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Abstract: During recent decades East Africa (EA) and Southern Africa (SA) have experienced an
intensification of hydrological hazards, such as floods and droughts, which have dramatically affected
the population, making these areas two of the regions of the African continent most vulnerable to
these hazards. Thus, precipitation monitoring and the evaluation of its variability have become
fundamentally important actions through the analysis of long-term data records. In particular,
satellite-based precipitation products are often used because they counterbalance the sparsity of
the rain gauge networks which often characterize these areas. The aim of this work is to compare
and contrast the capabilities of three daily satellite-based products in EA and SA from 1983 to 2017.
The selected products are two daily rainfall datasets based on high-resolution thermal infrared
observations, TAMSAT version 3 and CHIRPS, and a relatively new global product, MSWEP version
2.2, which merges satellite-based, rain gauge and re-analysis precipitation data. The datasets have
been directly intercompared, avoiding the traditional rain gauge validation. This is done by means of
pairwise comparison statistics at 0.25◦ spatial resolution and daily time scale to assess rain–detection
and quantitative estimate capabilities. Monthly climatology and spatial distribution of seasonality
are analyzed as well. The time evolution of the statistical indexes has been evaluated in order to
analyze the stability of the rain detection and estimation performances. Considerable agreement
among the precipitation products emerged from the analysis, in spite of the differences occurring
in specific situations over complex terrain, such as mountainous and coastal regions and deserts.
Moreover, the temporal evolution of the statistical indices has demonstrated that the agreement
between the products improved over time, with more stable capabilities in identifying precipitating
days and estimating daily precipitation starting in the second half of the 1990s.

Keywords: Africa; precipitation; long-term data sets; satellite; intercomparison

1. Introduction

The African continent is one of the most vulnerable places in the world; its population
is over a billion people, most of whom live in semi–arid regions heavily prone to droughts,
while other regions are plagued by floods. It is an economically and politically unstable
continent, where most of the people live below the poverty threshold and social inequalities
often make life precarious. African ecosystems are already being affected by climate change,
and future impacts are expected to be substantial [1]. A reduction in precipitation is likely in
Northern Africa and the southwestern parts of South Africa by the end of the 21st century,
whereas in regions of complex topography such as the Ethiopian Highlands, downscaled
projections indicate likely increases in rainfall and extreme rainfall [1]. Climate change
will amplify the existing stress on water availability, affecting agricultural production and
food security. This scenario, characterized by a high dependence on agriculture and a low
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capacity to adapt to climate change, is expected to contribute to the exasperation of social
instability [2,3].

In recent years, Africa has witnessed a series of extreme weather events that have
affected the population ranging from extreme droughts to severe floods, highlighting the
particular proneness of certain regions to such kind of events. In 2015 Southern Africa
was hit by a very severe drought caused by the El Niño episode and intensified by climate
change [4]. A strong drought episode during 2011 in Somalia caused the death of tens
of thousands of people due to malnutrition and more than eleven million people in East
Africa have faced severe food shortages [5]. Conversely, extreme rainfall gave rise to flood
events in Ethiopia, Somalia, Kenya, and Uganda during the El Niño-related 1997–1998
episode, and widespread flash and river floods hit the region during the short rainy season
in 2019.

With this frame of reference, the relevant role played by precipitation estimates and
forecasting at different time scales is clear. On the one hand, proper monitoring and
short-time forecasting of precipitation are necessary in order to improve alert systems and
damage reduction protocols. On the other hand, knowledge of the climatology of precipita-
tion in terms of analysis of the past events, trends of extreme events, and variability in both
can enhance awareness of issues connected to water resources and contribute, together with
seasonal and decadal forecasting, to the improvement of water resource management, agri-
cultural planning, and food security. Thus, precious information is contained in long-term
datasets of accurate precipitation estimates over the past decades. Although the primary
and direct sources of precipitation data come from rain gauges, they are often inadequate
tools because of their uneven spatial distribution. This is particularly an issue in Africa,
where the density of ground stations can be very scarce with an average station density
of just one per 26,000 km2, eight times lower than the World Meteorological Organization
(WMO) minimum recommended level [6]. This problem is further aggravated by the high
spatial variability of precipitation in many regions of Africa, making the data produced
by a rain gauge representative only over a few kilometers’ radius around the station [7].
Finally, the reliability of the data and continuity of station operations cannot be guaranteed
due to associated maintenance costs [8]. These limitations have increased the importance
of complementing the ground–based measurements with precipitation estimates based
on satellite observations. Satellite products have the advantage of providing data sets
with global spatial coverage and a long temporal extension, in some cases of more than
30 years [9–11].

This is the context of the present analysis, of which the main objective is the inter-
comparison of different satellite precipitation products taking into consideration both the
climate and the precipitation seasonality of the regions of interest, and evaluating their
ability to detect and quantify precipitation at different temporal scales. The study is focused
on two regions of the African continent, East Africa (EA) and Southern Africa (SA), and
covers the time period 1983–2017. Three daily 0.25◦ gridded satellite datasets were used:
the Tropical Application of Meteorology using SATellite and ground based observation
version 3 (TAMSAT3); the Climate Hazards group Infrared Precipitation with Stations
version 2 (CHIRPS); and the Multi–Source Weighted–Ensemble Precipitation version 2.2
(MSWEP). Long-term satellite products such as those selected for this study are often
used to monitor precipitation and evaluate its variability, trends, and linkages with other
variables and phenomena able to drive precipitation through teleconnections, all infor-
mation propaedeutic to a correct planning for water resource management. Nevertheless,
results often depend on the specific satellite product under consideration, as demonstrated
in [12] for a trend analysis over EA using Africa Rainfall Climatology (ARC) version 2,
TAMSAT version 2, and CHIRPS. This is the reason behind this intercomparative study
among a selection of the most advanced precipitation products exploited in studies focused
on Africa. A correct interpretation of precipitation variability and trend results cannot
overlook the differences and peculiarities of the satellite products. On the other hand,
the availability of different satellite products must be considered as a powerful source of
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information that allows us to compare different retrieval methodologies, eventually choos-
ing the most appropriate for the analyzed territory and interpreting the plurality of their
estimates and application results as an estimate of the uncertainty range. Moreover, the
choice of precipitation products based on different approaches (i.e., thermal infrared (TIR)
versus merging of multi–source data including TIR, rain gauges, reanalysis, and passive
microwave (PMW) estimates) gives also the opportunity to use a product exploiting PMW.

Numerous studies in literature are focused on satellite product validation over Africa.
Recently a pan-African validation of precipitation products (among which were MSWEP
2.1 and CHIRPS) for the period 1981–2016 was carried out by Awange et al. [13], while
Dezfuli et al. [14] evaluated the Integrated Multi-satellitE Retrievals for GPM (IMERG)
v04A and its predecessor the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA). The analyses performed by Dinku et al. [8] for CHIRPS,
ARC, and TAMSAT version 2 and 3, and by Ayugi et al. [15], who evaluated ARC, CHIRPS,
TMPA, and Precipitation Estimation from Remotely Sensed Information using Artificial
Neural Networks Climate Data Record (PERSIANN–CDR), were specifically focused on
East Africa. Again, TAMSAT3 was evaluated in SA [16] and CHIRPS and TAMSAT version
2 over Mozambique [17]. Among the validation studies on Africa, it is worth mentioning
the work of Akinsanola et al. [18] over west Africa involving five gridded precipitation data
sets, both ground- and satellite-based. Finally, Satgé et al. [19] validated 23 precipitation
products over Western Africa, including those selected for this study, for a short period
from 2000 to 2003 at daily and monthly scales. This represents the only example in the
literature where the performances of the three selected products in their most recent
versions have all been evaluated together to date. Thus, the present work intends to extend
this product evaluation to a larger area, considering SA and EA, and to a longer time
period, considering 35 years of data. This last aspect allows for obtaining more robust
results based on a larger amount of data, and gives more significance and meaning to the
analysis of the intercomparative statistics as a function of time.

Unlike the cited validation studies of satellite products, in this work the datasets are
not compared with ground-based rain gauge data. In this analysis, two reasons justified
the exploitation of direct pairwise comparisons among the satellite products. Rain gauge
network density, availability, and reliability is not guaranteed in Africa [20]. Station
coverage is not uniform, and there are areas completely lacking rain gauges (e.g., Somalia).
Even where ground stations were dense, there is a continuous decrease in their number
due to maintenance costs. Moreover, other studies have focused on limited validations
over sparsely-gauged African watersheds [21]. Moreover, all the evaluated precipitation
products contain a contribution from rain gauge data sets according to their own specific
methodologies. This fact makes it very difficult to identify which rain gauge data has not
already been used in the satellite products being used for reference.

