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Abstract: Rapid urbanization has degraded some important ecosystem services and threatens so-
cioeconomic sustainability. Although many studies have focused on the effect of urbanization on
ecosystem services, the effect and its threshold have not been well-identified spatially. In this study,
we propose a research framework by integrating nighttime light data, the InVEST (Integrated Valua-
tion of Environmental Service and Tradeoffs) model, and a spatial response index to characterize the
response of ecosystem services to rapid urbanization. We considered Foshan City as a case study
to explore the effect of rapid urbanization on ecosystem services during 2000–2018. Our results
showed that rapid urbanization resulted in a 49.13% reduction in agricultural production and a
10.13% reduction in habitat quality. The spatial response index of agricultural production, habitat
quality, soil retention, water yield, and carbon sequestration were 14.25%, 2.94%, 0.04%, 0.78%, and
0.07%, respectively. We found that developing urban areas had the highest spatial response index,
indicating that this area was the crucial area for future land management. We consider that our
research framework can help identify the key areas affected by rapid urbanization. Visualizing
the spatial response index and extracting the threshold for different levels of urbanization will be
conducive to sustainable urban management and planning.

Keywords: land-use change; nighttime light data; InVEST; urban planning and management

1. Introduction

Urbanization is one of the most prominent features of contemporary global environ-
mental change [1,2], and Chinese cities are undergoing rapid urbanization [3]. This is
evident from the increase in the proportion of the urban population from 17.9% to 52.6%
between 1978 and 2012 [4]. In addition, urbanization of the population has been accom-
panied by considerable land-use changes. These areas have suffered from environmental
pollution, ecological deterioration, and economic loss [5,6]. Recently, the effect of rapid
urbanization on ecosystems and resilient socio-ecological systems has attracted attention,
with previous studies focusing on urban agriculture [1,7,8], urban forests [9,10], urban
water [11,12], and habitat quality [13,14]; maintaining a healthy environment is relevant
for sustainable urban construction and planning.

Complex urban socio-ecological systems result from the interaction between humans
and nature. When planning sustainable cities, we need to move beyond city limits and
consider the entirety of the human-dominated system, which depends on natural ecosys-
tems [15]. Nighttime light data are closely linked to human-based systems and are typical
signals of regional economic and social activities. Such data have been widely used to
determine the extent of built-up land and spatio-temporal characteristics of urbanization
dynamics [16,17]. These studies mainly focus on the relationship between nighttime light
data and urban construction land expansion [18,19]. Meanwhile, with the expansion of the
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application range of nighttime light data, these data are applied to more research on the
impact of urbanization, such as vegetation primary productivity [20], habitat quality [21],
and other ecological effects [22]. Many previous studies use the digital numbers (DN) value
of nighttime light data to identify urbanization areas as a main method. However, how
to identify urban developed areas, developing areas, and rural areas through threshold
division is a still problem worth discussing. Therefore, this study will use population,
economy, and land use data to link the nighttime light data with the urbanization levels,
and then to identify different levels of urbanization areas.

ES are recognized as the benefits people obtain from ecosystems, which incorporate
society and ecosystems and support the survival and development of a population’s well-
being [23–25]. Studies on the quantification of ES mainly include physically quantifying
services and assessing the economic value of interest [24,26]. These quantitative assess-
ments, modeling, and mapping technologies of ES have been widely used for regional
sustainable development [27,28], especially in rapidly urbanized areas [25,29]. In the previ-
ous studies, land use and land cover change (LULC) data were widely used as basic data
to evaluate the ES changes in the process of urbanization [30–33]. These case studies, such
as by Lyu [30], Long [31], Peng [32], and Liu [33], have gradually linked land use, ecosys-
tem services, and urbanization. However, how ecosystem services respond to land use
changes due to urbanization is not yet clear. In the meantime, from the perspective of land
ecological management, the demand for quantitative and spatial visualization research
is increasing. Therefore, it is necessary to clarify the quantitative and spatial response
relationship between changes in ecosystem services and land use changes. In our study,
we defined a spatial response index to characterize the impact of rapid urbanization on ES,
and a threshold was spatially visualized to assist with urban planning and management.

The present study focused on Foshan City in the Pearl River Delta region, which
is a typical representative of rapid urbanization in China. Based on the statistics, the
unprecedented rate of urbanization increased from 75.06% to 95.00% in 2000–2018 and has
had a considerable effect on Foshan. As an important city in the Guangdong–Hong Kong–
Macao Greater Bay Area, the rapid development of advanced manufacturing has also
affected the ecological environment quality, agricultural production, and human settlement
of Foshan. Our objective was to propose a research framework to integrate nighttime light
data, the Integrated Valuation of Environmental Service and Tradeoffs (InVEST) model,
and a spatial response index to address the effect of rapid urbanization on ES. Based
on multi-source data, we established the relationship between the nighttime light data
index and the urbanization level to identify the different levels of urbanization areas. We
aimed to resolve the following specific research problems: (1) How can the relationship
between the nighttime light data index and the urbanization level be established to identify
urbanization areas? (2) Which kind of ES is most affected by rapid urbanization? Which
area exhibits the most considerable changes in ES and responsiveness of ES to rapid
urbanization? We quantified and mapped five vital ES, including agricultural production,
carbon sequestration, water yield, soil retention, and habitat quality under three different
urbanization levels (developed urban, developing urban, and rural areas) between 2000
and 2018. We considered that our results and maps can be used for ecosystem protection
or restoration activities to improve sustainable urban planning and management.

