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Abstract: Many challenges prevail in cropland mapping over large areas, including dealing with
massive volumes of datasets and computing capabilities. Accordingly, new opportunities have been
opened at a breakneck pace with the launch of new satellites, the continuous improvements in data
retrieval technology, and the upsurge of cloud computing solutions such as Google Earth Engine
(GEE). Therefore, the present work is an attempt to automate the extraction of multi-year (2016–2020)
cropland phenological metrics on GEE and use them as inputs with environmental covariates in a
trained machine-learning model to generate high-resolution cropland and crop field-probabilities
maps in Morocco. The comparison of our phenological retrievals against the MODIS phenology
product shows very close agreement, implying that the suggested approach accurately captures crop
phenology dynamics, which allows better cropland classification. The entire country is mapped
using a large volume of reference samples collected and labelled with a visual interpretation of
high-resolution imagery on Collect-Earth-Online, an online platform for systematically collecting
geospatial data. The cropland classification product for the nominal year 2019–2020 showed an
overall accuracy of 97.86% with a Kappa of 0.95. When compared to Morocco’s utilized agricultural
land (SAU) areas, the cropland probabilities maps demonstrated the ability to accurately estimate
sub-national SAU areas with an R-value of 0.9. Furthermore, analyzing cropland dynamics reveals a
dramatic decrease in the 2019–2020 season by 2% since the 2018–2019 season and by 5% between 2016
and 2020, which is partly driven by climate conditions, but even more so by the novel coronavirus
disease 2019 (COVID-19) that impacted the planting and managing of crops due to government
measures taken at the national level, like complete lockdown. Such a result proves how much these
methods and associated maps are critical for scientific studies and decision-making related to food
security and agriculture.

Keywords: Google Earth Engine; cropland mapping; cloud computing; Sentinel-2; phenology;
random forest

1. Introduction

Operational agricultural monitoring products have become increasingly popular
among planners and resource managers in quick decision making, tracing, and under-
standing the associated impacts of threats (e.g., droughts, floods, socio-economic shocks, or
pandemics) on crop production and food security [1]. In any accurately monitoring related
to agriculture, whether directly or indirectly (e.g., crop inventory, crop status assessment,
and yield forecasting), an in-depth understanding of the detailed spatial patterns and the
temporal dynamics of the cropland areas is highly needed [2].
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In this regard, remote sensing provides the best opportunity to accurately and repeat-
edly map this relevant information, as it offers timeliness, global coverage, and objective
observation. Nevertheless, the task of mapping cropland areas is not a straightforward and
simple matter since it requires specific data and particular analysis techniques, meant to ex-
tract the exact required information, especially over highly heterogeneous and fragmented
regions [3]. Thus, a reliable cropland monitoring system requires satellite datasets with
both high spatial and temporal resolutions [4].

For a long time, agricultural research has traditionally relied on satellite data with
high temporal frequency and coarse spatial resolution, particularly over large areas. For
example, numerous global land cover products have been developed at moderate resolution
such as GLC2000 [5], GlobCover [6], GLC-SHARE [7], and MODIS Land Cover [8]. These
products are extremely useful for gaining a preliminary understanding of the spatial
production patterns and characteristics of agricultural croplands, such as crop dominance
and intensities [9]. However, due to their relatively coarse resolution and considerably low
accuracies, these kinds of products are far from satisfactory for describing and capturing
the process of land use and land cover changes and consequently capturing the cropland
information, especially at the field scale [10,11]. Since the free release of Landsat archive
data and the launch of Landsat 8 and Sentinel-2, medium to high-resolution data have
shown unprecedented capabilities of producing high-frequency temporal information that
was previously available only with coarse-resolution data [12]. Recent studies, although
they focus on small areas and a particular growing season, have started to take advantage
of this potential in crop classification and cropland mapping [13,14].

Historically, performing such kinds of analysis on large scales, such as national or
state/province equivalents, with high resolution (30-m or better) imagery, high-volume
storage, and without limiting to a given period, or a particular year, tends to be expensive,
slow, and cumbersome (“Big Data” problem), regardless of how efficient the commercial
imaging processing software or workstation computer-based systems are. The only notable
exceptions to this rule are a few research institutions and qualified individuals who have
access to sophisticated resources [15].

Fortunately, the recent emergence of new efficient cloud-based computing systems,
such as Google Earth Engine (GEE) [16], has enabled the development of complex remote
sensing analyses such as the generation of large-scale cropland inventories, taking advan-
tage of its high-performance computation service, associated data, and state-of-the-art
methods, including machine learning algorithms from the field of artificial intelligence [17],
that have rapidly progressed and received considerable attention due to their advantages of
being easy to process high-dimensional data and having strong generalization capabilities
compared to traditional statistical methods [18].

Up to now, GEE has been explored in several studies to establish large-scale cropland
classifications. Xiong et al. [19] deployed an automated cropland mapping algorithm
(ACMA) in GEE to produce a 30-m cropland extent product over the entire continent of
Africa by integrating Landsat 8 and Sentinel-2 data. Moreover, Teluguntla et al. [20] mapped
another excellent 30-m cropland extent for all of China and Australia from Landsat-8 data
by using a pixel-based supervised random forest machine learning algorithm executed
on the GEE. Several other studies across the world have also used Landsat and Sentinel-2
imagery available in GEE to map agricultural areas at 30 m resolution [21–23]. Nevertheless,
only a very few studies have produced large annual 10-m land use/land cover (LULC)
maps via GEE [24,25]. These studies produced very excellent maps. However, they were
focused on LULC, in which mapping croplands in detail is not always the primary objective.
Where also, in some cases, cropland is not a single land cover class but contained within
different LULC types [26].

Therefore, understanding the seasonal and interannual variations in cropland inten-
sity according to their specific phenological cycle is pivotal for addressing such research
questions [27]. Agriculturally, crop phenology information, such as crop planting, life
cycle, and harvest stage, has already been shown to be an effective alternative for agri-
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cultural management practices and determining crop types and yields [28–30]. More
specifically, the nature, magnitude, and timing of land surface phenology (LSP) dynamics
give a plethora of relevant information that may assist distinguish rather subtle differences
between morphologically similar crop classes such as cereals that can easily be confused
with natural grasslands at some periods of the cycle [31].

For this purpose, a variety of approaches and models may be used to extract so-
called phenological metrics. TIMESAT software, for example, allows for the production
of smoother vegetation indices curve for each year of study by employing three filtering
functions: Savitzky–Golay, Double Logistic, and Asymmetric Gaussian [32]. In addition,
the software allows for the extraction of thirteen phenological metrics from vegetation
indices, like the beginning, peak, and length of the growing season, by common extraction
methods, such as the simplest threshold method, which assumes that the phenological
stage starts when the smoothed vegetation index values reach a specific value [33,34].