This paper is organized as follows: In Section 2, the precipitation products and adopted
methodologies for the analysis are described. Section 3 focuses on the investigated regions
and their precipitation climatology. Section 4 presents the results of cluster analysis and
seasonality, statistics from product intercomparisons at daily scales, and the temporal
evolution of rain detection and estimation capabilities. Discussion and conclusions are
proposed in Sections 5 and 6, respectively.

2. Materials and Methods
2.1. Precipitation Products: TAMSAT3, CHIRPS, and MSWEP

Three state of the art daily precipitation satellite datasets were used for this study,
TAMSAT3, CHIRPS, and MSWEP, remapped on a common 0.25◦ grid using a local area av-
eraging to interpolate data from their higher native resolution to the common one (function
“area_hi2lores” from the NCAR–Command Language—NCL software package [22]). The
function accounts for fractional contributions of the input high-resolution grid points to
the scope of each low-resolution grid point. This is not a strictly conservative remapping,
which represents the most suitable interpolation method used for precipitation fields [23].
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Nevertheless, it represents a good compromise between a robust interpolation appropriate
for most purposes and a quick approach suitable to be applied to large data sets.

The selection of the datasets was driven by the availability of more than 30 years of
data, necessary to give more significance to the regional precipitation climatology of the
two regions and to the analysis of inter-product stability. Moreover, the previous use of
these precipitation products in African precipitation analysis and monitoring and their
operational applications in agriculture and famine early warning systems is another key
factor, which calls for the necessity to intercompare them and increase the level of confi-
dence of their users. This is particularly true for TAMSAT3, a product developed mainly for
monitoring droughts in Africa [24] and enhancing resilience to agricultural drought [25],
and for CHIRPS, with its inclusion in the Famine Early Warning System Network initia-
tive (FEWS NET—https://fews.net, accessed on 21 October 2021) [26]. MSWEP, which
uses a completely different approach taking advantage of the complementary strengths of
gauge-, satellite- (both TIR and microwave), and reanalysis-based data, was also consid-
ered in order to evaluate the behavior of the two TIR-based products against a multi-data
source product.

2.1.1. TAMSAT3

TAMSAT3 is a precipitation product based on TIR imagery from geostationary sensors
onboard the METEOSAT platforms of the first and second generation (MFG and MSG),
providing daily estimates from 1983 to the present on the African continent at a 4 km spatial
resolution [7,27]. The algorithm is based on a cloud indexing approach, where the Cold
Cloud Duration (CCD) is used as a proxy for precipitation, representing the period of time
during which the cloud top temperature is lower than a threshold value selected to identify
the precipitating cloud systems. The peculiarity of TAMSAT3 is the exploitation of rain
gauge data in the calibration phase, which is climatological and local, i.e., varying monthly
and spatially, in order to capture the temporal and geographical variations of precipitation
without yearly updates. This eliminates the need to refer to a rain gauge dataset acquired
in real time (i.e., simultaneous to satellite acquisitions) in favor of a historical rain gauge
dataset. This approach is particularly suitable to the African continent, where the density
and availability of real time measurements of precipitation from ground stations varies
from area to area, with consequent negative effects on satellite precipitation estimates.

TAMSAT3 provides daily time series of precipitation since 1983, although there are
several days with missing data especially in the 1980s and 1990s (the worst years are 1985,
1986, and 1989 with 73, 80, and 71 missing days, respectively). One day is considered
missing when it has no TIR data for more than six consecutive hours, while a group of five
days is considered missing if more than one day is missing [7]. In the present study, data
gaps have been filled in with daily climatological averages obtained from the time series of
the TAMSAT3 dataset.

At the time this analysis was being carried out, the available TAMSAT release was
the previously described version 3.0, which was replaced by a new version 3.1 now down-
loadable from TAMSAT archive during the writing of this work. In this new version,
changes include an increased number of rain gauges used in the CCD calibration, the
extension of minimum threshold temperature to –65◦C (as opposed to –60◦C), and filling in
all missing days so that the rainfall record is temporally complete (no details are provided
with respect to the adopted methodology). However, as stated on the TAMSAT v3.1 web
page (http://www.tamsat.org.uk/data, accessed on 21 October 2021), there have been no
significant algorithmic changes between v3.0 and v3.1; thus, the estimates are very similar
and no major differences are expected from v3.0 to v3.1.

2.1.2. CHIRPS

CHIRPS is a precipitation dataset with quasi-global coverage (50S–50N, only over land
pixels) and a high space resolution (0.05◦), available on a daily, five day, and monthly time
scale from 1981 to present [28]. It is designed especially for studying extreme precipitation
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events, from droughts to floods and climatic trends. Similar to TAMSAT3, CHIRPS is
based on TIR observations from the geostationary satellite constellation and uses linear
relationships between CCD and precipitation. However, substantial differences among the
two products exist in their exploitation of rain gauge data. In this case the calibration of the
CCD vs. precipitation relationships is carried out by means of the TMPA 3B42 product [29].
Furthermore, unlike TAMSAT, the temperature threshold chosen to determine the CCDs is
fixed and equal to 235 K. The TIR-based estimates are converted into percentage anomalies
and subsequently multiplied by the Climate Hazards group Precipitation climatology
(CHPClim) dataset to obtain the CHIRP estimates. In this way, the CCD data are used to
estimate variations around the CHPclim mean, reducing CHIRP’s systematic bias. In case
of a lack of satellite observations, CHIRP estimates are replaced by percentage anomalies
calculated using reanalysis data from the Coupled Forecast System (CFS) version 2. The
last step in the algorithm involves the merging of CHIRP with precipitation data from
ground stations on the basis of a modified inverse distance weighting algorithm. Various
rain gauge datasets are used from both private and publicly available archives in order to
guarantee the best possible rain gauge spatial coverage.

2.1.3. MSWEP

MSWEP is a relatively new precipitation product, with version 2.2 released in 2018.
It is a three-hourly gridded product with global coverage at a 0.1◦ spatial resolution,
available from 1979 to 2017 [30,31]. Since its first release, MSWEP has been exploited in a
vast range of applications, among which are modeling of evaporation and soil moisture,
evaluation of climatic controls on vegetation, water resource reanalysis, and regional
studies of the diurnal variability of precipitation dynamics [31]. Moreover, it provides a
consistent precipitation record from 1979 until the near present, enabling trend and drought
assessments. MSWEP is the first fully global high–resolution precipitation dataset derived
by optimally merging gauge, satellite, and reanalysis estimates through a multi-source
weighting procedure. Actually, in addition to TIR-based estimates and precipitation from
ground stations, MSWEP integrates PMW estimates from the Climate Prediction Center
morphing technique (CMORPH) [32], Global Satellite Mapping of Precipitation_Moving
Vector with Kalman (GSMaP_MVK) [33], and TMPA 3B42RT [29] with reanalysis data
such as the European Center for Medium-Range Weather Forecast—Interim reanalysis
(ERA-Interim) [34] and Japanese 55-year Reanalysis (JRA–55) [35].

2.2. Intercomparison Statistics

As mentioned in the Introduction, direct comparisons of each precipitation product
with the others were carried out. Therefore, the present analysis represents more of
a comparative analysis among the three products aimed at detecting similarities and
differences, rather than an “absolute” validation with respect to an independent reference
dataset assumed as “truth”.

Dichotomous statistics was exploited in order to evaluate the precipitation detection
capacity. The statistical parameters used to discriminate precipitating and non-precipitating
days are summarized in Table 1 according to Ebert’s definitions [36]. A precipitation
threshold of 1 mm day–1 was selected to identify precipitating days, as recommended by
the Expert Team on Sector-Specific Climate Indices (ET–SCI, https://climpact--sci.org,
accessed on 21 October 2021).

In Table 1, hits (H) is the number of precipitating events (i.e., 0.25◦ cells with daily
precipitation ≥ 1 mm day–1) observed by both products, misses (M) represents the number
of precipitating events observed by the product used as a basis for comparison (reference
product) but not by the other product (compared product), false alarms (FA) is the number
of precipitating events identified by the compared product but not by the reference product,
and the correct negatives (CN) is the number of non-precipitating days according to
both products. The dichotomous statistics was applied both considering the whole daily
precipitation time series from 1983 to 2017 for each 0.25◦ grid cell, and year by year
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considering the yearly statistical parameters averaged over each study region. This twofold
approach allowed for simultaneously investigating spatial patterns and the temporal
evolution (temporal stability) of the products’ capability to discriminate precipitating and
non-precipitating events.

