planting areas in Henan Province. The field-measured LAI at the
three experimental stations (shown in Figure 1) were combined with the MODIS NDVI
to retrieve the regional LAI. Finally, the time series of MODIS-retrieved LAI were input
into the trained LSTM, CNN and RF models to estimate regional winter wheat yields. The
accuracies of the estimated yields were evaluated by statistics on municipal and county
scales in Henan Province.

Remote Sens. 2021, 13,  5 of 21 
 

 

 
Figure 2. Flowchart of the methodology employed in this study. 

2.2. Data Description and Preprocessing 
2.2.1. Field Data 

The input data of CERES-Wheat model include meteorological, soil, management 
and genetic data. The meteorological data were downloaded from the China Meteorolog-
ical Data Network (http://data.cma.cn/, accessed on 17 June 2020), which conducts meas-
urements at 17 meteorological stations (shown in Figure 1) distributed across Henan Prov-
ince. The soil parameters and crop-management information, which were mostly pro-
vided by the Henan Meteorological Bureau, were collected and measured at the 35 agro-
meteorological stations. Some of the soil parameters were also downloaded from the Soil 
Science Database (http://vdb3.soil.csdb.cn/, accessed on 27 April 2020). The soil parame-
ters we collected included soil texture and structure (i.e., clay and silt contents and bulk 
density), soil chemical parameters (i.e., total nitrogen, organic carbon, pH in water, am-
monium nitrogen and nitrate nitrogen) and soil hydrological properties (i.e., wilting 
point, field capacity and soil moisture content). The crop-management information we 
collected included the longitudes and latitudes of the stations, wheat cultivars, sowing 
dates, harvest dates, sowing methods, plant densities, row spacing, sowing depths, ferti-
lizer-application depths, fertilization dates, irrigation methods and dates, and amounts of 
fertilizer and irrigation. In addition, the thousand grain weight, grain yield and dates of 
flowering and maturity were measured at the 35 agro-meteorological stations as well. The 
aboveground biomass and measured LAI at each stage of winter wheat development were 
also measured at the three experimental stations. 

2.2.2. MODIS Data 
The MODIS surface reflectance products (MOD09Q1) from orbit h27v05 for the 2017–

2019 period were downloaded from the Level-1 and Atmosphere Archive and Distribu-
tion System Distributed Active Archive Center (LAADS DAAC, https://lad-
sweb.modaps.eosdis.nasa.gov/, accessed on 21 May 2020) and have a spatial resolution of 
250 m and a temporal resolution of 8 days. The MODIS Reprojection Tool (MRT) was uti-
lized to reproject the MODIS data to the UTM-WGS84 coordinate system. The NDVI was 

Figure 2. Flowchart of the methodology employed in this study.



Remote Sens. 2021, 13, 4372 5 of 19

2.2. Data Description and Preprocessing
2.2.1. Field Data

The input data of CERES-Wheat model include meteorological, soil, management
and genetic data. The meteorological data were downloaded from the China Meteoro-
logical Data Network (http://data.cma.cn/, accessed on 17 June 2020), which conducts
measurements at 17 meteorological stations (shown in Figure 1) distributed across Henan
Province. The soil parameters and crop-management information, which were mostly
provided by the Henan Meteorological Bureau, were collected and measured at the 35 agro-
meteorological stations. Some of the soil parameters were also downloaded from the Soil
Science Database (http://vdb3.soil.csdb.cn/, accessed on 27 April 2020). The soil parame-
ters we collected included soil texture and structure (i.e., clay and silt contents and bulk
density), soil chemical parameters (i.e., total nitrogen, organic carbon, pH in water, ammo-
nium nitrogen and nitrate nitrogen) and soil hydrological properties (i.e., wilting point,
field capacity and soil moisture content). The crop-management information we collected
included the longitudes and latitudes of the stations, wheat cultivars, sowing dates, harvest
dates, sowing methods, plant densities, row spacing, sowing depths, fertilizer-application
depths, fertilization dates, irrigation methods and dates, and amounts of fertilizer and
irrigation. In addition, the thousand grain weight, grain yield and dates of flowering and
maturity were measured at the 35 agro-meteorological stations as well. The aboveground
biomass and measured LAI at each stage of winter wheat development were also measured
at the three experimental stations.