One important shortcoming of such research tools is that users lack the ability to
migrate them to a cloud computing application for rapid phenological metrics extraction
and large-scale applications such as at the national scale. However, such information at
such a spatial level and even larger has been proved to be very effective as inputs in several
environmental applications where rapid decision making is important, such as agricultural
monitoring and land-cover characterization, and land-cover/use change detection [35,36].

Moreover, the cropland mapping accuracy based on phenological retrievals is in-
fluenced not just by the type or the philosophy of the data acquired, but also by the
classification techniques used in such a process. Prior research has generally focused on
traditional “hard” classifications of cropland, where pixels are labeled in a binary fashion,
as either cropland or non-cropland. These traditional hard classifications may appear more
appealing and effective in most parts of the world. However, in regions such as Africa,
where arable land is often irregularly shaped and difficult to differentiate, it may be worth
considering also a soft classification technique or probabilistic outcomes so that the results
can be evaluated, filtered, and refined to improve the algorithm’s detection in terms of
cropland mapping capabilities and thus effectively address the complexity of fragmented
agricultural landscapes [37].

To deal with the challenges raised above, our overarching goal here is to take a step
forward by establishing a fully automated and scalable satellite-based approach in the GEE
environment that employs high-resolution remote sensing images and hard/soft machine
learning techniques to give a more accurate national-scale cropland classification and its
probabilities across different years at 10-m spatial resolution based on extracted relevant
phenological features in combination with some added bioclimatic and topographic vari-
ables. Based on the findings of this study, our consistent cropland and its probabilities maps
can facilitate the task of monitoring crop dynamics and assessing the effects of land-use
policies on a very large scale.

2. Materials and Methods
2.1. Study Area

In this study, the scale of research was country level, and the Kingdom of Morocco,
spread over 710,850 km2, was chosen as our study area. The country is located in the north-
western corner of the African continent between latitudes 21◦ and 36◦ N, and longitudes 1◦

and 17◦ W (Figure 1). Topographically, Morocco comprises a rugged mountainous interior,
where the Atlas Mountains separate the northern part of the country from the wide desert
areas in the south. Climatologically, the country has a wide variety of climates, ranging
from the Mediterranean along the coasts, with mild winters and dry warm summers, to
the continental in the interior, with colder winters and hot and dry summers. The southern
part of the country as well as the east, contrary to the rest, are affected by the extreme dry
climate of the Sahara Desert [38]. Morocco’s economy is largely dependent on agriculture,
which accounts for about 15% of the country’s GDP as the first source of employment. The
country produces many agricultural commodities. They include winter and spring crops
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(cereals and pulses) based in rainfed areas, and industrial crops (citrus, olive, sugar beets,
sugarcane, cotton, and vegetable oils) located in irrigated areas and favorable rainfed zones.
The main growing regions that can be used for crop production lie along the agricultural
plains located between the Atlantic Ocean and the western side of the Atlas Mountains.

Figure 1. (a) The study area with the localization of the administrative provinces, the coverage of Sentinel-2 relative orbits,
the distribution of the ground truth samples in red, and the shuttle radar topography (SRTM) elevation data that is displayed
and colors relate to the elevation percentiles in meters. (b) detailed view of the distribution of sampling sites.

2.2. Software Tools and Processing Platforms

Because of the large study area, any type of remote sensing process was never going
to be simple as it involves massively huge data volumes with highly variable compute
and storage workloads (running into tera-to peta-bytes). This makes data processing
highly difficult or impractical in regular systems. Therefore, a cloud computing platform
for image processing is needed to handle efficiently the storage and exploitation of such
large datasets. Google Earth Engine (GEE) has enabled us to overcome these constraints
gradually by allowing petabyte- and planetary scale exploration and analysis of geospatial
data. GEE provides public access to the most freely accessible satellite datasets, including
the entire Landsat archives from 4 to 8, Sentinel missions, MODIS, and many other openly
available weather and climate datasets, as well as digital elevation models. For the spatial
and temporal manipulation of these datasets, GEE provides both JavaScript and Python
application programming interfaces (API), which allow us to easily develop algorithms
that work in parallel on the Google data computer facilities. Another open-source software
tool that has been utilized in our work is the Collect Earth Online (CEO), which is a cost-
effective tool that promotes consistency in locating, interpreting, and labeling reference
data plots with high-resolution imagery (0.5 m, WorldView) for use in classifying and
monitoring land cover/land-use change [39].

2.3. Methodology
2.3.1. Workflow Description

Figure 2 shows an overview of the methodology followed in this research, outlining
the steps (preprocessing, compositing, smoothing, phenological information extraction,
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classification, etc.) employed in mapping cropland extent based on the derived phenologi-
cal information data.

Figure 2. Flow chart of cropland and its probabilities mapping through high resolution images, phenological cycle depiction
and machine learning technique on the GEE platform.

2.3.2. Definition of Cropland Extent

It’s indispensable to any successful mapping to have a comprehensive and clear
definition of what is being mapped. Thus, we adopted a cropland definition, which defines
the croplands from a remote sensing perspective as “lands cultivated with plants harvested
for food, feed, and fiber, including both annual crops as well as continuous plantations
(e.g., coffee, tea, rubber, cocoa, oil palms) [40].

2.3.3. Data Preparation
Satellite Data

The primary datasets for this study came from the twin Sentinel-2A and Sentinel-
2B satellites developed by the European Commission and the European Space Agency
for global land observation within the Copernicus Program. Both satellites allow the
availability of free multispectral imagery at high spatial resolution (10–60 m), with a
revisiting cycle of up to 5 days. Two spectral bands were used in the current study: band 4
(665 nm) and band 8 (842 nm), with a spatial resolution of 10 m.

Overall, 56,258 Sentinel-2 scenes were acquired over the study area for the observation
period from 2016 to 2020. This database was used to derive the cropland extent for a
typical agricultural season that was regarded as starting on 1 September and ending on 31
August of the following year. Figure 3 illustrates the spatial distribution of the Sentinel-2
observations varies across Morocco from 2016 to 2020.

All Sentinel-2 images acquired using the GEE platform were Level-1C products (Top-
Of-Atmosphere, TOA), meaning they were geometrically-corrected and radiometrically-
calibrated, so they did not require any further preprocessing. These images, which have
been atmospherically corrected (Level 2A), have also been included in GEE. However, for
most parts of the study area in our present research, certain Level-2A assets prior to 2019
had not yet been processed and were held aside for future iterations.
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Additionally, the EVI2 (two-band EVI, similar to the three-band EVI but blue band is
not used) [41], was employed for detecting phenological features and capturing the change
of vegetation cover in the period studied.