For the quantitative evaluation, the exploited statistical parameters were the linear
correlation coefficient (CC) measuring the strength of the linear relationship between the
two compared products, the mean error (ME) evaluating the tendency toward over- or
underestimation of one product compared to the other, and the mean absolute error (MAE)
quantifying the average difference between the precipitation estimates of the two compared
products. The expressions of these statistical parameters are presented in Table 2, where
SPE1 and SPE2 are the satellite precipitation estimates of the two compared products, SPEi
represent the mean values of the satellite data, and N is the number of considered data
pairs. CC, ME, and MAE have been computed at the daily and monthly (only ME and
MAE) time scales and year by year, considering the yearly statistical parameters averaged
over each study region as for the dichotomous statistics.

Table 1. Parameters for the dichotomous statistics.

Name Definition Perfect
Score

Probability of Detection POD = H
H+M 1

False Alarm Ration FAR = FA
H+FA 0

BIAS Score BIAS = H+FA
H+M 1

Hanssen and Kuipers discriminant HK = H
H+M −

FA
FA+CN 1

Table 2. Statistical parameters used for the quantitative intercomparisons.

Name Definition Perfect Score

Correlation Coeff.
CC =

∑ (SPE1−SPE1)(SPE2−SPE2)√
∑
(

SPE1−SPE1
2
)√

∑
(

SPE2−SPE2
2
) 1

Mean Error ME = 1
N ∑ (SPE1 − SPE2) 0

Mean Absolute Error MAE =
1
N ∑ |(SPE1 − SPE2)|

0

2.3. Cluster Analysis for Identification of Precipitation Seasonality Zones

The marked spatial variability of precipitation seasonality in EA and SA suggested a
partition of these regions into sub-areas characterized by a predominant precipitation an-
nual cycle evolution. The adopted approach takes advantage of the procedure already used
by Cattani et al. [37] for the EA region. According to that approach, the non-hierarchical k–
means clustering algorithm of Hartigan and Wong [38] was applied to the monthly normals
of the Global Precipitation Climatology Center data set (GPCC_Clim version 2018) at a
0.25◦ spatial resolution [39], transforming monthly data into empirical cumulative distribu-
tion functions at each grid cell [40]. The use of rain gauge-based climatology to accomplish
this task is apparently in contrast with the decision to investigate the intercomparisons
among the satellite precipitation products without the direct involvement of rain gauge
data as a reference, considering the motivations discussed at the end of the Introduction.
However, the availability of a trusted approach already applied to EA and the necessity to
have a subdivision of the two regions independent of a specific precipitation product in
order to simplify the satellite product intercomparison suggested using the GPCC_Clim
data set for the initial partitioning phase. In this way, a single subdivision for each region
was determined through the GPCC_Clim data; however, the quantitative evaluation of the
monthly climatology for each sub-area was carried out by mutually contrasting only the
satellite products and excluding the GPCC data.
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The non-hierarchical k–means clustering algorithm allows subdividing of a set of
objects, in this case the annual precipitation cycle of each 0.25◦ grid cell, into k groups based
on their characteristics, in this case precipitation seasonality. The goal is to minimize the
total intra–cluster variance. The result of the algorithm depends on the number of clusters
initially chosen; for this reason, the algorithm is normally executed several times by varying
the k value. The analysis of the sum of the squared distances between each member of a
cluster and the cluster centroid is the common method to select the appropriate value for k,
ending the iterative procedure when increasing k values does not induce any significant
decrease in the sum of the squared distances. Thus, a certain degree of subjectivity is
involved in the final decision of the cluster number [41], and it is necessary to find a balance
between obtaining good homogeneity between the elements belonging to the same cluster
without an excessive partition of the regions and consequent reduction in the number of
elements in each cluster.

Cluster analysis is instrumental in this work to summarizing the results of the quanti-
tative intercomparisons at the monthly scale and providing statistical scores for sub-areas
which are homogeneous in terms of the seasonal cycle (i.e., clusters). The specific choices
for EA and SA clustering will be discussed in Sections 4.1 and 4.2.

3. Regions of Study and Precipitation Climatology
3.1. East Africa

The analyzed region extends from 5S to 20N and from 28E to 52E including Ethiopia,
Djibouti, Eritrea, part of Sudan, South Sudan, Somalia, Kenya, Uganda, northern Tanzania,
Rwanda, and Burundi (Figure 1). It is a geographically very complex region located on
an area of friction between tectonic plates, and therefore mainly characterized by plateaus
and mountain chains. The most important geological feature of the region is the presence
of the Great Rift Valley extending for 5500 km from the Red Sea’s junction with the Gulf of
Aden, then southwest toward Kenya, and finally south to Mozambique. The oldest and
best–defined rift, usually referred to as the Ethiopian Rift, is located in the Afar region
covering part of Ethiopia, Eritrea, and Djibouti. Then it divides into two branches crossing
the equator, the Eastern and Western Rifts, enclosing the large plateau where Lake Victoria
lies. The Great Rift Valley is bordered by escarpments with altitudes varying from a few
hundred to a few thousand meters, and is surrounded by highlands, the western and
eastern Ethiopian Highlands and the East Africa Highlands. The complex geological
processes that led to the formation of the Rift Valley are also responsible for the formation
of several large lakes, including Lake Victoria, the largest lake in Africa and the second
largest in the world. In this region we find the two highest mountains on the entire
continent, Mount Kilimanjaro (5895 m) and Mount Kenya (5199 m). Another important
geographical feature of EA is the presence of desert areas: the Chalbi desert north-east of
Kenya, the Somali desert, the Dancali desert between Eritrea and northeastern Ethiopia,
and the Sudan desert.

As a result of the simultaneous presence of various regional factors, i.e., complex to-
pography, maritime influence, and lakes, with large-scale tropical controls, a strong spatial
variability characterizes EA’s precipitation intensity and seasonality [42]. Precipitation
varies from less than 50 to almost 2000 mm year–1, as obtained by averaging the time
series of the three products. The lowest values are found in the region of the Horn of
Africa and Sudan, two mainly arid regions, whereas the highest values are located in the
mountainous area of western Ethiopia, the area of the Lake Victoria, and the mountain
chain of Rwenzori at the border between Uganda and the Democratic Republic of Congo.
Likewise, the precipitation seasonality shows a high spatial variability as presented in
Figure 2 for the monthly climatology from the average of the three precipitation products.
A wide area including Somalia, Eritrea, northeastern Kenya and eastern Ethiopia is charac-
terized by two precipitating seasons, the first one from March to May (the so-called long
rain season) and the second one concentrated between October and December (the short
rain season). The rain seasons are separated by dry periods (boreal summer and winter)
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during which the monthly precipitation is lower than 20 mm month–1. In the northern
part of Sudan (north of 15N), mainly covered by desert, precipitation is always lower
than 20 mm month–1, while central Sudan and South Sudan have a single precipitating
season during the boreal summer (June–September) with more intense precipitation up to
a maximum of 140 mm month–1. Precipitation is mainly concentrated in a single season in
the western mountainous area of Ethiopia, the Ethiopian Highlands, lasting from June to
September with precipitation peaks observed in July and exceeding 200 mm month–1. The
south-western part of EA (Uganda and Tanzania) has a bimodal precipitation seasonality,
from March to May and from October to December, with the more abundant precipitation
concentrated in the area surrounding Lake Victoria, where unlike the rest of EA significant
precipitation occurs also during January and February.
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Historically, the explanation of the EA seasonal cycle with rain seasons migrating
from south to north and again south was related to the analogous south–north shift from
the equator of the Inter Tropical Convergence Zone (ITCZ) [43]. The ITCZ is described over
Africa as the area around the equator, where the dry northeast harmattan and the moist
southwest monsoon converge. Although this interpretation has been cited many times in
the literature, a recent work demonstrated that during the equatorial rainy seasons there is
a lack of co-location between the low-level convergence associated with the ITCZ and the
regions experiencing precipitation [44]. Rather, the mean static energy, saturation mean
static energy, vertically integrated moisture from the Indian Ocean, topography, large-scale
phenomena, and vertical cells over the Indian Ocean were identified as the main factors
affecting EA rainfall seasonality [45–48].
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3.2. Southern Africa