2.2.2. MODIS Data

The MODIS surface reflectance products (MOD09Q1) from orbit h27v05 for the 2017–
2019 period were downloaded from the Level-1 and Atmosphere Archive and Distribution
System Distributed Active Archive Center (LAADS DAAC, https://ladsweb.modaps.
eosdis.nasa.gov/, accessed on 21 May 2020) and have a spatial resolution of 250 m and a
temporal resolution of 8 days. The MODIS Reprojection Tool (MRT) was utilized to reproject
the MODIS data to the UTM-WGS84 coordinate system. The NDVI was calculated by using
the near-infrared and red bands of the MODIS data. An upper envelope Savitzky–Golay
(S–G) filter was then applied to reduce the noise in the MODIS NDVI time series. The
equation of the S–G filter is as follows [45]:

NDVI′t =
h = g

∑
h = −g

EhNDVI0
t+h

v
(1)

where t is an integer with a value of 1~46, which represents the composited periods of
MODIS data, 1, 2, ..., 46; NDVI′t represents the S–G filtered NDVI; v represents the width
of the smoothing window and is set as five (v = 2g + 1); NDVI0

t+h is the hth MODIS
NDVI in the smoothing window; and Eh is the coefficient for NDVI0

t+h.
Many studies have shown significant correlations between field-measured LAI and

spectral VIs derived from satellite data [16,46]. In this study, an exponential regression
model between MODIS NDVI and field-measured LAI data at the experimental stations
was established for retrieving regional LAI [16]:

c−NDVI = a× exp(−b× LAI) (2)

where a, b and c are regression coefficients; a and b were obtained by regression of the
measured LAI and MODIS NDVI; and c represents the maximum NDVI value and is set to 0.90.

2.2.3. Statistical Data

The municipal-level and county-level statistical wheat areas in 2018 were downloaded
from the Henan Provincial Bureau of Statistics (http://www.ha.stats.gov.cn/, accessed on
21 May 2020) and compared with the estimated wheat areas for assessing the accuracies

http://data.cma.cn/
http://vdb3.soil.csdb.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.ha.stats.gov.cn/
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of the identified wheat pixels based on time-series NDVI and LSTM. The municipal-level
and county-level statistical wheat yields in 2018 were also obtained and compared with the
estimated wheat yields for evaluating the yield estimation accuracies of the LSTM, CNN
and RF models.

2.3. Methods
2.3.1. Calibration of the CERES-Wheat Model

The wheat-growth data, which included the thousand grain weight, aboveground
biomass, LAI, grain yield and dates of flowering and maturity stages, were used to calibrate
the genetic parameters of the CERES-Wheat model [47,48]. The simulation accuracy of
the calibrated CERES-Wheat model was evaluated by comparison with wheat-growth
data as well. To obtain the genetic parameters of the wheat varieties cultivated in Henan
Province, model calibration was performed through the generalized likelihood uncertainty
estimation coefficient estimator in the DSSAT model. Among the 35 agro-meteorological
stations, field measurements at 28 randomly selected stations (including two experimental
stations) during the wheat-growing season of 2017/2018 were applied to calibrate the
CERES-Wheat model, and the field data at the remaining seven stations (including one
experimental station) were used to evaluate the accuracies of the simulated results. In
addition, the field-measured LAI and aboveground biomass during the wheat-growing
season of 2018/2019 were obtained, to further evaluate the simulation accuracies of the
calibrated CERES-Wheat model in another year.