Figure 3. (a) Spatial distributions of the total Sentinel-2 images across the entirety of Morocco from 2016 to 2020 (b) The
histograms of Sentinel-2 pixels of the total observations across the study area for each season.

The two-band EVI was chosen in this study because, compared to the other more
commonly used vegetation indices, it is less sensitive to soil background brightness and
atmospheric scattering contamination and does not saturate over moderate-to-high densely-
vegetated areas [41]. All these things explained why the EVI2 had the best performance
in characterizing vegetation properties, estimating crop gross primary productivity and
detecting more accurate phenological metrics than its traditional counterparts [42,43].
Thus, EVI2 has been successfully used to generate operational LSP products covering the
entire globe and more comparable to in situ PhenoCam observations from both MODIS
(MCD12Q2) and VIIRS data (VNP22Q2), which are the only global operational land surface
phenology products currently available in the world for the scientific community [44–46].

It is computed as follows:

EVI2 =
2.5 × (ρnir − ρr)

(ρnir + 2.4 × ρr + 1)
(1)

where ρnir, and ρr stand for the atmospherically-corrected surface reflectance of the near-
infrared and red (visible) bands.

Ancillary Features

Remote sensing-based land cover or vegetation classification accuracy can greatly
benefit from including multiple types of ancillary data sources in a classification procedure.
The term ancillary data refers to any data or information obtained from sources apart
from remote sensing images [47], and which are used specifically in an interconnected
way to support the process of image classification by increasing the separability between
the classes. The ancillary spatial data used in this study is the slope of the topography
extracted using a digital elevation model of the study area. Theoretically, it could point out
regions of high elevation or steep slopes where cropland cover is not likely to exist.
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In addition to this terrain feature, WorldClim V2 Bioclimatic variables [48] have been
incorporated to account for the relationship between climatic conditions and cropland
extent. These comprise 19 bioclimatic variables originally derived from long-term normal
monthly climate data on temperature and rainfall collected from weather stations for the
period of 1950–2000 and with a spatial resolution of 1 km2.

Lastly, two single layers of forest cover and water provided by GEE were employed to
mask forest and water bodies and thus prevent class confusion and minimize processing
time. Water surfaces, such as rivers and lakes, were masked out using the 30-m water body
mask from [49], while forest was masked out using the Global PALSAR-2/PALSAR 30 m
binary forest/non-forest map (JAXA FNF, Tokyo Japan) [50].

Before analysis, all auxiliary variables were reprojected and resampled to 10 m to
match the spatial resolution of Sentinel-2 using the nearest neighbor interpolation in
GEE platform.

Collecting Training Data

Collecting cropland and non-cropland reference observations is often a complicated
task because an agricultural activity is a constant phase that must be monitored over a long
period of time. Satellite images with high spectral resolution have been a crucial option
in this context. However, they are not sufficient to reconstruct the landscape’s historical
dynamics. This study thus employs Collect Earth Online (CEO), whose full integration
with Google Earth, Google Earth Engine, and other archives of freely accessible satellite
imagery enables “augmented visual interpretation”, a process in which users assess very
high spatial resolution imagery (0.5 m, World-View) in conjunction with geo-synchronized
Landsat and Sentinel 2 images and a graphical user interface [39].

The reference data were therefore labelled according to observed land cover type
using the CEO tool, where 1192 square-shaped sample plots were randomly distributed
throughout the study area (Figure 1). In order to be as compatible as possible with the
specific properties of Sentinel-2 data used in this analysis, each sample plot has a width
of 100 m with sampling points positioned within at 10-m intervals for 121 points per plot
(Figure 4).

2.3.4. Sentinel 10-Day Composite Images Construction

Temporal synthesis by image compositing with regular time intervals represents a
valuable tool to overcome the spatial heterogeneity of observation images and generate
consistent time series. The efficiency and simplicity of this technique make it extremely
important for monitoring approaches targeting large areas, as it offers a range of advantages
for data integration and analysis. Methodologically, there are a range of existing and
established compositing approaches. To do so, an approach based on a general following of
the best-pixel selection strategy was adopted, which picks the observation with the highest
maximum observed value of the spectral index within a given regular temporal window
that should be narrow enough to capture phenology information at field level. As a result,
the calculated Sentinel-2 EVI2 data in this study was composited to construct a regular
time series of EVI2 data at a 10-day interval for the period 2016–2020.

2.3.5. Smoothing and Phenological Metrics Extraction

A smoothing filter method is a necessary prerequisite step to reduce the noise of
the involved input EVI2, which is most likely unrelated to real vegetation change or
management practices [51,52]. Recalling the existence of several curve fitting methods, the
Savitzky–Golay method (shortened to S-G) [53] was applied within the GEE platform as
the filter function since it is able to denoise and attenuate the effect of cloudy and missing
pixels particularly well compared to other well-known filters. The S-G method maintains
and preserves the vegetation index profile by using a locally adaptive moving window
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that eliminates the outliers and corrects the errors present in the original time series [43].
The general Equation (2) of the filter is:

gi =
n

∑
−n

Cj fi+j (2)

where fi represents the original EVI2 value in the time series, gi is the filtered EVI2 value,
and the weights are Cj = 1/(2n + 1), while the smoothing window size is 2n + 1, and
wherein n is the half-width of the smoothing window.

Figure 4. Tools used to collect the reference observations. (a) Collect Earth interface and survey; (b) time series tools online
viewer within GEE.

The principle of this filter is to preserve high moments within the data [54]. Therefore,
in Equation (3), the cn is not a constant, but a quadratic polynomial function that depends
on the user’s preference and is used to fit each data value fi in the moving window:

cn(t) = c1 + c2 t + c3 t2 (3)

where t corresponds to the day of the year in the EVI2 time-series.
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Selecting the appropriate size of the smoothing window and the degree of polynomial
fitting is critical for the model’s ability to minimize the effect of outliers and simultaneously
preserve the temporal detail in the EVI2 time-series. Hence, the half window size was set
to 4, as suggested by Chen et al. [51] who have shown that this value is appropriate to
better fit the time-series data. The result of the S-G smoothing method was a fitted EVI2
time series consisting of new values after noise removal, as shown in Figure 5.

Once the smoothed EVI2 time-series were generated, a phenology-retrieving technique
should be used to extract key seasonality parameters in the study area. There are currently
several approaches for retrieving phenology from time series of vegetation indexes [55].