2. Materials and Methods
2.1. Study Area

Foshan is spread across an area of approximately 3792.65 km2 in the south–central area of
Guangdong Province, southern China (22◦38′–23◦34′ N, 112◦22′–113◦23′ E). The Xijiang River,
Beijiang River, and tributaries of the Pearl River run through Foshan. The study area has a
southern subtropical monsoon climate with an average annual temperature of approximately
24 ◦C and average annual precipitation of 1600–2000 mm [34]. Abundant hydrothermal
conditions have contributed to a distinct “dike-pond” agriculture–aquaculture multiplex
system to achieve renewable and sustainable development of ecological agriculture [35].
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Administratively, Foshan contains five districts: Sanshui, Nanhai, Chancheng, Shunde,
and Gaoming (Figure 1). Since the implementation of the Chinese economic reform policy in
1979, Foshan has experienced unprecedented rapid urbanization and economic growth. The
urbanization rate in this area has been far higher than that across the rest of China [36,37].
During 2000–2018, the permanent population increased from 5.34 million to 7.96 million,
the rate of urbanization increased from 75.06% to 95.00%, and the gross domestic product
increased from 105.04 billion to 993.59 billion yuan [38].
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Figure 1. Location of Foshan City, China.

2.2. Research Framework

We developed a framework to integrate nighttime light data, InVEST, and the spatial
response index of urban ES. This framework was used to address problems pertaining
to the effects of rapid urbanization on vital regional ES and the responsiveness of ES to
changes in LULC (Figure 2). The spatial response index and spatial change patterns of ES
can help policy makers identify key areas that suffer from increased urbanization.

First, we constructed a series of consistent nighttime light datasets by integrating the
Defense Meteorological Satellite Program’s Operational Line-scan System (DMSP-OLS)
and the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (NPP-VIIRS). The nighttime light data from 2000 and 2018 were used to classify the
urbanization level of Foshan and to identify the rural, developing, and developed areas.
Second, we used the InVEST and empirical models to assess the changes in agricultural
production, carbon sequestration, water yield, soil retention, and habitat quality. We
quantitatively evaluated the changes in LULC and ES from 2000 to 2018 and calculated
the spatial response index under different urbanization levels. Finally, the various ES were
normalized, reclassified, and overlaid to determine the total ES. The spatial distribution
and zoning thresholds of the response of total ES to urbanization were mapped.
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Figure 2. Method framework linking nighttime light data, land use and land cover change (LULC), and ecosystem
services (ES).

2.3. Data Collection

We used nighttime light data to quantify and classify the level of urbanization in Fos-
han. The DMSP-OLS light product in 2000 and NPP-VIIRS monthly product in 2018 were
downloaded from the website of the Earth Observation Group. Owing to the differences
between NPP-VIIRS and DMSP-OLS images, we constructed a series of consistent night-
time light datasets through integration and calibration. The inter-calibration method was
referred to in the literature [39]. Nighttime light data from two sensors in the overlapping
year of 2012 were used to construct the calibration function (Figure 3). The calibrated DN
ranged from 0 to 63, with higher values representing higher levels of urbanization [40,41].
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We used data from 2000 and 2018 because the identification of land-use changes and
changes in ES requires a long-term process. The data from 2018 were part of the latest
and most complete data series that we could obtain. This period was also the period
that experienced the fastest urbanization in Foshan. We utilized nighttime light data
with 30 arc-second grid spatial resolution (approximately 1 km). Gross domestic product
(GDP) and population density data were also at 1 km spatial resolution. The other data
category included LULC data at 300 m spatial resolution, the digital elevation model at
30 m spatial resolution, soil data at 1 km, NDVI data at 1 km, and meteorological data from
an observation station, which were resampled to 300 m for LULC and ES analysis. The
data category and sources are shown in Table 1.

Table 1. Data category and sources.

Data Source Link

Nighttime light data
Defense Meteorological Satellite Program’s

Operational Line-scan System
https://ngdc.noaa.gov/eog/dmsp.html

accessed on 20 May 2021
Suomi National Polar-orbiting Partnership Visible

Infrared Imaging Radiometer Suite
https://ngdc.noaa.gov/eog/viirs/download_
dnb_composites.html accessed on 15 May 2021

LULC data Land Cover Climate Change Initiative Climate
Research Data Package

https://www.esa-landcover-cci.org/ accessed
on 16 March 2021

Digital elevation data
International scientific data-mirroring website of
the Computer Network Information Center of the

Chinese Academy of Science

http://www.gscloud.cn/ accessed on
16 March 2021

Soil data Harmonized World Soil Database 1.1 http://westdc.westgis.ac.cn/ accessed on
1 March 2021

Gross domestic product National Earth System Science Data Center http://www.geodata.cn/ accessed on
8 October 2021

population density Resource and Environment Science and
Data Center

https://www.resdc.cn/ accessed on
8 October 2021

NDVI
Level-1 and Atmosphere Archive & Distribution

System (LAADS) Distributed Active Archive
Center (DAAC)

https://ladsweb.modaps.eosdis.nasa.gov/
accessed on 8 October 2021

PM2.5 ChinaHighAirPollutants (CHAP) https://weijing-rs.github.io/product.html
accessed on 8 October 2021

Meteorological
observation station data China Meteorological Data Network http://data.cma.cn/ accessed on 15 March 2021