2.3.2. LSTM Model

The architecture of the LSTM unit is shown in Figure 3. For a more detailed description
of the LSTM unit, we refer to Reference [39]. Firstly, the LSTM model was used to identify
winter wheat-growing regions in Henan Province, and it included a sequence input layer,
an LSTM layer, a fully connected layer, a softmax layer and a classification output layer, as
shown in Figure 3. The output ht of the last LSTM unit (t = 46) contained in the LSTM layer
was treated as the input of the following fully connected layer. The S–G filtered NDVI was
input into the LSTM model for the classification of wheat and non-wheat pixels. Then, the
LSTM model was used for estimating regional wheat yields, which included a sequence
input layer, an LSTM layer, a fully connected layer, and a regression output layer (Figure 3).
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The calibrated CERES-Wheat model was used to continuously simulate the time series
of the LAI and yield at the 35 agro-meteorological stations during the wheat-growing
seasons of 2017/2018 and 2018/2019. To correspond to the acquisition time of the MODIS-
derived LAI (one LAI value was obtained every 8 days) for extending the estimated
wheat yield at the site scale to the regional scale, the simulated LAI for the same date
with a temporal resolution of 8 days was obtained, which was further combined with the
simulated yields as samples. Thus, there were a total of 70 samples, from which 15 samples
were randomly selected as validation samples, and the remaining 55 samples were selected
as training samples. Due to the lack of training samples, 160 other simulations were
generated corresponding to a range of soil, meteorological and management data, which
were used as training samples as well. Thus, the total number of training samples was 215.
The ranges of the input variables for the 160 simulations were defined based on general
knowledge of wheat growth conditions in the 35 agro-meteorological stations. The number
of time-series LAI values for each sample was 26, which covered the whole growth period
of winter wheat. For the parameter settings of the LSTM model, the number of dimensions
of the input sequence was set to one, and the number of hidden units was set to 10. The
mini-batch size was set to five, and the learning rate was set to 0.01.

2.3.3. One-Dimensional CNN Model

The 1-D CNN model, which is a special form of a CNN, has the ability to capture
the temporal pattern of time-series data, using one-dimensional filters [36]. In this study,
the implementation of the 1-D CNN, which contained three convolutional layers and one
average-pooling layer, was combined with a fully connected layer and a regression layer
for estimating winter wheat yield (Figure 4). The sizes of kernels for the first to fourth
convolutional layers were 1 × 3 × 8, 1 × 3 × 16, 1 × 6 × 32 and 1 × 6 × 32, respectively,
and the strides were fixed to 1 pixel. The size of the padding for each convolutional layer
at training time was calculated so that the layer output had the same size as the input.
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The pooling layer is capable of reducing the number of parameters and alleviating
overfitting. As shown in Figure 4, the pooling layer, which had a filter of size 1 × 2 and
a stride of two pixels, employed the AVERAGE operation and output the average value
for each depth slice of the input. The outputs of the fourth convolutional layer were
concatenated into a feature vector of size 1× 416, which was then fed into a fully connected
layer. A regression output layer followed the fully connected layer, and the loss function
for the regression layer was the mean squared error (MSE):

MSE =
n

∑
i = 1

(yi − ŷi)
2

n
(3)

where yi represents the simulated wheat yield, ŷi represents the estimated yield by using
the 1-D CNN and n represents the size of the mini-batch. Similar to the LSTM model, the
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mini-batch size for the 1-D CNN model was set to five, and the learning rate was set to 0.01
during the training process. In addition, the 225 samples, which consisted of the simulated
LAI and yield time series, were used to train the 1-D CNN model, and 15 samples were
used to validate the estimation accuracy.

Finally, the trained LSTM and 1-D CNN models were combined with the time series
of the MODIS-derived LAI to estimate the regional wheat yield in Henan Province. To
assess the influences of the DL models (LSTM and 1-D CNN) on wheat-yield estimation
accuracy, the RF was also employed to estimate wheat yield as the benchmark for assessing
the accuracy of results obtained with the DL models.

2.3.4. Accuracy Evaluation

The yield estimation accuracies achieved by the LSTM, 1-D CNN and RF models were
evaluated by using the R2, RMSE and mean relative error (MRE) as follows:

R2 = 1−∑n
i = 1 (yi − ŷi)

2/∑n
i = 1 (yi − y)

2
(4)

RMSE =

√
n

∑
i = 1

(yi − ŷi)
2/n (5)

MRE =
1
n

n

∑
i = 1
|yi − ŷi|/yi (6)

where n denotes the number of total validation samples and y denotes the average value
of field-measured yields from the validation samples. Moreover, the accuracies of the
estimated yields for 18 municipalities (17 prefecture-level municipalities and 1 county-
level municipality) and 80 counties, which are the main wheat-growing regions in Henan
Province, were evaluated by statistics.