Figure 5. Raw and smoothed EVI2 time-series by S-G method of croplands, and non-croplands samples over four growing
seasons from 2016–2017 to 2019–2020.

In our study, we used the well-known dynamic threshold method, where the threshold
is proportional to the seasonal amplitude of the vegetation index time series [33,56–58]. This
technique is commonly used because it typically keeps dates within a certain reasonable
range by assuming that a specific phenology, whether the start of season (SOS) or end of
season (EOS), will start if the EVI2 ratio crosses a certain threshold during the EVI2 rising
stage or decline stage, respectively. The EVI2 ratio ranges from 0 to 1 for each pixel and is
defined as follows:

EVI2ratio =
EVI2t − BVAL
PEAK − BVAL

(4)

where EVI2ratio is the EVI2 ratio; the EVI2t denotes the EVI2 at time t; while the PEAK and
BVAL are the seasonal maximum and minimum EVI2 observations, respectively.

In this study, we used three thresholds (0.1, 0.5, and 0.9) corresponding to 10%, 50%,
and 90% of the seasonal amplitude of EVI2 (AMPL= PEAK-BVAL) in spring and fall to
extract SOS10, SOS50, SOS90, EOS10, EOS50, and EOS90 respectively (Figure 6).

In addition to these key phenophases, a variety of phenological metrics were extracted
from the reconstructed satellite-derived EVI2 time series such as the small integral of the
growing season (SINTG) which is effectively the sum of the integral functions fitted to each
respective growing season occurring throughout a respective year, minus the area below
the base level (this is a measure of the productivity within the growing season). In addition,
it includes the large integral of the growing season (LINTG) which is the area under the
curve of the fitting function from the start to the end of the growing period (an estimate of
the total vegetation productivity in the annual cycle).

Our resultant metrics are shown graphically in Figure 6 and described in Table 1.
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Table 1. Summary of input features used in this study.

Input Features Short Description Spatial
Resolution Reported Unit

Phenological
SOS10 Time when the left edge has increased to 10% of the amplitude 10 m days since 1-1-1970
SOS50 Time when the left edge has increased to 50% of the amplitude 10 m days since 1-1-1970
SOS90 Time when the left edge has increased to 90% of the amplitude 10 m days since 1-1-1970
EOS10 Time when the right edge has decreased to 10% of the amplitude 10 m days since 1-1-1970
EOS50 Time when the right edge has decreased to 50% of the amplitude 10 m days since 1-1-1970
EOS90 Time when the right edge has decreased to 90% of the amplitude 10 m days since 1-1-1970

SOSV10 EVI2 value at SOS10 10 m EVI2 unit
SOSV50 EVI2 value at SOS50 10 m EVI2 unit
SOSV90 EVI2 value at SOS90 10 m EVI2 unit
EOSV10 EVI2 value at EOS10 10 m EVI2 unit
EOSV50 EVI2 value at EOS50 10 m EVI2 unit
EOSV90 EVI2 value at EOS90 10 m EVI2 unit

MOS Time of the season on which EVI2 reaches the peak 10 m days since 1-1-1970
LOS50 Time from the SOS10 to the EOS10 10 m Number of days
LOS50 Time from the SOS50 to the EOS50 10 m Number of days
LOS90 Time from the SOS90 to the EOS90 10 m Number of days
SINTG The area under the EVI2 curve above the BVAL from the SOS10 to the EOS10 10 m EVI2 unit
LINTG The area under the EVI2 curve from the SOS10 to the EOS10 10 m EVI2 unit
AMPL Difference between the PEAK and BVAL 10 m EVI2 unit
PEAK Highest EVI2 value over the season 10 m EVI2 unit
BVAL Mean of minimum EVI2 values before SOS10 and after EOS10 10 m EVI2 unit

Environmental
Slope Terrain slope derived from the Shuttle Radar Topography Mission 30 m degrees

Rainfall Mean annual rainfall from WorldClim climatic data 1000 m Millimeter (mm)
Temperature Mean annual temperature from WorldClim climatic data 1000 m ◦C × 10
Binary mask
Forest mask Derived using Global PALSAR-2/PALSAR Forest/Non-Forest Map (JAXA FNF) 25 m -
Water mask Derived using the Hansen global forest change product 30 m -

Note: Bold means distinguish between the nature of each feature.

2.3.6. Comparison to MODIS Collection 6 MCD12Q2 Data

Based on our extracted vegetation phenology metrics, we performed a number of anal-
yses to visually assess whether the resulting spatial patterns are smoother or whether there
are any undesirable artifacts and patches, as well as comparing the resulted phenological
metrics with the MODIS Collection 6 MCD12Q2 phenology product. As described before,
those data are currently the only operational global land cover dynamics products that
include the timing of vegetation phenology at global scales at a 500 m spatial resolution
and annual time step.
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In order not to inflate the number of explanatory pheno-variables, only three main met-
rics that relate well to biomass and seasonal timing productivity (Midgreenup, Midgreen-
down, and SINTG) were selected to be the basis for data validation in this study. Given that
MCD12Q2 products were only available at yearly intervals from 2001 to 2018, we selected
the season 2017–2018 to serve as the basis for phenology retrievals validation. The three
Sentinel-2 derived phenological metrics for the same corresponding period were resampled
to 500 m resolution to more closely fit MCD12Q2 spatial resolution for the purpose of
statistically comparing our findings with MODIS’s phenological metrics. This aggregation
was accomplished by taking the average Sentinel-2-derived phenological data of all 10 m
resolution pixels for which the center is located within the geometry of a 500 m Modis
grid cell. Furthermore, we assessed the relationship between resampled Sentinel-2 and
MCD12Q2 metrics based on Pearson correlation coefficients (r) and the root mean squared
error (RMSE).

2.3.7. Random Forest Machine Learning Algorithm

The classification algorithm employed for this research was the random forest (RF)
technique, which is an ensemble learning method for classification (and regression) tasks
that operates by constructing a large number of decision trees at the training phase and
outputting the class that is the mode of the classes of the individual trees [59].

Owing to its higher accuracy, the RF algorithm has proven itself to be one of the
more effective classifications approaches in several remote sensing applications, including
cropland and crop type mapping, in which it achieves good results, as demonstrated by
many recent papers [60,61].