2.4. Classification of Urbanization Levels

To establish the relationship between nighttime light data and the degree of urbaniza-
tion development, we used the DN threshold to identify spatial regions under different
levels of urbanization development over a period of time (2000–2018) [42]. Based on
population density, land use intensity, and GDP, we constructed a comprehensive urban
development index that characterized Foshan’s urbanization level. Land use intensity
refers to the percentage of construction land area to the total area of the region, reflecting
the intensity of human activities [43]. The greater the proportion of construction land
area, the greater the intensity of human activities and the higher the level of urbanization.
Population density can reflect the degree of population concentration in a city. The greater
the population density, the higher the level of urbanization. GDP reflects the economic
level of the region. The higher the GDP, the higher the level of urbanization. Due to the
obvious differences in population density and GDP per area in some developed areas,
the two indicators fluctuate greatly. Therefore, with the method of logarithm in statistics,
the weakened volatility characteristics are substituted into the calculation to facilitate
subsequent analysis. Based on the results of comprehensive urbanization indicators, the
Jenks natural breakpoint method was used to divide the urbanization level into three levels:
high, medium, and low, and the spatial distribution of Foshan’s urbanization levels in 2000

https://ngdc.noaa.gov/eog/dmsp.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://www.esa-landcover-cci.org/
http://www.gscloud.cn/
http://westdc.westgis.ac.cn/
http://www.geodata.cn/
https://www.resdc.cn/
https://ladsweb.modaps.eosdis.nasa.gov/
https://weijing-rs.github.io/product.html
http://data.cma.cn/
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and 2018 were obtained (Figure 4). The formula for calculating the comprehensive level of
urbanization is as follows:

Di= xi × logyi×logzi, (1)

where Di is the comprehensive level of urbanization in year i, xi is the land use intensity, yi
is the population density, and zi is the GDP in Foshan.
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Figure 4. Spatial distribution of urbanization levels in Foshan in 2000 and 2018 based on comprehen-
sive urban development indicators.

Based on the results of urbanization levels in Foshan in 2000 and 2018, we extracted the
average DN value of nighttime light data in three areas with different levels of urbanization
(high, medium, and low) as the threshold. Based on the calibrated nighttime light data,
recorded DN and calibrated DN were used as indicators to identify the urban sprawl in
Foshan from 2000 (DN2000) to 2018 (DN2018). We confirmed the DN threshold and classified
Foshan into three different levels of urbanization: developed urban, developing urban, and
rural areas (Table 2).

Table 2. Classification of urbanization level and indicators of digital numbers (DN) from nighttime
light data.

Urbanization Categories Digital Numbers Threshold

Developed urban area DN2000 ≥ 60; DN2018 ≥ 62
Developing urban area DN2000 < 60; DN2018 ≥ 62

Rural area DN2000 < 60; DN2018 < 62

2.5. ES Assessment and Mapping

We focused on five critical ES, namely, provisioning services (agricultural production),
regulating services (carbon sequestration, water yield, and soil retention), and supporting
services (habitat quality). The regulating and supporting services were assessed by InVEST,
which is an assemblage model jointly developed by Stanford University, the World Wildlife
Fund, and the Nature Conservancy under the auspices of the Natural Capital Project.
ArcGIS version 10.2 and the InVEST model were integrated for the assessment. The model
was spatially explicit, using maps as information sources and producing maps as outputs.
The model can be used to analyze the effect of land use on ES based on given land-use
maps and biophysical data for the region [44].
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2.5.1. Agricultural Production

Agricultural production was used as an indicator of provisioning services. We defined
the agricultural production value (based on the 2018 value of the USD) to include the
total production value of agriculture, forestry, animal husbandry, and fisheries. Based on
the LULC data and the Statistical Yearbook in Foshan (http://www.foshan.gov.cn/gzjg/
stjj/tjsj_1110964/lssj/index.html accessed on 8 May 2021), we included the value of food
production on the grid. For different types of total output value, agriculture corresponded
to cropland, forestry corresponded to woodland, animal husbandry corresponded to
grassland, and fisheries corresponded to water bodies. The formula is as follows:

Gi= Ai ×
Fi
Si

, (2)

where Gi is the total output value of food type i for a grid, Ai is the area of land-use type
corresponding to food type i under the 300-m grid, Fi is the total output value of food type
i in Foshan, and Si is the land-use type area corresponding to food type i.

2.5.2. Carbon Sequestration

Carbon sequestration is an important indicator of the terrestrial carbon cycle and
regional regulating services [45] and indicates the transfer of atmospheric CO2 into dif-
ferent carbon pools [46]. As used in the InVEST model, carbon sequestration aggregates
the amount of carbon stored in four carbon pools (aboveground biomass, belowground
biomass, soil, and dead organic matter) according to the land-use maps and carbon density.
The formula is as follows:

Ct= Cabove+Cbelow+Csoil+Cdead, (3)

where Ct is the total carbon storage (MgC), Cabove is the carbon storage (MgC) in above-
ground biomass, Cbelow is the carbon storage (MgC) in belowground biomass, Csoil is the
carbon storage (MgC) in soil, and Cdead is the carbon storage (MgC) in dead organic matter.
The other carbon density parameters refer to previous studies [29,47,48].

2.5.3. Water Yield

The water yield in the InVEST model was defined as the amount of water runoff from
the landscape. The water yield was calculated based on the principle of the Budyko curve
and annual average precipitation [49]. The formula is as follows [50]:

Yxj =

(
1 −

AETxj

Px

)
× Px, (4)

where Yxj is the annual water yield (mm) per pixel x of LULC j, AETxj is the annual actual
evapotranspiration (mm) per pixel x of LULC j, and Px is the annual average precipitation
(mm) per pixel x. These parameters were derived from meteorological observation station
data (Table 1).