3. Results
3.1. Identification of Winter Wheat Areas

The time series of the MODIS NDVI was smoothed by the S–G filter, pixel by pixel,
and the filtered NDVI values for the single- and double-cropping regions are shown in
Figure 5. Because of the influence of clouds, the atmosphere and the quality of the MODIS
data, the original MODIS NDVI curves showed a sharp decline. The S–G filtered NDVI was
much smoother after the removal of noise, and it can clearly reflect the long-term change
trend and local mutation information of the original NDVI, thus meeting the requirements
for identifying different crop-planting patterns.
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Firstly, the filtered NDVI time series were input into the LSTM model to classify
the crop and non-crop areas. Then, the LSTM model was used to classify the wheat and
non-wheat areas within the extracted crop areas. Since the purpose of this study was to
identify the planted areas of winter wheat, there is no classification for various specific crop
types. The pixels for crop (wheat and non-wheat) and non-crop land areas were identified
visually based on phenological characteristics learned from NDVI time series, as shown
in Figure 6. The NDVI curve of the double-cropping region has two peaks, while that of
the single-cropping region shows only one peak. The land types to be identified in this
study include those referred to as winter wheat-others (i.e., winter wheat–corn, winter
wheat–rice, winter wheat–soybean, etc.), and their NDVI curves have three peaks. This is
because the winter wheat regions present peaks at both heading and tillering stages, and
the third peak corresponds to other crops. The NDVI curve for forests (including orchards)
is characterized by an extended NDVI peak, and the NDVI value for built-up and bare land
is always low. The phenological information discussed above can be learned by the LSTM
model for identifying winter wheat pixels. Thus, samples were obtained through visual
interpretation of NDVI curves and supplemented by the agro-meteorological stations. A
total of 588 samples (298 samples of wheat and 290 non-wheat samples) were obtained,
among which 70% were used for training the LSTM model and 30% were used to evaluate
the identification accuracy. Finally, the accuracy of wheat identification was 90%.
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The identified wheat-growing regions in Henan Province in 2018 are shown in Figure 1;
these regions were aggregated at the municipal and county levels by counting the number
of wheat pixels for each of the 18 municipalities and 80 counties. The calculated wheat
areas were compared with the statistics to evaluate the accuracy of wheat identification,
as shown in Figure 7. The linear correlations between the estimated wheat areas from the
MODIS NDVI and the statistical areas were significant at both the municipal (R2 = 0.92
and p < 0.001) and county (R2 = 0.84 and p < 0.001) levels, with MRE values of 17.42%
and 26.18% and RMSE values of 961.09 and 185.12 km2, respectively. Thus, the accuracy
of wheat identification based on the time-series MODIS NDVI and LSTM model was
high, which demonstrated that the LSTM model has an inherent advantage in capturing
potential phenological information contained in time series of satellite observations for
crop classification.
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3.2. Calibration of the CERES-Wheat Model

The simulations of the CERES-Wheat model were compared with field measurements
to evaluate the accuracies of the simulated LAI, aboveground biomass, thousand grain
weight (TGW) and grain yield, as well as the accuracies of the simulated dates of flowering
and maturity stages. The MRE between the simulated and measured TGW was 6.14%,
i.e., less than 10%, and that between the simulated and measured yields was 10.54%. The
differences between the simulated and measured dates of the flowering and maturity stages
were all less than 4 days. In addition, the field-measured LAI and biomass values were
closely related to the simulated LAI and biomass trajectories in 2017/2018 and 2018/2019,
as shown in Figure 8. Thus, the calibrated CERES-Wheat model has a high accuracy when
simulating the LAI and final yield; the simulations were further used to train the LSTM,
1-D CNN and RF models.