Fortunately, the RF algorithm is included in the GEE platform, where, the function
“ee.Classifier.smileRandomForest” was used to represent the classifier. The main RF‘s two
tuning-parameters, mtry (number of different predictors tested at each node) and ntree
(the number of trees) were set to the square root of available input variables (default) and
to 250, respectively. Moreover, we calculated the variable importance of RF in GEE as a
way to quantify the contribution that each feature variable has to improve the classification
performance. The result of this classification is a map of cropland and non-cropland land
cover for the nominal year 2019–2020 based on phenological features and environmental
covariates of the same period.

The trained classification RF model for the 2019–2020 cropping season was run using
the same input features for each remaining seasonal year in a probability mode instead of
the classification mode option. In this last mode, RF applies majority voting to all trees for
class prediction by default. However, in probability mode, the fraction of trees that vote for
a certain class is calculated. This resulted in a yearly estimate of the probability (probability
maps (0–100%)) of every pixel on whether it belongs to the cropland area or not.

2.3.8. Validation of the Cropland Extent Maps

The accuracy assessment in this study was based on cross-validation with repeated
leave-p-out cross-validation method where 80% of the crop/non-crop samples (i.e., the
training samples) were randomly assigned to training data and the remaining 20% were
used as test data. The results were tabulated in a confusion matrix from which the widely
applied overall accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA), Kappa
coefficient, and the F1-score were computed and used to assess the quality of the derived
cropland extent map [62].

In addition to the previous statistical accuracy assessment, and since the 10-m cropland
classification and probability products are of high-spatial resolution, areas were calculated
also at provincial units. We tried to perform a regression analysis for our derived areas and
compared them with the area statistics available to us from the official agriculture statistics.

However, doing so is a challenge, because in many regions, including Morocco,
agricultural statistics are outdated, of doubtful quality, or missing adequate sub-national
historical inventory data. The only such data available is the Utilized Agricultural Land
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(Surface Agricole Utile—SAU), which is the sum of independent kinds of land which were
really exploited in the growing season for agricultural and crop production.

To approach these statistics, and since they are available per province, it was decided
to compute these areas by selecting only pixels that have a probability of more than 60% of
being cropland to be classified as SAU areas, whilst all pixels having a probability of less
than 60% of being cropland are classified as non-cropland class. The areas computed per
province were compared with official statistics of provincially utilized agricultural land.

3. Results
3.1. Verification of the Vegetation Phenology Results

Figure 7 shows national maps of three key phenological metrics (SOS50, EOS50,
and SINTG) extracted by our GEE-based approach for the four years considered. The
three phenological metrics derived appear to be generally spatially smooth and visually
appealing. Moreover, their spatial patterns vary depending on the metric type and growing
season’s properties. A point to consider is the patterns in the timing of midgreenup and
midgreendown, as well as the integral of the EVI2 curve (Figure 7) show in general strong
geographic variation related to climate forcing, land cover, and associated environmental
variables.

Figure 7. Example phenological metric maps for the four growing seasons (2016–2020) across Morocco. The first row is
equivalent to SOS50, the MidGreenup. The second row is equivalent to EOS50, the MidGreendown. The third row is
equivalent to SINTG, the small integral of the EVI2 curve, which illustrates the measure of the vegetation production within
a growing season. Areas, where no SOS, EOS, or SINTG could be estimated, are shown in grey. The DOY (Day of Year) of
SOS and EOS begins on the 1 September of each year. Zoom-ins for a, b, and c in are shown in Figure 8.
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It can be seen that the seasons 2016–2017, 2018–2019, and 2019–2020 have nearly
the same yearly spatial pattern as Midgreenup (SOS50), whereas the year 2017–2018 was
characterized by later SOS estimates in most parts of the country, with the exception of
some irrigated areas in the central plains. Topographically, the timing of SOS50 values
in higher elevation mountain areas were later (DOY > 200) than in lower elevation, flat
areas with DOY ~100 (Figure 7). In addition to topography, this difference is most likely
controlled by climatic conditions (temperature and precipitation), as can be deduced from
the grey areas where no SOS data is detected; those areas are either too cold and frequently
frozen to support sufficient crop growth (high elevations) or too dry to accommodate crop
production without irrigation (the desert regions in the south and east of the country).

Figure 8. Detailed spatial pattern of SOS50 (MidGreenup), EOS50 (MidGreendown), and SINTG
(EVI2 curve integral) derived from 10 m Sentinel-2 EVI2. The DOY (Day of Year) of SOS and EOS
begins on the 1 September of each year. The boxes labelled (a–c) are the areas indicated in Figure 7.

Geographic variation in mid-green-down timing (EOS50) is similar to SOS50 estimates,
with the same relationship to climate forcing and associated environmental variables
geographically and temporally across the studied years. It is clear that most areas exhibit a
later EOS, with the exception of irrigated areas in the central plains and dense forest in the
mountains, where a tendency for an earlier SOS and later EOS are shown. Similar to SOS,
EOS dates can still not be estimated in the southern part of the country because the EOS
dates in these regions were recorded prior to BVAL being selected for both EOS and SOS
estimates in this study.

The annual national-scale patterns in SINTG reflect geographic patterns in vegetation
productivity, across the country (Figure 7). For example, EVI2 SINTG associated with
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irrigated areas in the north and east part is clearly evident. In contrast, and as expected,
EVI2 SINTG represents low to no vegetation productivity, and was measured in the
mountainous regions and in the desert areas of the country in the south and east, although
localized patches of high EVI2 SINTG associated with the presence of oasis in these latter
regions are clearly evident as well.

Figure 8 presents a fine-scale spatial comparison of the selected sites in Figure 7 and
between the three Sentinel-2 phenological metrics for the 2017–2018 agricultural season.

As expected, the 10 m spatial resolution of Sentinel-2 phenological images has allowed
it faithfully to capture more detailed spatial distributions of phenology (Figure 8). In
comparison to Figure 7, the detailed view of the GEE-based approach and Sentinel-2 results
clearly illustrate the amount of field-to-field variation, enabling crop phenology retrievals
to be measured and assessed at the field and finer scales over very large areas. It’s worth
mentioning that each field is likely to exhibit a different phenological status due to different
field conditions, farmer’s practices, and the particular crop type cultivated.

To illustrate statistically the character and quality of phenology metrics provided by
our approach, Figure 9 shows a statistical summary that compares our results with the
MCD12Q2 retrievals for SOS50, EOS50 dates, and SINTG curve area based on a random
sample of pixels over every one of the two sets selected across the study area.

Figure 9. Scatterplots showing agreement among the MLCD C6 product and the Sentinel-2 data within the MidGreenup
(SOS50), the MidGreendown (EOS50), and the integrated area under curve (SINTG) over the 2017–2018 season. R refers to
the Pearson’s correlation coefficient while RMSE is the root mean square error, dashed lines represent the 1:1 lines and red
lines are the regression lines. The DOY (Day of Year) of SOS and EOS begins on the 1 September of each year.