The second investigated African region is Southern Africa (10–35S, 10–51E) includ-
ing Madagascar, the Republic of South Africa (RSA), Lesotho, eSwatini, Mozambique,
Zimbabwe, Botswana, Namibia, Angola, Zambia, and Malawi (Figure 3).
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The Central Plateau covers most of the region. Its altitude is highly variable, from
3000 m in Lesotho and the eastern part of the RSA to 1000 m in Botswana, with the lowest
values corresponding to the larger river valleys, and some particularly depressed basins
such as that of Kalahari extending into Botswana, Namibia and RSA and encroaching
into part of Angola, Zambia and Zimbabwe. The Great Escarpment is the prominent
topographical feature of this region and consists of steep slopes from the Central Plateau
downward in the direction of the oceans surrounding SA on three sides. The most well–
known section of the Great Escarpment and one of the most remarkable mountain range of
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the region is the Drakensberg, which delimits the edge of the plateau in the south-east of
RSA with peaks up to 3500 m of altitude. In the eastern part (i.e., Zambia and Mozambique)
the plateau runs along the Rift Valley region (Section 3.1) via a sharp border highlighted
by the Lake Malawi. In western SA the Central Plateau runs north to south, bordered by
the Skeleton Coast to the northwest, with the Namib Desert and its coastal plains to the
southwest. Finally, Madagascar completes the analyzed region, the largest island in the
Indian Ocean, separated from the African continent by the Mozambique Channel with a
width of 400 km. It is mainly mountainous, crossed latitudinally by a mountain ridge with
an average altitude between 1200 and 1500 m and peaks exceeding 2600 m.
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Precipitation in this area is characterized by great spatial and temporal variability,
mainly attributable to the interaction of multiple factors among which are the geographical
location, variations in the regional topography, sea surface temperature, and southward
tapering of the subcontinent. Because of the very steep topography of the eastern part, the
subtropical easterly flow, and the contrast between the warm Indian Ocean and the cold
Atlantic Ocean, SA is characterized by a strong longitudinal precipitation gradient, with
more intense precipitation on the eastern side and semi-arid conditions on the western
side [16]. The mean annual precipitation obtained by averaging the time series of the
three products ranges from less than 200 mm year–1 in the Namib Desert to more than
1000 mm year–1 in northern Mozambique and Angola. In general, northern SA, including
Angola, Zambia, Malawi and northern Mozambique, receives more precipitation due to its
location within the tropical belt, in an area characterized by the presence of plateaus and
escarpments that encourage the development of orographic precipitation. Furthermore,
a recent study has attributed 31% of total precipitation in Angola and Zambia to the
formation of tropical lows, i.e., synoptic-scale cyclonic vortices that propagate westward
across SA during the austral summer with the peculiar tendency to become semi-stationary
over Angola, where their aggregation creates a local pressure minimum called the Angola
Low [49]. The RSA is characterized by a strong longitudinal precipitation gradient from less
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than 200 mm year–1 on the west coast up to 1000 mm year–1 on the eastern one, following
the profile of the Drakensberg Mountain range. Marked N–S differences are present in
Mozambique. Despite its proximity to the Indian Ocean and the prevalence of easterly
winds, the high mountains of Madagascar partially prevent the flow of moist air masses
toward Mozambique [50]. At the same time, the Madagascan mountains represent a key
factor for the spatial distribution of precipitation over the island, leading to orographically
enhanced precipitation along the east coast. The easterly trade winds prevail throughout
the year such that the eastern part of the island is rainy in all months with the exception of
only August and September [51].

The precipitation gradient previously described, a positive gradient from south-west
to north-east, is also apparent in Figure 4, where the monthly precipitation climatology is
presented using the ensemble mean of the satellite products. Rainy months are character-
ized by precipitation minima of less than 30 mm month–1 over the Namib desert and peaks
up to 300 mm month–1 in the north of Mozambique. Equally evident are the precipitation
peaks in January and February in northern Madagascar; this region is often impacted by
tropical cyclones responsible for much of the summer precipitation over the island, whereas
the south-western part is substantially dryer [51]. Unlike EA, the precipitation seasonality
in SA is much more spatially homogeneous, with most of the precipitation concentrated
during the austral summer from October to March (Figure 4). A long dry season with rain-
fall lower than 30 mm month–1 extending from May to September characterizes the whole
territory, with the exception of the Cape Town area and the east coast of Madagascar. The
Cape Town region receives on average about 100 mm month–1 from May to August, when
the track of the temperate weather systems (i.e., extratropical cyclones, cold fronts and
cutoff lows) shifts northward. Moreover, the mountains of the Cape Fold Belt surrounding
the area affect the precipitation spatial distribution, favoring more abundant rainfall in
the coastal zones than inland [52]. Regarding Madagascar, the island’s topography has a
role intercepting the easterly moist air masses caused by the anticyclonic tropical belt [53].
However, the precipitation amount on the eastern coast is scarce when compared with
that of the other months and does not exceed 100 mm month–1. April and October can be
considered transitional months from the rainy to the dry season and vice versa, respectively.
In April, most of SA receives rainfall below 30 mm month–1, while in the northern region
of Angola and Mozambique and central mountainous region of Madagascar precipitation
intensity is still higher than 100 mm month–1. A similar precipitation spatial distribution is
also found in October.
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4. Results
4.1. Cluster Analysis and Precipitation Seasonality

The k–mean clustering method (Section 2.3) was used to identify homogenous sub–
areas with respect to the annual precipitation cycle in the EA and SA regions.

Eight clusters have been adopted for the EA region, as proposed in [37], but without
the further subdivision of cluster 1 (see Figure 3a in [37]). Cattani et al. [37] have already
demonstrated that the different zones (red zones in Figure 5a) which compose cluster 1 do
not imply a variation of the precipitation seasonality but only a variation of precipitation
amount. Figure 5a shows the spatial distribution of the clusters obtained from GPCC_Clim,
while the corresponding precipitation annual cycles are presented in Figure 5b. As clearly
evident in Figure 5 and previously described in Section 3.1, EA is characterized by a
spatially highly variable monthly precipitation climatology. Clusters in eastern EA show
bimodal annual cycles, with two precipitating seasons well separated by a dry period. This
is the case in cluster 1, mainly covering Kenya and other areas around the west coast of
Lake Victoria, Rwanda, the tip of the Horn of Africa, and a small coastal portion of Somalia,
which is characterized by two precipitating seasons, i.e., with March–April–May (MAM)
more intense and lower precipitation values in October–November–December (OND),
separated by a dry season in June–July–August–September (JJAS) with precipitation lower
than 40 mm month–1. Cluster 3, including central Somalia together with a small area north
of Lake Victoria, has an annual cycle similar to the previous one, with lower peak values in
MAM and a second rainy season with a peak in October. Cluster 6, a coastal area located
on southern Somalia and Kenya, and cluster 8, which includes northern Tanzania and
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Burundi, show annual cycles analogous to cluster 1 but with more precipitation during
the dry season in JJAS (cluster 6) and higher precipitation during January–February (JF)
(cluster 8).

Remote Sens. 2021, 13, x FOR PEER REVIEW 13 of 35 
 

 

northern Tanzania and Burundi, show annual cycles analogous to cluster 1 but with more 
precipitation during the dry season in JJAS (cluster 6) and higher precipitation during 
January–February (JF) (cluster 8). 

(a) 

 
(b) 

Figure 5. Map of the EA clusters from GPCC_Clim data (a) and corresponding precipitation annual 
cycles for each EA cluster (b). 

Moving north-west, the dry season during the boreal summer tends to be reduced, 
with annual cycles characterized by a single precipitating season peaking in July and Au-
gust, as is the case for clusters 5 (South Sudan and western Ethiopia) and 7 (northern Su-
dan), this latter with very scarce precipitation not greater than 40 mm month−1. Clusters 2 
and 4 represent areas characterized by transitional precipitation annual cycles, where two 
precipitation peaks develop without a real dry break in MAM and JJAS and in April–May 

Figure 5. Map of the EA clusters from GPCC_Clim data (a) and corresponding precipitation annual cycles for each EA
cluster (b).



Remote Sens. 2021, 13, 4419 14 of 35

Moving north-west, the dry season during the boreal summer tends to be reduced,
with annual cycles characterized by a single precipitating season peaking in July and
August, as is the case for clusters 5 (South Sudan and western Ethiopia) and 7 (north-
ern Sudan), this latter with very scarce precipitation not greater than 40 mm month−1.
Clusters 2 and 4 represent areas characterized by transitional precipitation annual cycles,
where two precipitation peaks develop without a real dry break in MAM and JJAS and
in April–May and July–August for cluster 2 and 4, respectively. Cluster 2 encompasses
central Ethiopia, the Rift Valley and escarpments of the Ethiopian Highlands, as well as
small areas in Uganda and Kenya, whereas cluster 4 encompasses the coast of Somalia on
the Gulf of Aden and the eastern range of the Ethiopian Highlands, the central region of
Uganda and part of the Democratic Republic of the Congo.

Figure 6 shows the annual cycles for the different precipitation products averaged over
each cluster (Figure 5a), depicting the response of the satellite products to EA partitioning
on the basis of precipitation seasonality. For each curve, the shaded areas represent the
standard deviation associated with the monthly mean values, highlighting the spatial
variability of the monthly precipitation within the indicated cluster.

The verification of the homogeneity of the annual precipitation cycles (homogeneity
in terms of precipitation seasonality) within each cluster was carried out for each satellite
dataset considering the CCs between the annual precipitation cycle of each pixel of a given
cluster and the average annual cycle of the same cluster. For each cluster and dataset, the
mean CC value exceeds 0.8 with a p-value ≤ 0.05 (confidence level ≥ 95%).