Then, the CERES-Wheat model was used to simulate the time-series LAI of winter
wheat at the 35 agro-meteorological stations in 2017/2018 and 2018/2019; these data were
combined with the simulated yields and used as samples. The results showed that the
peak values of the simulated LAI profiles spanned a range from 2.34 to 6.90 m2/m2, and
the days after seeding (DAS) of the peak values ranged from 150 to 186 days. The number
of days of the whole wheat growth period ranged from 209 to 236 days. Moreover, the
simulated yields were similarly variable, with a median value of 5021 kg/ha and a range
from 3639 to 7543 kg/ha. Consequently, the simulated LAI and yield values provided
a wide range of variability with which to train the LSTM, 1-D CNN and RF models for
estimating wheat yields pixel by pixel in the wheat-growing regions.

3.3. Comparison of the LSTM, 1-D CNN and RF Models

The samples, which consisted of simulated LAI and grain yield time series for the agro-
meteorological stations, were used to train the LSTM, 1-D CNN and RF models and further
evaluate the yield estimation accuracies of the trained models. Then, a linear correlation
analysis was performed between the simulated yields from the validation samples and
the estimated yields, and the MRE and RMSE values of the simulated and estimated
yields were also calculated (Figure 9). The results showed that the linear correlation was
stronger for the LSTM model (R2 = 0.77, p < 0.001) than those for the 1-D CNN (R2 = 0.67,
p < 0.001) and RF (R2 = 0.72, p < 0.001) models. The MRE and RMSE of the LSTM model
(MRE = 8.71%, RMSE = 636.79 kg/ha) were lower than those of the 1-D CNN (MRE = 9.94%,
RMSE = 666.27 kg/ha) and RF (MRE = 10.43%, RMSE = 682.62 kg/ha) models. Thus, the
LSTM model achieved the highest accuracy of yield estimation due to its advantages in



Remote Sens. 2021, 13, 4372 11 of 19

dealing with time-series data. The linear correlation for the 1-D CNN model was lower
than that for the RF model, whereas the MRE and RMSE of the 1-D CNN model were lower
than those of the RF model. Thus, the estimation accuracy of the 1-D CNN model was
slightly increased compared with the precision of the RF model.
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Although the peak values, the DASs of peaks and the coverage days of the simulated
LAI curves varied greatly among the stations, both the LSTM and 1-D CNN models ef-
fectively learned important phenological information from various LAI trajectories for
wheat-yield estimation. The yield-estimation accuracies of these DL models were im-
proved compared with the accuracy of the RF model. Moreover, the LSTM model has a
stronger ability to extract features from time series of LAI than the 1-D CNN model, and its
estimation accuracy was significantly higher than those of the 1-D CNN and RF models.

3.4. Regional Wheat-Yield Estimation

The time series of the NDVI at the three experimental stations (as shown in Figure 1)
were obtained according to the latitudes and longitudes of the stations. Then, an exponen-
tial regression model, with the NDVI as an independent variable and the field-measured
LAI as the dependent variable, was established to determine the regional LAI. As a sup-
plement to the measured LAI, simulated LAI values at the stations were obtained for the
establishment of the exponential regression model. The results demonstrate that there
was a strong exponential correlation between the MODIS NDVI and the measured LAI
(R2 = 0.70, p < 0.001). The regression model, as shown in Equation (7), was then applied to
the MODIS NDVI to obtain the regional LAI.

LAI = (−1/0.27)× ln[(0.9−NDVI)/0.47] (7)