2.5.4. Soil Retention

The soil retention service was calculated based on the revised universal soil loss
equation (RUSLE) [51]. The input data included geomorphology, climate, vegetation cover
and management, and support practice. The module considers the interception capabilities
of the ground. The formulae are as follows [50]:

USLEi = Ri × Ki × LSi × Ci × Pi, (5)

RKLSi= Ri × Ki × LSi, (6)

SDi = RKLSi −USLEi, (7)

http://www.foshan.gov.cn/gzjg/stjj/tjsj_1110964/lssj/index.html
http://www.foshan.gov.cn/gzjg/stjj/tjsj_1110964/lssj/index.html
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where USLEi is the amount of actual soil erosion on pixel i; RKLSi is the amount of potential
soil erosion on pixel i; SDi is the amount of soil retention (t) on pixel i; Ri is the rainfall
erosivity (M J ·mm (ha · h)−1), which is calculated by using the Wischmeier formula [52]
based on the average monthly and annual precipitation; Ki is the soil erodibility (t· ha ·
h (M J · ha · mm)−1), which is calculated by the erosion-productivity impact calculator
model [53]; and LSi is the slope length-gradient factor.

2.5.5. Habitat Quality

Habitat quality is defined as a supporting ES that can provide conditions appropriate
for individual and population persistence [54]. In this study, we integrated the habitat qual-
ity results of the InVEST model with NDVI and PM2.5 data (Table 1) to calculate the habitat
quality in Foshan. These data and results were overlaid to get a comprehensive habitat
quality map. The InVEST habitat quality model was based on a coarse-filter approach,
which combined the information on LULC and threats to biodiversity [50]. These threats
were considered as the sources of degradation, especially for human-modified LULC types.
The sensitivity of each habitat type to degradation was based on general principles of
landscape ecology and conservation biology [55,56]. A habitat quality landscape score was
translated into a habitat quality index using a half-saturation function, which is simply
the aggregate of all grid cell-level scores. Each LULC type was assigned a habitat quality
index, and the formula is as follows [50]:

Qxj = Hj

(
1−

Dxj
2

Dxj
2 + k2

)
, (8)

where Qxj is the habitat quality in grid cell x, that is, in LULC type j; Qxj can never be >1;
Hj represents habitat suitability; k is the half-saturation constant and was set as 0.5; and Dxj
is the total threat level in grid cell x with LULC type j, and the related parameters refer to
previous literature [29]. The formula is as follows [50]:

Dxj =
R

∑
r=1

Yr

∑
y=1

(
Wr

∑R
r=1 Wr

)
ryirxyβxSjr, (9)

where R is the number of threats, r is the threat, y indexes all grid cells on r’s raster map, Yr
is the set of grid cells on r’s raster map, Wr is the threat weight and indicates the relative
destructiveness of a degradation source to all habitats, βx indicates the level of accessibility
in grid cell x, where 1 indicates complete accessibility, and Sjr is the sensitivity of habitat
type j to threat r, where values closer to 1 indicate greater sensitivity. The effect of threat r
that originates in grid cell y, ry, on the habitat in grid cell x is given by irxy, and the related
parameters refer to previous literature [29]. The formula is as follows [50]:

irxy

 1 −
(

dxy
drmax

)
if linear

exp
(−2.99dxy

drmax

)
if exponential

, (10)

where dxy is the linear distance between grid cells x and y, and dr max is the maximum
effective distance of threat r’s reach across space. If irxy > 0, then grid cell x is in degradation
source ry’s disturbance zone.

Based on historical land-use changes in Foshan, we selected cropland, built-up land,
and unused land as degradation sources. The input parameters were determined from
the literature [50,57,58]. The required inputs included the LULC map, threat factor layers
(cropland, built-up land, and unused land), the accessibility to threats, the weight of the
threat factor (Table 3), and the sensitivity of land types to each threat. These historical data
refer to previous literature [29] to establish threat source parameters. We assumed that
these empirical relationships were constant during long-term land-use changes. Habitat
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quality scores in the maps should be interpreted as relative scores of 0 to 1, with a perfectly
suitable habitat scored as 1 and a non-habitat scored as 0.

Table 3. Attributes of the threat sources for different LULC type.

Threat Maximum Effective
Distance (km) Weight Decay

Cropland 0.5 0.5 Linear
Built-up land 2 0.7 Exponential
Unused land 6 1 Exponential

2.6. Spatial Response of Ecosystem Services to Rapid Urbanization

We defined a spatial response index to characterize the impact of rapid urbanization
on ecosystem services. The spatial response index is to measure the percentage change in
ES due to the percentage change in LULC. The formula was based on the land-use dynamic
index and elasticity for ES values as follows [6]:

LCD =
∑6

i=1 ∆LUTi

∑6
i=1 LUTi

× 100%, (11)

R =

∣∣∣∣∣ (ES j2018 − ESj2000)/ESj2000

LCD

∣∣∣∣∣× 100%, (12)

where R is the spatial response index of changes in ES in response to LULC, LCD represents
the land change dynamics in a period, ∆LUTi is the converted area of LULC type i, LUTi is
the area of LULC type i, ESj2018 represents the total amount of ES type j in 2018, and ESj2000
represents the total amount of ES type j in 2000.