From a first qualitative analysis of the graphs in Figure 6, it is possible to observe a
general tendency of MSWEP to underestimate precipitation compared to the other two
datasets, whereas a greater agreement between CHIRPS and TAMSAT3 emerges. The
MSWEP underestimation is particularly evident during the precipitation peak months in
western EA (cluster 5), but it appears also during the transition between the two rainy
seasons, as in clusters 4 and 6. Clusters 2, 4 and 5 are characterized by the greatest intra–
cluster variability (i.e., high standard deviation values). The terrain complexity of these
areas, with highlands and escarpments, motivates this high variability. To quantify the
differences presented in Figure 6, monthly ME and MAE were computed for each cluster,
comparing the monthly climatology of the precipitation products pixel by pixel and then
spatially averaging monthly ME and MAE on each cluster (Figure 7).

The agreement between the TAMSAT3 monthly climatology with CHIRPS is confirmed
in Figure 7a,b, with the lowest overestimation of monthly precipitation by TAMSAT3
(ME < 10 mm month–1 except for cluster 4 in July and October) and a more marked
underestimation from April to June for clusters 6 and 8. This translates into MAE values
generally lower than 10 mm month–1 except for clusters 1, 4, 6 and 8, during the rainy
seasons. Looking at the comparisons between MSWEP and CHIRPS (Figure 7c,d) and
TAMSAT3 with respect to MSWEP (Figure 7e,f), it is evident how MSWEP systematically
underestimates monthly precipitation compared to the other two datasets, with the major
MEs found in cluster 5 for the months of July and August. The greatest MAE values come
from TAMSAT3 with respect to MSWEP, exceeding 30 mm month–1 in clusters 1 and 8 in
April, and cluster 5 in July and August.

The k–mean clustering method was exploited to subdivide the SA territory into
homogeneous sub-areas with respect to the annual precipitation cycle. Figure 8a shows the
six identified clusters, whereas in Figure 8b the corresponding average annual precipitation
cycles from the GPCC_Clim data are presented. Different numbers of clusters were tested
in order to obtain the best compromise between the minimization of the intra-cluster
variance and excessive fragmentation of the territory. A further increase in the number
of clusters out of the six identified resulted only in a further fragmentation of cluster 2,
creating two transition zones at the boundary with cluster 3 (i.e., RSA at the boundary with
Botswana and Zimbabwe, and northern Angola with the southern Democratic Republic of
Congo). Moreover, the corresponding monthly climatology of these transition zones was
almost identical to that of cluster 3, with slightly lower quantities in January and February.
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SA is characterized by a more homogeneous precipitation seasonality than EA, as
shown in Figure 8b, but with variable precipitation amounts. With the exception of
cluster 6, which includes the Cape Town region, all clusters show very similar monthly
climatology, characterized by a wet season occurring during the austral summer from
October to March (ONDJFM) and a dry season coinciding with the austral winter from
April to September (AMJJAS). Cluster 1, which includes the pre-desert region in Namibia,
northern Mozambique and the northwestern coast of Madagascar, and cluster 3, covering
central Madagascar and central SA, are characterized by very similar precipitation annual
cycles, with a dry season from May to October with very low precipitation and a rainy
season coinciding with the period ONDJFM and culminating during JF. Cluster 3 is slightly
more abundant in precipitation than cluster 1 during the early phase of the rainy season
in OND. Cluster 2, which includes northern Angola, Eastern RSA at the boundary with
Botswana, Zimbabwe, Mozambique, and south-central Madagascar has a shorter dry
season from May to August, and is characterized by more abundant rainfall compared
to clusters 1 and 3 in the period of September–November. Cluster 5 is characterized by
a reduced but still significant amount of precipitation during the austral winter months
from May to September, and is mainly located on the east coast of Madagascar, which
receives precipitation throughout the year (Figure 4). This cluster also includes the coast
of Mozambique and western region of RSA. Cluster 4 occupies the Namib Desert and
is therefore characterized by very low rainfall throughout the year, with a precipitating
period limited to January, February and March. Finally, cluster 6, covering the coastal
region of Cape Town and eastern RSA is the only one with a precipitation annual cycle very
different from the rest of SA; precipitation is generally very scarce, with a weak increase
from April to September.

The average annual precipitation cycles for each satellite dataset and cluster are shown
in Figure 9. The shaded areas represent the corresponding standard deviation values, as in
Figure 6. The correlation among the annual cycles belonging to the same cluster has also
been explored in this case, with analogous results for the EA cluster analysis. The satellite
products responded positively to SA territory clustering, reproducing the annual cycles
from GPCC_Clim data in terms of seasonality and precipitation amount. A substantial
agreement among the annual cycles of the three precipitation products is evident from
Figure 9, except for cluster 5 and 6 characterized by the TAMSAT3 underestimation,
particularly marked from January to September in cluster 5 and from April to June in
cluster 6. Generally speaking, the variability of the precipitation products’ annual cycles
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within the clusters is very similar (i.e., σ values are comparable among the products in each
cluster, with the exception of cluster 5 in May–September). The significantly high variability
seen, for instance, during the austral summer months in cluster 1 and 5 is mainly due to
the composite nature of the cluster affecting the precipitation amount even though the
seasonality is preserved. As an example, Figure S1 shows the case of cluster 5, with mean
annual cycles over the eastern coast of Madagascar (Figure S1a), the coast of Mozambique
(Figure S1b), and central RSA (Figure S1b).
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The agreement among the SA annual cycles for each cluster and the three products has
been evaluated through the ME and MAE as previously done for EA (Figure 10). In terms
of ME, the highest values (negative) are related to clusters 5 and 6 from April to September,
due to TAMSAT3 underestimation of the low intensity precipitation with respect to CHIRPS
and MSWEP (Figure 10a,e). The same is not true for the other clusters, where TAMSAT3
exhibits much more limited ME values; thus, this effect does not seem particularly con-
nected to a specific inadequacy of TAMSAT3 for light precipitation estimation, as it is also
confirmed by the corresponding MAE values (Figure 10b,d,f). Conversely, substantial
agreement is evident between CHIRPS and MSWEP for the same period (Figure 10c,d) and
clusters. Considering the precipitating months (ONDJFM, excluding cluster 6), the best ME
and MAE values emerge from the TAMSAT3 versus CHIRPS comparison (Figure 10a,b),
whereas MSWEP overestimates monthly precipitation with respect to both TAMSAT3
and CHIRPS.
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4.2. Precipitation Product Intercomparisons at Daily Scale
4.2.1. Dichotomous Statistics: Rain Detection

Dichotomous statistics was applied to verify the products’ respective ability to dis-
criminate between precipitating and non-precipitating days. Starting from the daily time
series of TAMSAT3, CHIRPS and MSWEP, contingency tables and the parameters POD,
FAR, BIAS and HK (Table 1) were calculated for the two examined regions, by considering
one of the datasets as reference. Comparisons between pairs of datasets are presented
where the first product represents the reference data set against which the second one is
evaluated. According to this scheme, the analyzed couples are: CHIRPS vs. TAMSAT3,
with CHIRPS as reference dataset; CHIRPS vs. MSWEP, again with CHIRPS as a reference;
and MSWEP vs. TAMSAT3, with MSWEP in the role of reference dataset.

Figure 11 shows the spatial distributions of POD, FAR, BIAS, and HK on EA, whereas
Table 3 summarizes the spatially averaged values with the corresponding standard devia-
tions. On average, similar results emerge from the intercomparisons among the various
products, assuring substantial agreement among the evaluated products in terms of pre-
cipitation detection. Note the best POD value (0.72 ± 0.12) complemented by the best
HK (0.62 ± 0.11) from TAMSAT3 with respect to CHIRPS, and the worst results, from
TAMSAT3 with respect to MSWEP, relative to FAR (0.45 ± 0.20) and BIAS (1.5 ± 0.89).