Overall, inter-observer correspondence was excellent for measurements between
our results versus MCD12Q2 within the SOS, the EOS, and the SINTG (r = 0.81, r = 0.89,
r = 0.79, respectively), which indicates a comparable phenology retrieval and a relatively
consistent temporal pattern. The RMSE results confirm that Sentinel-2 correctly matched
the observations derived from MCD12Q1, with the generally smallest errors for EOS and
SINTG (RMSE = 10 days, RMSE = 4.60, respectively). However, the RMSE value of SOS
estimates was slightly larger compared to EOS (RMSE = 15 days).

3.2. Phenological Feature Importance

In order to assess the power of phenological and environmental covariates to dis-
tinguish between cropped and non-cropped lands, we used a 3D approach to provide a
descriptive analysis between the cropland classes and phenological features by looking
at the shape of the pixel distribution in Figure 10. The figure shows a series of three-
dimensional scatter diagrams of the two classes of cropland and non-cropland created
using all the phenological and co-environmental variables integrated into the classification
process.
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In general, both classes appear to be well segregated and separable in the data space of
all features. Consequently, all variables are able to separate croplands from non-croplands.
In particular, the productivity metrics such as LINTG, SINTG, AMPL, PEAK, BVAL, and
EVI2 value metrics (e.g., SOSV and EOSV) as well as the environmental covariates that
configure good separability between the two classes. On the other hand, only a very small
part of one particular class may be misclassified as the other class due to the existence of
similar characteristics in timing metrics (e.g., SOS, EOS, and LOS) that show less power
discrimination among other features.

Figure 10. 3D-scatterplots illustrating the input features (phenology, co-environmental) differences between croplands
versus non-croplands. This knowledge is used in the random forest algorithm to classify cropland versus non-croplands.
The DOY (Day of Year) of SOS and EOS begins on the 1 September of each year.

These assumptions can be supported by results obtained through one of the strengths
of RF models when compared to the more traditional supervised classification techniques,
which is the ability to measure and assess the contribution of each predictor variable used
within the classification (Figure 11). The variables’ importance was calculated based on the
mean decrease in the Gini index.
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According to this index, the environmental covariates (rainfall and temperature)
were identified as being of utmost relevance for discriminating between cropland and non-
cropland, closely followed by other productivity and EVI2 value metrics (i.e., LINTG, BVAL,
SINTG, and vegetation index values at particular times; Figure 11). Another predictor that
seemed to be playing a major role in the classification model as shown in Figure 11 was
the slope as a topographical separator of cropland in its distribution. The contribution of
timing metrics (i.e., SOS, EOS, and LOS) was again less strong than the contribution of the
productivity metrics, as already described in Figure 10.

3.3. Cropland Extent Map and Accuracy Assessment

Based on the phenological and co-environmental features derived from GEE, a su-
pervised classification for the nominal year of 2019–2020 was implemented using the RF
trained model to separate croplands versus non-croplands as mentioned in Section 2.3.7
and assessed in Section 2.3.8. Figure 12 presents the 10 m country’s cropland map extent
generated for the nominal 2019–2020 agricultural season using all the phenological and en-
vironmental covariate features. The cropland area is displayed in totality, with highlighted
zoom-in views for some selected locations to show details.

Figure 12. The 10-m cropland extent derived using phenological and co-environmental variables for
the nominal year 2019–2020.

A visual inspection of the national-scale cropland map depicts the typical patterns
of the country’s cropland, where regional differences in cropping practices can be easily
observed across the territory. The cropland seems to be concentrated near the coast and in
the uplands, where precipitation is higher. However, some oasis-based cereal production
and date harvesting can be identified just in the middle of the desert where precipitation is
scarce. The eight zooms provided show croplands in great detail at a fine spatial resolution
(1 pixel = 0.01 ha) over different landscapes, ranging from intensive large fields in the
western part of the country to fields under pivot irrigation in the central plains and oasis
areas in the desert that often surround a water source. Table 2 reports the classification
accuracy values and the confusion matrix derived from the analysis of the validation
dataset.
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Table 2. Confusion matrix of cropland extent mapping using phenological and co-environmental
variables.

Crop Non-Crop Total User’s
Accuracy F1-Score

Crop 5848 128 5990 97.85% 98.32%
Non-crop 71 3271 3328 97.85% 97.04%

Total 5919 3399 9318
Producer’s accuracy 98.80% 96.23%

Overall accuracy = 97.86% Kappa coefficient = 0.9537

The overall accuracy of the cropland classification was found to be 97.86% with a
Kappa coefficient of 0.95 (Table 2). According to these findings, it is clear that using
phenological metrics in conjunction with topographic and climatic variables can help with
cropland type identification.

3.4. Probability-Based Cropland Maps

When classifying images using random forest classification, probability maps can be
computed and generated as well. In order to do that, we apply the RF-based classifiers
trained in the 2019–2020 agricultural season to the other seasons using the same derived
features. As previously described, we chose the “probability” mode for GEE’s RF algorithm
this time. The output is the probability that the classification is correct so that the results
can be evaluated, filtered, and refined to improve the algorithm’s detection capabilities.
Figure 13 shows the probability of each pixel belonging to a cropland class over the four
studied seasons.

Similar to classification results, it is notable that the north-eastern corner of Morocco
has the highest probability of cropland compared to the western and southern parts.
Figure 14 shows a detailed view of the three selected sites highlighted in Figure 13 for the
season of 2016–2017. Our produced probability and cropland maps in these areas were
compared and are shown alongside very high-resolution images and the 2017 10-m FROM-
GLC10 products with 10 land cover types, including the cropland classes (Figure 14).

In the three study areas, it can be seen that the proposed approach was able to suc-
cessfully identify the cropland distribution corresponding to areas with a high probability
(60%<) whereas non-cropland areas exhibit a low probability of being classified as cropland.
This happened to be consistent with the reference image, with nearly no salt–pepper effect
or noise that significantly affected the inaccuracy of the mapping.

3.5. Comparison with National Statistics

Apart from producing a map, the calculation of cropland area statistics is an important
resource for local governments when they seek to monitor cropland changes. For that
reason, a validation exercise, which reveals the overall error structure of the derived
cropland areas must be considered. However, we must mention that one of the limitations
of such things has been the lack of updated statistics on cropped areas on a national scale,
especially in Morocco. The only such data available is the total arable land or utilized
agricultural land (Surface Agricole Utile—SAU). To approach these statistics, a selected
threshold value of 60% (“probability filter”) was used to reclassify the probability maps
into categorical maps distinguishing between SAU and non-SAU areas. Figure 15 compares
the maximum province-level SAU proportions (%) from our results during the studied
period with the reported statistics of the provincial utilized agricultural land.
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Figure 13. Probability maps of cropland areas, Zoom-ins for a, b, and c Fin panel A are shown in Figure 14.