For the threshold identification and mapping of the spatial response index, we first
normalized the results of all ES to compare the spatio-temporal heterogeneity of effects
across ES. Second, we reclassified and recoded the value of each ES based on the natural
breaking point of the data. For example, the corresponding codes for high, medium, and
low carbon storage were 1, 2, and 3, respectively. The codes corresponding to the high,
middle, and low values of agricultural production were 10, 20, and 30, respectively. The
codes corresponding to the high, middle, and low values of habitat quality were 1000,
2000, and 3000, respectively. Third, we assumed that the weight of each ES was the same
and spatially superimposed the results. Then, we reclassified the coded results again to
obtain the total ES. Finally, to determine the threshold of spatial continuity, we converted
the results into point data and performed a spatial kriging interpolation. The value of the
spatial responsive index was derived from the results of spatially interpolated total ES,
ranging from 1 to 3 (a higher value reflects greater spatial responsiveness on the grid).

2.7. Sensitivity Analysis

We used the Morris method [59] to test the sensitivity of the InVEST model to the
variations in precipitation, actual evapotranspiration, volumetric plant available water
content, vegetation rooting depth, rainfall erosivity, soil erodibility, attributes of threat
sources, habitat suitability, and sensitivity. When other parameters remained unchanged,
an original value of ± 10% was taken to disturb a certain parameter. Then, the changed
parameters were input into the InVEST model and the results were compared. Sensitivity
to agricultural production and carbon sequestration were based on empirical formulas
with a fixed proportion. The model was run independently for each of these variations.

3. Results
3.1. Urbanization Levels and LULC in Foshan

The different urbanization levels in Foshan are shown in Figure 5. The average DN
value in Foshan was 31.56 in 2000 and 45.91 in 2018. The higher DN was mainly distributed
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in eastern Foshan in 2000, progressively extending to the central area in 2018. The mean
DN value for developed urban areas (62.99) was greater than that for developing urban
areas (62.71) and rural areas (28.02) in 2018. The growth rate of the mean DN value in
developing urban areas was 42.04% during 2000–2018. However, the developed urban
areas were only responsible for approximately 2.25% of the growth rate. The developed,
developing, and rural areas were 339.89, 1596.61, and 1734.60 km2, respectively.
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Cropland comprised the largest area in Foshan in 2000, accounting for 48.43% of the
total area. In 2018, built-up land was the largest area, accounting for 35.99% of Foshan
(Figure 6). Urbanized land increased in area, whereas all other land-use types decreased in
area. Regarding the transformation of land-use types, cropland and grassland decreased the
most. The area of cropland, woodland, grassland, and water bodies that were transformed
to built-up land was 523.53, 56.52, 175.14, and 93.33 km2, respectively. For different
urbanization levels, cropland decreased by 66.97%, woodland by 53.34%, and grassland by
87.75%, and built-up land increased by 86.26% in the developed urban area. The developing
urban area had the largest increase in built-up land, by 415.77%. Such a rapid expansion in
built-up land was also observed in rural areas, with a 286.08% increase.

3.2. Spatio-Temporal Heterogeneity of Effects across ES
3.2.1. Agricultural Production

The changes in agricultural production services in Foshan from 2000 to 2018 are shown
in Figure 7. The results show that the overall capacity of provisioning services dropped
during this period. Areas with higher agricultural production were mainly distributed
along the rivers and north-central rural areas. The gross output of agricultural production
decreased by 1.20 million USD (based on the 2018 value of the USD) during this period
(Table 4). The decline in agricultural production was mainly concentrated in developing
urban areas, reduced by 963.1 × 103 USD. However, the area with the largest relative
decrease in agricultural production was located in developed urban areas, a decrease of
77%. The developed urban and rural areas reduced by 136.7 × 103 and 103.0 × 103 USD,
respectively.
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Table 4. Changes in ecosystem services in areas with different urbanization levels in Foshan from 2000 to 2018.

Urbanization
Level

Agricultural
Production
(×103 USD)

Carbon
Sequestration
(×103 Mg C)

Water Yield
(×103 m3)

Soil Retention
(×106 t)

Habitat Quality
Index

4 % 4 % 4 % 4 % 4 %

Rural −103.0 −13.70 10.3 0.06 141.7 0.54 1614.5 0.13 13.3 0.14
Developing urban −963.1 −63.33 79.9 0.55 1194.0 4.96 −3169.6 −3.64 −1740.4 −21.63
Developed urban −136.7 −77.98 −5.5 −0.16 169.0 3.04 −556.9 −4.01 −191.5 −17.79

Foshan −1202.9 −49.13 84.7 0.24 1504.7 2.69 −2112.0 −0.15 −1918.6 −10.13
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3.2.2. Carbon Sequestration

The changes in carbon sequestration in Foshan from 2000 to 2018 are shown in Figure 8.
The changes in carbon sequestration were concentrated in developing urban areas. The
areas of high carbon sequestration were mainly distributed in the southwestern area cov-
ered with woodland. Carbon sequestration increased by 84.7 × 103 MgC during 2000–2018
(Table 4). The rural areas had the highest carbon sequestration (17,850.6 × 103 MgC in 2000;
17,860.9 × 103 MgC in 2018). Regarding the overall rate of change in carbon sequestration,
the developing and rural areas increased by 0.55% and 0.06%, respectively. In the developed
area, the carbon sequestration decreased by 0.16%. The area where carbon sequestration
had not changed accounted for 65% of the total area. The area with increased carbon
sequestration was mainly in the developing and northern developed areas, accounting for
22% of the total area. The area with decreased sequestration was in the southern developed
urban area, accounting for 13% of the total area.
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3.2.3. Water Yield

The changes in water yield in Foshan from 2000 to 2018 are shown in Figure 9. The
results show that water yield increased in developed and developing urban areas. Higher
values for water yield were observed in the eastern developed urban area. The water yield
increased by 1504.7 × 103 m3 in Foshan from 2000 to 2018 (Table 4). In 2000, the developed,
developing, and rural areas showed water yields of 556.51 × 104 m3, 2408.49 × 104 m3,
and 2621.68 × 104 m3, respectively. In 2018, the total water yield in the developed and
developing urban areas increased by 4.96% and 3.04%, respectively. The changes in water
yield showed that the area with increased yield accounted for 28% of the total area.