Moreover, the analysis of the spatial distribution of the four indices makes possible
to identify specific areas where the differences or the agreement among the products are
more marked. MSWEP exhibits low POD values (≤0.4) in Somalia, Eritrea, and Sudan
compared to CHIRPS (Figure 11a). TAMSAT3 shows similar POD spatial patterns with
respect to CHIRPS and MSWEP, with values ≤ 0.4 in central Kenya, Ruanda, and Sudan
(lowest values from the MSWEP–TAMSAT3 comparison). In the northern region of Sudan,
the low precipitation amounts impact the ability to distinguish precipitating from non-
precipitating days, especially in the CHIRPS vs. MSWEP comparison, where POD reaches
its minimum. On the other hand, POD > 0.7 are found over the Ethiopian Highlands, South
Sudan, Uganda and the entire region surrounding Lake Victoria, together with the lowest
FAR values, demonstrating how the high amounts of precipitation typical of these areas
“facilitate” the task of precipitation detection. The region with the worst FAR values (~ 1)
is northern Sudan, in particular for the MSWEP vs. TAMSAT3 comparison. The tendency
of TAMSAT3 to identify more precipitating events in this area is further confirmed by the
BIAS, with a wide region exhibiting values ≥ 2 in the MSWEP vs. TAMSAT3 comparison
and to a lesser extent for CHIRPS vs. TAMSAT3. Further regions with high FAR and BIAS
values are Somalia and Eritrea (FAR > 0.8, BIAS > 1.4) for the MSWEP vs. TAMSAT3 case.
In general, a better agreement between CHIRPS and TAMSAT3 emerges from the BIAS
maps, with a weak tendency for TAMSAT3 to overestimate the number of precipitating
days compared to CHIRPS in a large portion of EA. MSWEP underestimates the occurrence
of precipitation compared to the other two products, especially in Somalia, Eritrea, and
Sudan, and its behavior deviates more markedly from TAMSAT3 than from CHIRPS.
Again, the HK maps confirm the previously described results, with values lower than
0.2 limited to the northern region of Sudan for the CHIRPS vs. MSWEP and MSWEP
vs. TAMSAT3 comparisons. This is the area covered by cluster 7 (Figure 6g), with an
average daily precipitation of < 0.3 mm day–1, so it is possible that the threshold value of
1 mm day–1 chosen as the discriminant for the precipitating and non-precipitating days
is not appropriate. In the rest of EA, HK exceeds 0.4, with large regions characterized by
values even higher than 0.6 and 0.8, denoting how the datasets have similar characteristics
relative to precipitation detection even with underestimation by MSWEP relative to the
other products.
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Table 3. POD, FAR, BIAS and HK spatially averaged over EA with the corresponding standard
deviation values.

POD FAR BIAS HK

CHIRPS vs. TAMSAT3 0.72 ± 0.12 0.38 ± 0.15 1.22 ± 0.28 0.62 ± 0.11
CHIRPS vs. MSWEP 0.60 ± 0.20 0.35 ± 0.16 0.94 ± 0.29 0.52 ± 0.15

MSWEP vs. TAMSAT3 0.66 ± 0.14 0.45 ± 0.20 1.50 ± 0.89 0.56 ± 0.12

Following the procedure previously described, Figure 12 presents the maps of POD,
FAR, BIAS and HK for SA, whereas Table 4 reports the same statistical parameters averaged
on the region together with the corresponding standard deviations. Considering the scores
in Table 4, an agreement among the products even better than that found in EA emerges,
characterized by a general improvement in the scores with lower variability (lower standard
deviation). On average, TAMSAT3 and MSWEP give raise to very similar statistical scores
when compared to CHIRPS. Looking at the score maps, the coast of Namibia and region of
Cape Town, Southern Mozambique, and the east coast of Madagascar are the areas where
POD, FAR, BIAS and HK deteriorate with respect to the rest of SA. The higher values
of the statistical parameters are found in the northern belt of SA (Angola, Zambia and
Northern Mozambique). The coast of Namibia, the region of Cape Town, and southern
Mozambique are characterized by HK<0.2 for CHIRPS vs. TAMSAT3 and MSWEP vs.
TAMSAT3, demonstrating a different capability of TAMSAT3 with respect to the other
products in identifying the precipitating days (Figure 12d). As for the desert of Sudan in
EA, the coast of Namibia is a desert area with a low number of precipitating days. The
average daily precipitation does not exceed 0.5 mm day–1; therefore, it is reasonable to
expect the dichotomous approach be problematic, given 1 mm day–1 as the threshold to
discriminate between precipitating and non–precipitating days.

The presence of a POD latitudinal gradient (Figure 12a) is particularly visible in
the CHIRPS vs. TAMSAT3 and MSWEP vs. TAMSAT3 maps, with maximum values
close to 1 in northern SA, on the west coast of Madagascar and in the mountain region
surrounding Lesotho, decreasing below 0.3 when moving southward on the east coast of
Madagascar, Southern Mozambique, Cape Town region and the coast of Namibia, where
the index reaches its minimum around 0.1. In Figure 12b the worst FAR values correspond
to the zones with low POD values in south-west RSA and improve towards the north. In
Figure 12c the spatial distributions of the BIAS values confirm the TAMSAT3 tendency
to underestimate the number of precipitating days compared to the other two satellite
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products on the east coast of Madagascar, southern Mozambique and the Namibian coast,
whereas BIAS values very close to 1 come from the comparison of MSWEP to CHIRPS. On
the contrary, TAMSAT3 overestimates the occurrence of precipitation in RSA.

4.2.2. Quantitative Intercomparisons at Daily Scale

In Figure 13 the CC, ME, and MAE maps on EA are shown for each pair of intercom-
pared products; the statistical parameters are calculated for each grid cell starting from the
daily precipitation time series. The corresponding EA-averaged parameters are reported in
Table 5.

In all three maps, the best CC values between 0.7 and 0.8 characterize the Ethiopian
Western Highlands and Northern Tanzania (Figure 13a). In the CHIRPS vs. TAMSAT3 map,
the lowest values (CC < 0.4) are found in the Sudan desert and the region surrounding
Lake Victoria. The CHIRPS vs. MSWEP map presents patterns similar to the previous
one but with lower average CC values (0.54 with respect to 0.63). In addition to the areas
already mentioned with a decrease in CC, the tip of the Horn of Africa in Somalia, Eritrea,
Rwanda and Burundi also show a CC < 0.4. The correlation further deteriorates in the case
of the intercomparison of MSWEP vs. TAMSAT3 (CC mean value 0.49), even though the
western regions of Ethiopia and South Sudan still exhibit higher CC values.
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Systematic differences among the products are identified through the ME maps pre-
sented in Figure 13b. A tendency to overestimate daily precipitation characterizes TAM-
SAT3, more marked with respect to MSWEP, with ME > 0.4 mm day–1, than with respect
to CHIRPS. In this case, a wide area of EA exhibits values only up to 0.2 mm day–1, with
the exception of Uganda and central Ethiopia (≤ 0.6 mm day–1) and the Kenyan coasts,
where on the contrary the underestimation reaches values up to 2 mm day–1 compared
to the average daily precipitation of this region of 3 mm day–1. Underestimation is most
often present in the CHIRPS vs. MSWEP map, with the exception of small regions mainly
concentrated in Ethiopia.

The spatial distributions of MAE are displayed in Figure 13c. MAE spatial patterns
are very similar and underline an increase in MAE associated with the areas characterized
by the highest precipitation amounts (i.e., Central–Western Ethiopia, Democratic Republic
of Congo and Uganda). Again, the MSWEP vs. TAMSAT3 comparison provides slightly
higher values, as reported in Table 5.

Table 4. Same as in Table 3 but for SA.

POD FAR BIAS HK

CHIRPS vs. TAMSAT3 0.71 ± 0.15 0.29 ± 0.13 1.0 ± 0.18 0.65 ± 0.14
CHIRPS vs. MSWEP 0.71 ± 0.11 0.27 ± 0.11 0.98 ± 0.13 0.64 ± 0.11

MSWEP vs. TAMSAT3 0.67 ± 0.16 0.34 ± 0.13 1.03 ± 0.19 0.59 ± 0.15
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Table 5. CC, ME and MAE spatially averaged over EA with corresponding standard deviations.

CC ME
[mm day–1]

MAE
[mm day–1]

CHIRPS vs.
TAMSAT3 0.63 ± 0.08 0.06 ± 0.20 1.48 ± 1.00

CHIRPS vs. MSWEP 0.54 ± 0.13 –0.16 ± 0.30 1.49 ± 0.99
MSWEP vs.
TAMSAT3 0.49 ± 0.13 0.23 ± 0.33 1.66 ± 1.08
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These results are closely linked with the dichotomous statistics outcomes and also
support the results from the analysis of the monthly climatology for the clusters. Even
though the three products have a high degree of agreement, generally TAMSAT3 and
CHIRPS are the products with more similar behavior at the daily scale in EA in terms of
precipitation detection and quantification, whereas the MSWEP results are worse, espe-
cially with respect to TAMSAT3, in both aspects. TAMSAT3 tends to underestimate daily
precipitation, both quantitatively and in the identification of the precipitating days, in
Rwanda and Burundi and on the Kenyan coasts when compared to the other two products;
MSWEP shows a tendency to underestimate precipitation, both quantitatively and in the
detection of precipitation days, in almost all of EA with the exception of some limited areas,
mostly in the mountainous regions of Ethiopia.

In Figure 14, the CC, ME, and MAE spatial patterns for SA are displayed and the
corresponding spatially-averaged values are summarized in Table 6.