The time-series LAI retrieved from the MODIS NDVI was input into the trained LSTM,
1-D CNN and RF models to estimate regional wheat yields in Henan Province in 2018
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(Figure 10). Then, the regional wheat yields were aggregated at the municipal and county
levels by summing the yields pixel by pixel in the wheat-growing regions for each munici-
pality and county, respectively. Both the estimated wheat yields of the 18 municipalities
and those of the 80 counties were compared with the statistics for evaluating the accuracies
of the LSTM, 1-D CNN and RF models (Figure 11). The results showed that the estimated
yields were highly correlated with the statistical yields for the three models at the municipal
(R2 = 0.91, p < 0.001) and county (R2 = 0.83, p < 0.001) levels. Compared with the 1-D CNN
and RF models, the LSTM model achieved a higher estimation accuracy with lower MRE
and RMSE values at both the municipal (MRE = 20.38%, RMSE = 514.65 kt) and county
(MRE = 23.03%, RMSE = 94.42 kt) levels. At the municipal level, the MRE and RMSE of
the 1-D CNN model (MRE = 22.54%, RMSE = 531.38 kt) were slightly lower than those of
the RF model (MRE = 23.63%, RMSE = 545.84). Similarly, at the county level, the accuracy
of the 1-D CNN model (MRE = 24.60%, RMSE = 97.04 kt) was slightly higher than that
of the RF model (MRE = 25.60%, RMSE = 100.16 kt). In addition, the estimated wheat
yield in the entire Henan Province was calculated by summing the wheat yields of the
18 municipalities, and the result based on the LSTM model (34,248 kt) was closer to the
statistical yield (36,120 kt) than were the yields estimated with the 1-D CNN (33,018 kt)
and RF (32,011 kt) models.
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Consequently, at the site, county and municipality levels, the DL (LSTM and 1-D CNN)
models gave more accurate estimates of wheat yield than the RF model. The precision of
the LSTM model was greater than that of the 1-D CNN model, which proved the advantage
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of the LSTM model in extracting the phenological information contained in time series of
satellite observations. The MREs for all three models at the site scale, which ranged from
8.71% to 10.43% (shown in Figure 9), were much lower than the MREs at the municipal
level, ranging from 20.38% to 23.63%, and those at the county level, ranging from 23.03%
to 25.60%. The main reason was that the estimation errors of the wheat-planting areas
(as shown in Figure 7) were propagated to the estimation errors of wheat yields at the
municipal and county levels, which were calculated by multiplying the yield per unit area
and the wheat-growing areas.

Finally, the trained LSTM model was used to estimate the regional wheat yields in
Henan Province in 2018 and 2019, as shown in Figure 12. In the north, mid-south and
east of Henan Province, the wheat-growing regions were dense, and the wheat yields
were higher, while in the west, the wheat-growing regions were scattered, and the wheat
yields were lower. Compared with the wheat yields in 2018, the wheat yields in the north,
mid-south and east of Henan Province were all improved in 2019. Particularly in the north
and mid-south of the Province, the wheat yields increased significantly in 2019, so the total
wheat production of the Province in 2019 was greater than that in 2018. The total wheat
production was obtained by adding the wheat yield pixel by pixel, and the result showed
that the total wheat production increased from 34,248 kt in 2018 to 36,409 kt in 2019, with a
growth rate of 6.31%.
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4. Discussion
4.1. Advantages of the Yield Estimation Models in this Study

Remote sensing observations have the advantage of estimating crop yields over
large areas [49,50]. In past studies, DL models have often been adopted to construct
numerical relationships of remote sensing VIs and crop yields without considering crop
mechanisms, which were then used for crop-yield estimates based on satellite data alone.
The incorporation of crop-growth models into DL architectures is a potential research area
for improving crop-yield estimation and prediction by considering mechanisms of crop
growth and development. As an alternative, in this study, the LSTM and 1-D CNN models
were trained by substituting the CERES-Wheat-simulated LAI and yield time series into the
models before estimating the regional wheat yields in Henan Province. The incorporation
of CERES-Wheat simulations into DL models provided highly accurate estimates of winter
wheat yields based on remote sensing input.
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Previous studies have explored correlations between multitemporal LAI (or VIs)
and crop yields based on multivariate linear regression, RF or support-vector machines
(SVMs) [51,52]. Although the methods used in these studies usually produce improved
crop-yield estimates, they are not capable of dealing with time series of satellite data. Crop
LAI values (or VIs) are inherently temporal; the past values of the state variable often affect
future causality. Thus, a method such as the LSTM that learns patterns from sequences
of satellite data has greater potential than other methods, such as the RF method, that
treat input data from a static viewpoint [26,53]. In this study, the LSTM, which effectively
learns important features from time-series satellite data, outperformed the RF and 1-D
CNN models in estimating regional wheat yields. Moreover, the LSTM and 1-D CNN
models represent great prospects for providing municipality- and county-level wheat-
yield data, contrasting with the statistical yield data released by the Henan Provincial
Bureau of Statistics.