Remote Sens. 2021, 13, 4374 13 of 22

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 24 
 

 

 
Figure 8. Spatial patterns of carbon sequestration in Foshan from 2000 to 2018. 

3.2.3. Water Yield 
The changes in water yield in Foshan from 2000 to 2018 are shown in Figure 9. The 

results show that water yield increased in developed and developing urban areas. Higher 
values for water yield were observed in the eastern developed urban area. The water yield 
increased by 1504.7 × 103 m3 in Foshan from 2000 to 2018 (Table 4). In 2000, the developed, 
developing, and rural areas showed water yields of 556.51 × 104 m3, 2408.49 × 104 m3, and 
2621.68 × 104 m3, respectively. In 2018, the total water yield in the developed and develop-
ing urban areas increased by 4.96% and 3.04%, respectively. The changes in water yield 
showed that the area with increased yield accounted for 28% of the total area. 

 
Figure 9. Spatial patterns of water yield in Foshan from 2000 to 2018. 

3.2.4. Soil Retention 
The changes in soil retention in Foshan from 2000 to 2018 are shown in Figure 10. The 

results show a small change (0.15% decrease) in soil retention for the study area from 2000 

Figure 9. Spatial patterns of water yield in Foshan from 2000 to 2018.

3.2.4. Soil Retention

The changes in soil retention in Foshan from 2000 to 2018 are shown in Figure 10. The
results show a small change (0.15% decrease) in soil retention for the study area from 2000
to 2018 (Table 4). The decreased area was mainly distributed in developed and developing
urban areas. Areas with higher values of soil retention were toward the southwest of the
rural areas. The total amount of soil retention in Foshan was 139.07 × 104 t in 2000 and
138.86 × 104 t in 2018. The rural areas accounted for the largest share of soil retention. The
developed and developing urban areas showed a 4.01% and 3.64% decrease in soil retention,
respectively. Areas with decreased soil retention accounted for 26% of the total area.
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3.2.5. Habitat Quality

The changes in the habitat quality index in Foshan from 2000 to 2018 are shown in
Figure 11. The results show a trend of degraded habitat quality, especially in developing
and developed urban areas. Areas with higher habitat quality indices were mainly found
in the southwest of the study area. The lower value areas were distributed to the east,
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gradually expanding to the northwest during the study period. The habitat quality index
apparently declined by 17.79% in developed urban areas and 21.63% in developing urban
areas. However, the habitat quality in rural areas increased by 0.14% (Table 4). Areas with
decreased habitat quality accounted for 48% of the total area.
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3.3. Spatial Response of ES Change with Respect to LULC

In Foshan, the spatial response of agricultural production (16.23%) was higher than
that of other ES, followed by soil retention (5.75%), habitat quality (3.47%), water yield
(2.38%), and carbon sequestration (0.05%).

In areas with different urbanization levels, the spatial response index differed for
different ES (Figure 12). The sum of spatial response for the total ES in rural, developing,
and developed areas was 14.15%, 22.50%, and 33.44%, respectively. The spatial response
index of agricultural production was 4.05% in rural areas, 13.21% in developing urban
areas, and 20.53% in developed urban areas. The spatial response of carbon sequestration
in developing areas was higher than that in developed and rural areas. The spatial response
of water yield changes was 4.24% in rural areas, 2.95% in developing urban areas, and
2.16% in developed urban areas. The highest soil retention spatial response was observed
in rural areas (6.02%). The spatial response index of habitat quality was 0.09% in rural
areas, 4.50% in developing urban areas, and 4.69% in developed urban areas.

The spatial distribution of spatial response index derived from the total ES with
respect to LULC is shown in Figure 13. The areas with higher values were more consistent
with the distribution of water bodies. Four high-value accumulated areas were mainly
distributed in the developing urban area. The spatial response index of the rural areas was
lower. The average spatial response index in rural, developing, and developed urban areas
was 0.39, 0.71, and 0.45, respectively.
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4. Discussion
4.1. Influence of Urbanization on ES in Foshan

Our results showed that rapid urbanization and expansion of built-up land have led to
a significant reduction in agricultural production. This reduction in provisioning services
was also found in another study that focused on the changes in ES in Foshan [60]. The
main reason for the decrease in agricultural production was a severe labor shortage in rural
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communities [3]. Many people have migrated to urban areas to engage in industrial and
commercial activities in search of higher wages. Labor shortages and industrialization have
hastened the considerable changes in traditional agricultural practices. This is a common
problem in the Pearl River Delta region; decreases in agricultural production have also
occurred in other cities in this region [61–63].

Interestingly, our results showed an increase in carbon sequestration, which may
conflict with other published work [44]. This is because built-up land generally includes a
certain proportion of artificial urban greening, which could have a higher carbon density
than a semi-artificial cropland ecosystem [29,64]. In addition, a decrease in agricultural
production indicates that the region needed to import resources from other regions, gen-
erating higher transport costs and transport-related emissions. This feedback of carbon
emissions also brings more challenges to carbon sequestration.