The results show that our approach provides an accurate areal estimate of cultivated
SAU areas across Morocco at both national and regional scales regarding the linear regres-
sion that revealed a high correlation of r = 0.9 with most provinces falling reasonably close
to the 1:1 line (Figure 15). However, differences were observed in some regions, in which
our classification identifies fewer SAU and cropland areas compared to official statistics.

3.6. Cropland Dynamics in the Area

The Sankey diagram (Figure 16) depicts the fluxes of cropland and non-cropland
classes derived from the probability maps with a 60% threshold filter to visualize from-to
cropland change transitions in the area of Morocco between 2016 and 2020. Each column
of colored nodes represents a seasonal year and each node within the columns represents
a land cover type. The height of a node is proportional to the area of that particular land
cover type for a given year. The transitions of a proportion of the landscape from one class
type to another are represented by colored lines of differing thickness linking nodes, so
that one can trace back from 2016 to 2020 to assess how areas have been changed.
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Figure 14. Zoom-in view of the probability maps of cropland areas, cropland classification of the
present study, cropland cover maps of FROM-GLC10, and its comparison with RGB composite of
Sentinel-2 cloud-filtered images for the same period (2016–2017 season) in the three locations (a–c)
highlighted in Figure 13.

Figure 15. Comparison of province-wise cropland areas derived in this study versus national area
statistics of SAU.
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This graph effectively summarizes the percentage of cropland areas with the highest
probability in each region over the four years studied. As depicted in the figure, a perma-
nent flow (i.e., pixels assigned to a given class in one year remaining the same in the next
year) towards cropland areas in 2019–2020 per all the region originated from its own class
from 2016 to 2018. This means that they do not indicate transitions, but their maintenance
over time. However, when the flows from the same class are discarded, the cropland
areas with the highest probability have experienced a great absolute change in surface area
between 2016 and 2019 in all regions except Draa-tafilalet, where a small amount of net
change is found.

We can see a significant decrease in cropland areas in 2019–2020 that is noticed to be
largely converted to non-cropland areas (thicker lines) compared to the trend of change
for the rest of the years. This flow is not unique to a region but is being repeated in all
the other regions, specifically in Marrakech Safi and Casblanca-Settat, where this area has
decreased by approximately half since 2016–2017, which implies a higher cropland cover
loss in these regions. Another flow that occurs in cropland transitions is that certain areas
mapped as cropland in 2016–2017 transitioned to non-cropland class the following season
and then half of these returned to cropland, with the other half remaining non-cropland in
2018–2019.

Figure 16. Sankey chart showing frequency distribution of the cropland and non-cropland areas derived in this study per
province and season over 2016–2020 period.
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4. Discussion

For sustainable agriculture production and food security, having up-to-date national-
scale cropland maps that are detailed, accurate, and at high spatial resolution is more
than critical [40]). This study examined the potential of a phenology-based algorithm
to map and identify cropland areas within GEE and at high spatial resolution. In this
context, the GEE cloud platform was found to be a valid tool and processing environment
to produce a precise and accurate cropland extent product, and all its computational power
and well-integrated analysis techniques on a large scale were done in a matter of minutes,
as has been reported by other authors [63].

Among the resource satellites currently available, Sentinel-2 was chosen as a base
to classify and map cropland distribution at the field scale due to its exceptional revisit
frequency of 5 days (twin satellites S2A and S2B) and its spatial resolution of 10 m per
pixel. Sentinel-2 is, therefore, more adequate to the diversity of the agro-ecological context,
landscape patterns, and agricultural practices present in Morocco and such regions, where
fields and farms are on average 0.9 hectares in size and only such high spatial resolution
data can provide enough information for efficient and detailed crop monitoring and
classification.

Our approach is based essentially on the use of extracted phenological characteris-
tics (metrics) for cropland type mapping as they have already proved their efficacy and
usefulness for monitoring and discriminating different vegetation cover over different
scales [64].

Our findings show that cropland phenology data can be reliably detected in GEE using
high temporal and spatial resolution satellite imagery. The SOS, EOS, and SINTG estimates
using GEE’s Sentinel-2 data were strongly correlated with corresponding estimates from
combined MCD12Q2 products (r > 0.80). This finding was also reported by Descals
et al. [58], who found very good agreement between SOS and EOS estimates of Sentinel-2
and MODIS metrics in the arctic regions.

Interesting to note as well, is that most phenological retrieval software or products
focus on major phenological metrics only, while our approach has no such limitation and
can extract more than 20 metrics from the phenological profile. This wealth of phenological
data is devoted to ensuring the greatest degree of separability between croplands and
various types of land-cover types, as shown in Figure 10. Moreover, the use of ancillary
data such as slope, temperature, and rainfall information were effective in improving
classification and the quality of results that seem to be consistent with other research that
found that these environmental covariates helped class separability significantly. By using
all phenological metrics coupled with ancillary data, we were able to map the cropland
distribution within the nominal year of 2019–2020 with an accuracy of 97.86% using the RF
classifier. These findings clearly imply a high degree of confidence in identifying croplands
versus non-croplands across large areas such as Morocco, which supports evidence from
previous observations such as the GFSAD30AFCE dataset achieved relatively higher map-
ping accuracy in Africa because it took into consideration phenological information [19].

The results also proved the robustness of RF implemented in GEE to obtain accurate
cropland extent over a very large area. The RF classifier was chosen because it needs few
parameters to tune, gives more accurate results than most of the state-of-the-art methods, is
computationally efficient in handling large-scale data, and generates a probability for each
label [60,65]. This last benefit acts to provide a soft classification (probability estimation),
which is particularly helpful in Africa’s fragmented and complex landscapes because
hard classification will have higher uncertainties that arise when multiple classes occupy
the same pixel at the same time [37,66]. The resulting probability maps captured by our
approach correspond well with high resolution images (Figure 14). The probability maps
were converted into “hard” results, considering a 60% probability threshold, in relation
to which a given pixel was assigned to the cropland or non-cropland classes. Such results
proven to be a significant improvement compared to existing products as shown in the
same figure, this superiority lies in the incorporation of phenological data in our proposed
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framework, which serve as an important and powerful asset to map cropland and its change
compared to traditional image stacking approach that could misses important phenological
events thus makes cropland or crop type much difficult. Another shortcoming of existing
products is their emphasis on LULC, where detailed mapping of croplands is not always
the primary goal. Aside from that, they are only available for certain years and are not
updated regularly [67].