4.2. Uncertainty and Potential Refinement

In this study, the accuracy of wheat-yield estimates was high at the site scale but
much lower at both the municipal and county levels, partly due to errors in estimated
wheat areas for each municipality and county. In the future, remotely sensed data with
higher spatial resolution (such as Landsat and Sentinel-2 data) will be used to identify
the growing regions of winter wheat by combining temporal phenological characteristics
and spatial information contained in satellite images to improve the accuracy of wheat
area estimation [54,55]. This will further improve the accuracy of regional wheat-yield
estimation at municipal and county levels.

In this research, the LSTM model was used to estimate regional wheat yields in Henan
Province. In the future, wheat yields will be predicted months in advance by combining
the LSTM method, CERES-Wheat model and forecasts of meteorological data to provide
a better basis for policy-making by food security departments. In addition, the method
adopted in this study has lower computational costs than the data-assimilation method for
estimating regional crop yields. However, in future work, the yield-estimation accuracy of
combinations of DL and crop-growth models will need to be compared with that of the
data-assimilation method to explore the feasibility of improving the accuracy of regional
crop-yield estimation and prediction.

Furthermore, the integration of the LAI (or VIs), land-surface temperature, precipita-
tion and soil moisture has proven to be a promising method to increase the accuracy of
yield estimation [56–58]. However, in this study, only the LAI was used for wheat-yield
estimates. In addition to the LAI, wheat yields are also influenced by water stress, light, and
day–night temperature differences. Therefore, future work will need to consider multiple
variable factors for wheat-yield estimation. Other potential improvements, such as the
fusion of the LSTM and CNN models, could also improve wheat-yield estimates. The LSTM
model can be fused with CNN models to generate a DL model that can simultaneously
extract temporal and spatial features from time-series satellite images.

5. Conclusions

In this study, the combination of the MODIS NDVI and LSTM model was adopted to
identify the wheat-planting regions in Henan Province and calculate the wheat-growing
areas for 18 municipalities and 80 counties. The calculated wheat-growing areas were
strongly correlated with statistical areas at the municipal and county levels. This result
demonstrated that the LSTM model has the advantage of capturing phenological features
contained in the time series of the MODIS NDVI, thus providing highly accurate estimates
of wheat-growing areas.

The time series of the LAI and grain yields simulated by the CERES-Wheat model
were used to train and evaluate the LSTM, 1-D CNN and RF models. Both the LSTM and
1-D CNN models effectively learned important information from various LAI curves for
wheat-yield estimates, thus achieving higher accuracy than the RF model. Moreover, the
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accuracy of the LSTM model was significantly higher than that of the 1-D CNN model due
to the better ability of the LSTM model to treat time-series satellite data. Then, the trained
LSTM, 1-D CNN and RF models were combined with MODIS-retrieved LAI time series
to estimate wheat yields in Henan Province pixel by pixel. The estimated yields at the
pixel scale were combined with the wheat-growing areas to calculate the wheat yields of
18 municipalities and 80 counties. The estimated yields from the three models correlated
strongly with statistical yields at the municipal and county levels, and the MRE and RMSE
values of the LSTM model were lower than those of the 1-D CNN and RF models. Based on
the above findings, the LSTM model achieved the highest estimation accuracies for wheat
yields at the site, municipal and county levels.

Finally, the trained LSTM model was used to estimate wheat yields in Henan Province
in 2018 and 2019. The wheat yield in 2019 was greater than that in 2018 with a growth
rate of 6.31%. The LSTM model proposed in this study provided accurate estimations of
regional wheat yields, which can support agricultural management decisions related to
wheat production by policy-makers.
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