The decrease in habitat quality was mainly due to the increase in built-up land and
human activities. We treated the human-modified land types (e.g., cropland, built-up land,
and unused land) as the sources of degradation. The concentration of population (based on
nighttime light data) and the increase in built-up land (based on habitat accessibility and
sensitivity) have reduced the habitat quality, especially in developed and developing urban
areas. In addition, the increase in these threat sources could cause edge effects, with poten-
tial changes in the biological and physical conditions that occur at patch boundaries and
within adjacent patches [65]. The decrease in habitat quality has also been reported by other
studies. For example, Xiao et al. [66] proposed an ecological environment quality index
based on non-construction land, and they also observed a loss of biodiversity conservation
value in Foshan. Habitat loss has also been observed in surrounding cities with similar
urbanization processes, such as Guangzhou [67], Shenzhen [68], and Dongguan [69].

The water yield increased slightly because several considerable measures have been
undertaken to repair and restore abandoned fishponds and to build new fishponds, partic-
ularly since 2000 [67]. The increase in water yield under urbanization is consistent with
that reported by other studies [70,71]. However, some studies reported that urbanization
would lead to reduced water yield [72,73]. This conflict with our findings may be due to
precipitation differences and reservoir rivers that may be affected by urbanization. The
increase in impermeable pavements in urban built-up land may also contribute to evap-
otranspiration and surface runoff [74]. However, despite a slight increase in water yield,
impermeable pavements are harmful to underground water sources, preventing aquifer
recharge. Lowering the underground water table by preventing recharge may result in
serious water shortages and disasters.

In terms of spatial variation, our results showed that the changes in ES were mainly
concentrated in developed and developing urban areas. These results provide answers
to our second research problem regarding the areas that had the greatest changes in ES
under different urbanization levels. First, there was a reduction in agricultural production
across Foshan. The developed and developing urban areas had a higher rate of change
in agricultural production than rural areas (−77.98% and −66.33%, respectively) (Table
4). The main reason for this result was the rapid development of real estate and the
remarkable changes that have taken place in farmers’ housing and lifestyle, especially
in the Sanshui District. Second, the decrease in the habitat quality index (−21.63%) was
mainly distributed in developing urban areas. This is due to the large increase in industrial
land and population, leading to an increase in threat sources’ peri-urban area. In addition,
the variation in other ES was also concentrated in developed and developing urban areas,
such as north of Nanhai District. Industrial development and agglomeration, such as
from metal industries, furniture manufacturing, and auto manufacturing, are important
drivers of changes to land use and ES in this region. The spatial heterogeneity of ES also
highlighted the changes in urban–rural inequality [75].

Based on the statistics, the unprecedented rate of urbanization from 75.06% to 95.00%
from 2000 to 2018 has had a considerable effect on Foshan. Nighttime light data confirmed
the process of expanding urbanization in Foshan. As the second-most urbanized city in
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China, Foshan is making great efforts to achieve China’s National New-type Urbanization
Plan targets [4]. The plan covers almost every conceivable aspect of urbanization, such
as sustainable development, institutional arrangements, and implementation. It sets key
indicators, some with numerical goals, for urbanization level, public services, infrastructure,
and resources and environment, as per the guiding principle emphasizing a sustainable
and people-centered approach. Although Foshan’s indicators of urbanization have far
exceeded national targets, our results show that rapid urbanization has an inevitable effect
on the natural environment and ES, and these changes will feed back into the social system
and become a key constraint of economic development [76,77].

4.2. Implications for Urbanization Development and Sustainable Planning

With the implementation of the development plan for the Guangdong–Hong Kong–
Macao Greater Bay Area as part of the national strategy in 2019, Foshan plays an important
role in the development of advanced manufacturing. To consider the ecological effects
of urbanization, the local government will implement innovative solutions that balance
economic growth and sustainable development [67]. Several sustainable measures and
plans have been implemented in recent years, including “High-quality forest city construc-
tion planning in Foshan”, “Natural ecological civilization construction planning”, and the
ecological restoration project for rivers in Foshan.

Our results have implications for urban development and sustainable planning. We
believe that sustainable planning should consider the living environment of human settle-
ments and the effects of the ecological environment. First, our results showed that rapid
urbanization greatly affects ES in Foshan. Agricultural provisioning service transitions di-
rectly affect resource consumption in the city and are related to regional food provisioning
security [1,78]. We recommend that urban development should not encroach on cropland
and that priority should be given to increasing the intensive use of built-up areas. Our
results showed that decreases in habitat quality are mainly distributed in developed urban
areas. The threat sources have increased and intensified, altering habitat accessibility and
sensitivity [67]. Thus, it is necessary to plan and construct urban ecological corridors, such
as channel and urban green space connections, to improve landscape connectivity.

Second, areas with different levels of urbanization should respond to important
ES changes and carry out corresponding ecological restoration measures. Our spatial
response results showed the responsiveness of ES to changes in land use, indicating that
the developed and developing urban areas were the most important areas for ES changes
during 2000–2018. Agricultural production and habitat quality, which are closely related to
human survival, are more sensitive to urbanization. However, water yield services did not
pose a threat in our study. Rural areas may soon enter a critical state regarding the loss of
provisioning services due to increased industrial demand in Foshan.

Although urbanization and industrialization have greatly changed the social economy,
natural ecosystems and their services are still the cornerstone of social development. While
paying attention to the changes in industry, economy, population, and land use, we should
also understand the changes in the ecological environment and the spatial differences
in supply and services. ES is important for land-use planning and urban sustainable
development, which can help prevent the loss of natural ES from offsetting the benefits of
urbanization to the people [3]. For example, in the construction and planning processes
for new cities, the amount of urban forest and green space should be increased and
integrated into the architecture of the urban landscape. River dredging projects should
be completely integrated with regional water resource management strategies to improve
ecological connectivity. We consider that our spatial response map can directly help with
practical urban planning. The identification of spatial thresholds can help locate key
areas and implement land-use improvement and preventive measures. In the future,
challenges for managing natural resources in urban areas may involve improving land-use
efficiency within a limited area. The protection and improvement of non-construction
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land (e.g., cropland, woodland, grassland, and water bodies) are effective ways to ensure
ecological security.