The produced results were used to calculate the cropland areas of Morocco at the
sub-national level for nine provinces and compare them with the total arable land (SAU)
areas as shown in Figure 15. The relationship between province wise areas from both
sources shows a very high correlation with an r value of 0.9, which demonstrated the ability
of our approach to compute efficiently sub-national province level cropland area statistics
and SAU.

Figures 16 and 17 depict cropland distribution and dynamics over Morocco between
2016 and 2020. The remote sensing analysis shows a dramatic change in cropland areas
that decreased significantly in the season of 2019–2020 compared to the remaining years
in almost all the provinces. In particular, the areas of cropland decreased in Morocco by
almost 5%, as they fell by 35,550 km2 from 2016 to 2020 (Figure 17).

Figure 17. The distribution of cropland and non-cropland areas (%) in this study per different province-level and season
over 2016–2020 period.

It has to be noted that these significant decreases could be due to climate conditions.
These assumptions are backed by the particularity of agriculture in Morocco, which de-
pends strongly on rainfall distribution [68]. However, other factors accounted for the
dramatic magnitude of change, such as the coronavirus disease 2019 (COVID-19), which
not only has far-reaching effects on human health, but also economic impacts around the
world, with all countries adopting unprecedented measures such as home confinement,
travel bans, and business closures to control the rate of infection, but with major repercus-
sions on labor markets and economic growth, and most importantly, the daily movement
of farmers to their lands [69,70]. This assumption comes as no surprise since the most
provinces with significant decrease, Casablanca-Settat, and Marrakech-Safi regions, have
been in fact reporting the highest number of COVID-19 cases from the start of the pandemic
to April 2020 in all of Morocco [71].

5. Conclusions

The study generated a yearly cropland distribution at a 10-m resolution over very
large fragmented and complex areas (e.g., Morocco) using multi-year (2016–2020) phe-
nological information, random forest machine learning algorithms, a large volume of
reference training, and validation datasets from multiple sources by utilizing the big-data
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management and processing power of the Google Earth Engine cloud-computing platform.
These methods and approaches demonstrated the ability to map croplands and their prob-
abilities at a large big-country scale using petabyte volumes of big data. The resulting 10-m
derived cropland extent products for the nominal season 2019–2020 had overall accuracies
of over 97%. For the remaining years, a method for crop probabilities estimation was
developed and evaluated based on the trained random forest model. The results maps
compare well with province-level cropland statistics. This study paves the way to provide
a high-resolution cropland extent map for countries where detailed spatial information
of croplands is scarce as well as for more large-scale cropland extent mapping for more
detailed products such as crop intensity, crop type, and crop irrigation. Additionally,
annual cropland maps could be updated on a regular basis using this automated method
in order to monitor cultivated area extension and abandonment over very large areas.
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60. Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

61. Lebrini, Y.; Boudhar, A.; Htitiou, A.; Hadria, R.; Lionboui, H.; Bounoua, L.; Benabdelouahab, T. Remote Monitoring of Agricultural
Systems Using NDVI Time Series and Machine Learning Methods: A Tool for an Adaptive Agricultural Policy. Arab. J. Geosci.
2020, 13, 796. [CrossRef]

62. Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37,
35–46. [CrossRef]

63. Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data
Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [CrossRef]

64. Lebrini, Y.; Boudhar, A.; Laamrani, A.; Htitiou, A.; Lionboui, H.; Salhi, A.; Chehbouni, A.; Benabdelouahab, T. Mapping and
Characterization of Phenological Changes over Various Farming Systems in an Arid and Semi-Arid Region Using Multitemporal
Moderate Spatial Resolution Data. Remote Sens. 2021, 13, 578. [CrossRef]

65. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the Robustness of Random Forests to Map Land Cover
with High Resolution Satellite Image Time Series over Large Areas. Remote Sens. Environ. 2016, 187, 156–168. [CrossRef]

66. Murmu, S.; Biswas, S. Application of Fuzzy Logic and Neural Network in Crop Classification: A Review. Aquat. Procedia 2015, 4,
1203–1210. [CrossRef]

67. Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote
Sensing Data with Google Earth Engine. Remote Sens. 2020, 12, 602. [CrossRef]

68. Balaghi, R.; Tychon, B.; Eerens, H.; Jlibene, M. Empirical Regression Models Using NDVI, Rainfall and Temperature Data for the
Early Prediction of Wheat Grain Yields in Morocco. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 438–452. [CrossRef]

69. Béné, C. Resilience of Local Food Systems and Links to Food Security—A Review of Some Important Concepts in the Context of
COVID-19 and Other Shocks. Food Secur. 2020, 12, 805–822. [CrossRef]

70. Siche, R. What Is the Impact of COVID-19 Disease on Agriculture? Sci. Agropecu. 2020, 11, 3–6. [CrossRef]
71. Hadrya, F.; Soulaymani, A.; El Hattimy, F. Space-Time COVID-19 Monitoring in Morocco. Pan Afr. Med. J. 2020, 35 (Suppl. 2), 41.

[CrossRef]

http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.1007/s12517-020-05789-7
http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.1016/j.isprsjprs.2020.04.001
http://doi.org/10.3390/rs13040578
http://doi.org/10.1016/j.rse.2016.10.010
http://doi.org/10.1016/j.aqpro.2015.02.153
http://doi.org/10.3390/rs12040602
http://doi.org/10.1016/j.jag.2006.12.001
http://doi.org/10.1007/s12571-020-01076-1
http://doi.org/10.17268/sci.agropecu.2020.01.00
http://doi.org/10.11604/pamj.supp.2020.35.2.23505

	Introduction 
	Materials and Methods 
	Study Area 
	Software Tools and Processing Platforms 
	Methodology 
	Workflow Description 
	Definition of Cropland Extent 
	Data Preparation 
	Sentinel 10-Day Composite Images Construction 
	Smoothing and Phenological Metrics Extraction 
	Comparison to MODIS Collection 6 MCD12Q2 Data 
	Random Forest Machine Learning Algorithm 
	Validation of the Cropland Extent Maps 


	Results 
	Verification of the Vegetation Phenology Results 
	Phenological Feature Importance 
	Cropland Extent Map and Accuracy Assessment 
	Probability-Based Cropland Maps 
	Comparison with National Statistics 
	Cropland Dynamics in the Area 

	Discussion 
	Conclusions 
	References