On average, CC values are better in SA than in EA, with a slight decay in the case
of MSWEP–TAMSAT3 comparison (Table 6). The best CC results are obtained from the
CHIRPS–MSWEP intercomparison, as is apparent from Figure 14a and the low standard de-
viation associated with the mean CC value in Table 6, which indicates a substantially homo-
geneous CC spatial pattern. A common aspect of the CHIRPS vs. TAMSAT3 and MSWEP
vs. TAMSAT3 intercomparisons is the presence of an area characterized by CC values lower
than 0.2 covering the Namibian coast and the area of Cape Town, already highlighted as
problematic in the dichotomous statistics for TAMSAT3. Unlike EA, the correlation is much
more substantial between the CHIRPS and MSWEP datasets in SA. Mean ME values near
0 are accompanied by high standard deviations (Table 6), demonstrating a more marked
ME variability over the region, particularly evident for TAMSAT3 (Figure 14b). TAMSAT3
underestimates the daily precipitation on the east coast of Madagascar compared to the
other two products, with ME < –2 mm day–1 and a corresponding MAE ≥ 5 mm day–1

(Figure 14c) with respect to an average daily precipitation ≥ 6 mm day–1, as well as on
the coasts of Mozambique and in the Cape Town region, where ME ∼= –1 mm day–1 and
MAE > 2 mm day–1 are found associated with a daily precipitation ∼= 3 mm day–1. For
the remaining parts of SA, the ME values from the CHIRPS vs. TAMSAT3 and MSWEP
vs. TAMSAT3 intercomparisons are much lower, in the range of ± 0.2 mm day–1, with
MAE up to 3 mm day–1. As for the CHIRPS vs. MSWEP comparison, the greater differ-
ences are limited to Madagascar, where a more pronounced overestimation by MSWEP
with respect to CHIRPS is evident, and Mozambique, where CHIRPS overestimates daily
precipitation. In any case, the percent MAE values (i.e., the ratio between MAE and mean
daily precipitation of the compared product) are always > 50%, due to very low daily totals,
especially in Namibia, Angola and RSA (< 2 mm day–1). Finally, note the agreement of the
maps shown in Figure 14b with the findings of the BIAS index maps in Figure 12c for the
dichotomous statistics.

4.3. Temporal Stability of the Rain Detection and Estimation Capabilities

The temporal evolution of the area-averaged statistical parameters (i.e., dichotomous
and quantitative indices) was analyzed in order to evaluate the mutual stability of the
precipitation products as a function of time. Starting from the daily time series of the
three datasets, the statistical parameters were computed for each year and pixel and then
averaged over the EA and SA regions.

Figure 15 presents the annual evolution of dichotomous parameters (i.e., HK, POD,
FAR and BIAS) relating to the EA region.
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Table 6. CC, ME and MAE spatially averaged over SA, with corresponding standard deviations.

CC ME
[mm day–1]

MAE
[mm day–1]

CHIRPS vs.
TAMSAT3 0.66 ± 0.10 –0.06 ± 0.35 1.47 ± 0.73

CHIRPS vs. MSWEP 0.66 ± 0.07 0.01 ± 0.26 1.64 ± 1.00
MSWEP vs.
TAMSAT3 0.57 ± 0.11 –0.08 ± 0.40 1.77 ± 0.92
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Different trends can be seen in Figure 15, with BIAS and FAR being the most variable
indices over the 35 years examined. Similar behavior characterizes the intercomparisons
of CHIRPS vs. TAMSAT3 and CHIRPS vs. MSWEP (Figure 15a,b), with a decrease in
BIAS (from 1.2–1.3 to 0.9–1) and FAR (from 0.4–0.5 to 0.2–0.3) up to the end of the 1990s
and a weak increase in the POD, especially for CHIRPS vs. TAMSAT3. This behavior
is caused by the TAMSAT3 and MSWEP FA decrease as a function of time with respect
to CHIRPS (not shown), followed by a stabilization of values starting in the year 2000.
The situation is different for the TAMSAT3–MSWEP intercomparison (Figure 15c), where
FAR decreases only slightly, from 0.4 to 0.3, but without the juxtaposition of the pre- and
post-2000 behaviors, and BIAS increases up to 1.1–1.2 after an initial phase characterized
by high variability, denoting the tendency to overestimate the number of precipitating
days by TAMSAT3 with respect to MSWEP already mentioned in Section 4.2.1. In this case,
TAMSAT3 misses with respect to MSWEP exhibit a negative trend over the whole period,
whereas false alarms substantially decrease during 2000–2017 compared to 1983–1999 (not
shown). Generally speaking, the HK index shows an increasing trend in all intercom-
parisons, indicating an increasing similarity among the three products in discriminating
precipitating and non-precipitating days.

An analogous convergence of the quantitative estimation capabilities of the three
products with time is shown in Figure 16, with increasing CC and decreasing MAE values,
especially for the intercomparisons with respect to CHIRPS (Figure 16a,b). The MAE
values for CHIRPS vs. TAMSAT3 and CHIRPS vs. MSWEP intercomparisons, after a first
phase characterized by a negative trend, stabilize around 1.5 mm day–1 after 2000, whereas
there is not a negative trend with time for the MSWEP vs. TAMSAT3 intercomparison
(Figure 16c), but rather a variation in MAE from 1.5 to 2 mm day–1 with a sort of decadal
periodicity. MSWEP denotes a permanent underestimation with respect to CHIRPS with
ME values in the range of [–0.25, 0.] mm day–1 without any significant evolution with time
(Figure 16b). Unlike this case, TAMSAT3 exhibits increasing ME values (Figure 16a,c); the
tendency is more pronounced with respect to MSWEP (i.e., a progressing overestimation
up to a maximum of 0.5 mm day–1 during the whole period) than to CHIRPS, where
TAMSAT3 overestimation takes place only after 2000.

Considering the dichotomous parameters for SA, again an increasing similarity among
the products is evident (see Figure 17). The MSWEP–CHIRPS pair shows the more stable
values as a function of time, with only a weak increase in POD and HK and a decrease in
FAR supported by a weak decrease in misses and false alarms for MSWEP with respect
to CHIRPS (Figure 17b). Both intercomparisons involving TAMSAT3 present the typical
decreasing tendency for BIAS and FAR, with the turning point in the year 2000 already
observed in EA for CHIRPS vs. TAMSAT3 and CHIRPS vs. MSWEP, mainly due to a
decreasing number of false alarms.
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Figure 17. Same as in Figure 14 but for SA: TAMSAT3 with respect to CHIRPS (a), MSWEP with respect to CHIRPS (b) and
TAMSAT3 with respect to MSWEP (c).

As for the quantitative indices, the situation is very similar to that depicted for
EA (Figure 18), with increasing CC values reaching 0.7 except for the case of MSWEP
vs. TAMSAT3 (Figure 18c). The two products are more dissimilar in this region, as
demonstrated by the higher MAE values.
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In this analysis, the year 2000 often stood out as a turning point in the annual time
series of the examined statistical parameters, with a sort of stabilization of the parameters’
variability from 2000 onward. Various factors could have contributed to this pre- and
post-2000 change. Before 2000, the days without IR data from geostationary platforms
(METEOSAT First Generation satellites) are more numerous with respect to recent decades
when the METEOSAT Second Generation satellites entered their operational phase. For
example, the TAMSAT3 time series has as many as 80 missing days per year before 2000.
These data gaps are filled in using climatological data in TAMSAT3 and CHIRPS accord-
ing to different methodologies (see Section 2.1.1 and [28] for TAMSAT3 and CHIRPS,
respectively), and these procedures can introduce some discontinuities in the time series.
In many countries of EA and SA the availability of rain gauges was subject to a dras-
tic decrease, frequently occurring after 2000 (as confirmed on the web page of CHIRPS
dignaotics, https://www.chc.ucsb.edu/data/chirps/diagnostics#stationsbycountry, last
access 2 July 2021). A similar change around the year 2000 was recently identified for
monthly CHIRPS estimates against GPCC data globally [54]. The results indicate that
CHIRPS underestimates precipitation before 2000 with respect to GPCC, while this sys-
tematic underestimation is effectively removed after 2000. The authors also mention the
CHIRPS calibration methodology as a key factor; the algorithm calibrates the CCD re-
gressions using a TMPA 3B42 data set covering the time period 2000–2013. Therefore,
it is possible that the CHIRPS CCD–precipitation relationships are more representative
of recent decades than they are for 1983–1999. Finally, it is necessary to consider the
differences in the input data for the generations of the MSWEP product during the two
periods 1983–1999 and 2000–2017. With reference to Figure 4 in [31], where the relative
weights assigned to the gauge-, satellite-, and reanalysis-based precipitation estimates are
represented, it is clear that in the first period over EA and SA MSWEP is mainly based on
rain gauges, with a minor contribution from reanalysis over the rain gauge lacking areas
(e.g., Somalia). From 2000 onwards, the merging between satellite precipitation estimates
based on passive microwave sensors and reanalysis becomes predominant in EA, except
for the area surrounding Lake Victoria where rain gauges are still the main source of input
data. On the contrary, in SA rain gauges continue to drive MSWEP estimates, with a minor
contribution from the merging between satellite and reanalysis data.