Moreover, we should not only consider the change in ES provision and distribution
but also pay attention to the improvement and protection of ES quality. Urbanization
and land-use planning should consider the conservation of high-priority habitats and
high-productivity cropland. Though some indicators and numerical targets have been
proposed in China’s National New-type Urbanization Plan, such as the proportion of
“green” buildings in new constructions in cities or meeting air-quality targets [4,79], these
are not enough to ensure urbanization that is more comfortable, safer, and more harmonious
with natural development. More ecological indicators and ES, such as air quality, recreation
and tourism, and renewable energy, related to human well-being should be utilized in
urban planning to reduce risk from a natural ecosystem perspective [80,81].

4.3. Limitations and Caveats

We used ArcGIS to combine the InVEST model with remote sensing data to quantify
the effect of urbanization on ES. Some limitations and uncertainties exist in the physical as-
sessment of ES. First, the model framework employs a relatively simple functional approach
to assess ES. For example, the calculation of agricultural production by monetary value
is a compromise between data source and data spatialization. More detailed agricultural-
related spatial statistics, such as crop types and cultivation methods, are currently not
available in this study. However, the monetary value of different agricultural industry
statistics can realize the spatialization of agricultural production services. Although there
are certain fluctuations in the prices of agricultural products, our results characterize the
changes in production capacity and production levels over a period of time to a certain
extent. The estimation of soil retention involved the RUSLE formula, which is based on
a statistical relationship from many plot-scale experiments [82]. However, in practice,
the slope has nonlinear effects on vegetation restoration and soil retention, which may
overestimate the ES [83]. Meanwhile, the methods for assessing carbon sequestration and
water yield were also the simplifications of complex ecological processes related to the
carbon–water cycle [84]. The inter-annual variation of rainfall will also have an impact on
regional water yield. Future research will consider collecting and averaging rainfall data
over many years to reduce the impact of the volatility of data changes. Some changes in
ecological processes do not consider the changes in species, age, and environmental factors
over time [85].

Second, we only assessed provisioning, regulating, and supporting services and did
not include cultural services [86]. This was because our goal was to identify the objective
effects of different levels of urbanization on natural ecosystems, whereas subjective factors
and a lack of material benefits may be considered when quantifying cultural services [87].

Finally, the spatial resolution contributed to the uncertainties in our findings. Land use
has been identified as one of the most important drivers of the changes in ES provision [88–90].
We used LULC maps with a spatial resolution of 300 m in 2000 and 2018. Although higher-
precision land-use data can improve the accuracy of ES assessment, the data we used
were helpful for achieving the research objectives [91]. We paid more attention to the
spatio-temporal variation rather than the improvement in absolute accuracy.

In addition, we revised the formula to determine the spatial response of ES changes
with respect to LULC [6]. The spatial response indicator was revised to include a measure of
the percentage change in ES due to a percentage change in LULC. Song and Deng [6] used
the land-use dynamic index to calculate spatial response. However, this index represents
the annual rate of land-use change, whereas the changes in ES were within a specific
research period. Therefore, we removed the research period from the original LCD formula
and calculated the land-use change dynamics within a specific period. We presume this
revision better helped us to understand the relationship between ES changes and land-use
changes. In summary, although there were some uncertainties in the simulation, we have
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certainty in our results. These methods are ultimately a trade-off between the complexity
of ecosystem processes and the operability of model simulations.

5. Conclusions

In the present study, we proposed a research framework by integrating nighttime
light data, the InVEST model, and spatial response. Based on multi-source data, we
established the relationship between the nighttime light data index and the urbanization
levels, and identified different urbanization areas. A spatial response index was defined,
and its threshold was identified to characterize the response of ES to urbanization. We
quantified and mapped the changes in land use along with five vital ES under three
different urbanization levels in Foshan City between 2000 and 2018. Our results explain
the effect of rapid urbanization on regional vital ES.

First, our results show that rapid urbanization greatly affected agricultural production
and habitat quality services. Agricultural production reduced by 49.13% during 2000–2018
in Foshan, followed by a 10.13% reduction in habitat quality. Rapid urbanization had little
effect on regulating services in which carbon sequestration and water yield had slightly
improved, whereas soil retention had slightly decreased. Second, the changes in ES were
mainly concentrated in developing urban areas. The spatial response index of agricultural
production, habitat quality, soil retention, water yield, and carbon sequestration were
14.25%, 2.94%, 0.04%, 0.78%, and 0.07%, respectively. The average values of spatial re-
sponse index in rural, developing, and developed urban areas were 39%, 71%, and 45%,
respectively. We found that developing urban areas had the highest spatial response index,
which indicates that the ES in this area are more sensitive to land-use change.

We consider that our research framework can help identify the key urbanization
areas by identifying the threshold of nighttime light data. We recommend that areas with
different levels of urbanization should respond to important ES changes and implement
corresponding ecological conservation and restoration measures. In developed and devel-
oping urban areas, it is necessary to plan and construct urban ecological corridors, such as
urban green space connections. In rural areas, cropland protection is important. Our results
can further increase our understanding of the effect of urbanization on ES. Visualizing the
spatial response and extracting the spatial threshold will be conducive to sustainable urban
management and planning.
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