5. Discussion

The most problematic regions for precipitation detection and estimate are located in
arid, mountainous and coastal areas. Arid regions are acknowledged as problematic for
satellite estimates because of precipitation overestimation with respect to rain gauge mea-
surements due to sub-cloud evaporation [8]. From the dichotomous statistics, differences
in the precipitation detection emerged in Northern Sudan, Somalia and the Horn of Africa,
and coastal Namibia. The problem is connected with the low daily precipitation values
in these areas, usually no more than 1 mm day–1 on average, which is near the threshold
value used for precipitation detection. This means that even low estimation errors can
determine differences in detection among the products. Moreover, not all mentioned
arid areas provided an equal response in this analysis. EA BIAS (Figure 11c) indicates
MSWEP as the product with the lowest number of precipitating days, whereas TAMSAT3
overestimates the other two products. On the contrary, TAMSAT3 underestimates precipi-
tation occurrences with respect to both products in the coastal Namib Desert. In this case,
the proximity to the coast and presence of non-convective precipitating systems further
complicate satellite retrieval [16]. Even coastal and mountain areas are considered among
the most demanding contexts for satellite precipitation estimation. In particular, IR-based
products can underestimate precipitation over coastal and mountain regions because most
of the rain comes from clouds with top temperatures higher than the threshold used by the
satellite algorithms [8]. TAMSAT3 tends to underestimate daily precipitation compared to
CHIRPS and MSWEP on the eastern coast of Madagascar and Mozambique (Figure 14b),
as confirmed by Seyama et al. and Toté et al. at decadal and monthly scales [16,17], and
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misses precipitation on the coasts of Kenya and southern Somalia with respect to CHIRPS,
which exhibits higher precipitation amounts (Figure 13). The coastal region near Cape
Town is another emblematic area for the satellite product differences, where TAMSAT3
performance is not aligned with the other two products in terms of detection (HK < 0.3;
Figure 12) and to a lesser extent estimation (ME ∈ [–0.6, 0] mm day–1, Figure 14). In the
Ethiopian Highlands region, the differences are more limited to precipitation estimation,
with MSWEP systematically underestimating precipitation compared to the other two
products, which show more similar behavior (Figure 13).

Altogether, the agreement among the three datasets in describing precipitation over
EA and SA is considerable, in spite of the specific differences summarized previously. This
demonstrates once more the applicability and reliability of IR-based algorithms such as
CHIRPS and TAMSAT3 for the evaluation of precipitation long-term variability in Africa
with respect to a multi-source precipitation product such as MSWEP, which also exploits
passive microwave-based precipitation estimates and reanalyses. Moreover, from the study
of the statistical indices as a function of time it is clear that the agreement between the
products has generally improved over time, showing more stable capabilities to identify
precipitating days and estimate daily precipitation, in particular starting in the late 1990s.
Thus, as highlighted by Awange et al. [13], who compared MSWEP v. 2.1 at the monthly
scale to various precipitation products including CHIRPS, the results of this analysis do
not identify any explicit advantage in using MSWEP rather than CHIRPS and TAMSAT3
in EA and SA, so it is not possible nor appropriate to establish a ranking. Nevertheless,
greater similarity between CHIRPS and TAMSAT3 was observed in EA, with MSWEP
deviating more, whereas CHIRPS and MSWEP exhibited a higher degree of agreement in
SA, with TAMSAT3 showing a tendency to underestimate precipitation. The agreement
between CHIRPS and TAMSAT3 was expected; however, a possible explanation for the
behavior in SA can be found in the relative weights associated with the various input
data in MSWEP, summarized in Section 4.3. Generally, the MSWEP estimates are more
based on rain gauges in SA than in EA for the whole analyzed period, and this could
contribute to the MSWEP vs. CHIRPS similarity, considering that CHIRPS exploits rain
gauges for bias correction of its IR-based precipitation estimates, whereas TAMSAT3
uses only historical rain gauge measurements to calibrate the CCD in a seasonally and
spatially varying climatological calibration procedure that does not change from year to
year. Moreover, as the climate of SA is strongly influenced by the presence of the Atlantic
and Indian Oceans, and by frontal systems, it is possible that TAMSAT3 shows a lower
capability to identify non-convective precipitation compared to the other two datasets,
given the difficulty in detecting precipitation falling from warm-top clouds, which are
not captured by the threshold temperatures adopted for identifying precipitating cloudy
systems [16,17].

6. Conclusions

Analogies and differences among TAMSAT3, CHIRPS and MSWEP data sets were
evaluated in EA and SA during the period 1983–2017 in terms of precipitation detection and
estimation at the daily scale, as well as precipitation monthly climatology and seasonality.
Unlike the numerous validation studies available in the literature, in this work we opted
for direct pairwise comparisons between the three satellite products, without a rain gauge-
based product as reference. The reasons that led to this choice are based on the scarce
and uneven spatial coverage of gauge networks in the analyzed regions, in particular East
Africa, and the difficulty of obtaining reliable rain gauge data independent from those
already used in the generation of the satellite products themselves.

The analysis consisted of several stages. First, applying the k–means clustering
method, the study regions were divided into homogeneous sub-areas with respect to
the precipitation annual cycle, in order to evaluate the spatial variability of precipitation
seasonality and the differences in monthly climatology among the products. Secondly,
the spatial distributions of dichotomous parameters (i.e., HK, POD, FAR and BIAS) and
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their temporal evolution were investigated to evaluate the rain/no rain discrimination
capacity of the three satellite products. Finally, the quantitative precipitation estimates
were intercompared at the daily scale by means of CC, ME and MAE indices, again with the
twofold purpose of evaluating their spatial patterns and temporal variability. The results
discussed in the previous section offer a broad picture of the mutual behavior of the three
precipitation products in EA and SA. A completing element of this analysis will be the
evaluation of the precipitation extremes as perceived by satellite-based products in terms
of annual maxima, or high return level events analyzed according to the method exposed
in [55–58]. This kind of research will support the projections of extremes in the vulnerable
continent of Africa, providing insights relevant for risk management.

Water resources are a key factor for the development of the African continent and its
sociopolitical and economic stability. Their inadequate management and limited access
make the survival of local populations closely dependent on precipitation, and its spatial
and temporal variations can result in devastating impacts on the territory. Paying attention
to these changes and monitoring extreme event trends through high quality satellite-based
precipitation products is thus a primary element allowing for resilient development capable
of adapting to the evolving environment.
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Author Contributions: Conceptualization, E.C. and V.L.; methodology, E.C., A.M. and V.L.; software,
E.C. and A.M.; formal analysis, O.F. and E.C.; investigation, O.F. and E.C.; data curation, E.C. and
O.F.; writing—original draft preparation, E.C.; writing—review and editing, all; visualization, O.F.,
A.M. and E.C.; supervision, E.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: TAMSAT v3.0 and CHIRPS v2.0 are publicly available datasets, which
can be found here: http://www.tamsat.org.uk/v3_data_access (accessed on 21 October 2021) and
https://www.chc.ucsb.edu/data/chirps# (accessed on 21 October 2021). MSWEP data are available
on request from the corresponding author Dr. Hylke Beck at the web page http://www.gloh2o.org/
mswep/ (accessed on 21 October 2021).

Acknowledgments: EC and VL acknowledge support from their home institution (CNR–ISAC) for
allowing them to carry on the present study. The TAMSAT group at University of Reading provided
the TAMSAT v.3 dataset. The Climate Hazards Center of the University of California, Santa Barbara
deserves gratitude for making available the CHIRPS dataset. Hylke Beck kindly allowed access to
the MSWEP dataset for the present scientific study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014:

Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E.,
Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY,
USA, 2014; pp. 1199–1265.

2. Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [CrossRef]
3. Scheffran, J.; Brauch, H.G. Conflicts and security risks of climate change in the Mediterranean region. In The Mediterranean Sea: Its

History and Present Challenges; Goffredo, S., Dubinsky, Z., Eds.; Springer Nature: Cham, Switzerland, 2014; pp. 625–640. [CrossRef]
4. Otto, F.E.L.; Wolski, P.; Lehner, F.; Tebaldi, C.; van Oldenborgh, G.J.; Hogesteeger, S.; Singh, R.; Holden, P.; Fučkar, N.S.;
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