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Abstract: Rapid urbanization significantly affects the productivity of the terrestrial ecosystem and
the foundation of regional ecosystem services, thereby detrimentally influencing the ecological
environment and urban ecological security. The United Nations’ Sustainable Development Goals
(SDGs) also require accurate and timely assessments of where people live in order to develop,
implement and monitor sustainable development policies. Sustainable development also emphasizes
the process of protecting the ecological environment for future generations while maintaining the
current needs of mankind. We propose a comprehensive evaluation method for urban ecological
quality (UEQ) using Landsat TM/ETM+/OLI/TIRS images to extract remote sensing information
representing four ecological elements, namely humidity, greenness, heat and dryness. An improved
comprehensive remote sensing ecological index (IRSEI) evaluation model is constructed by combining
the entropy weight method and principal component analysis. This modeling is applied to the city of
Wuhan, China, from 1995 to 2020. Spatial autocorrelation analysis was conducted on the geographic
clusters of the IRSEI. The results show that (1) from 1995 to 2015, the mean IRSEI of Wuhan city
decreased from 0.60 to 0.47, indicating that environmental deterioration overwhelmed improvements;
(2) the global Moran’s I for IRSEI ranged from 0.535 to 0.592 from 1995 to 2020, indicating significant
heterogeneity in its spatial distribution, highlighting that high and low clusters gradually developed
at the edge of the city and at the city center, respectively; (3) the high clusters are mainly distributed
in the Huangpi and Jiangxia districts, and the low clusters at the city center, which exhibits a dense
population and intense human activity. This paper uses remote sensing index methods to evaluate
UEQ as a scientific theoretical basis for the improvement of UEQ, the control of UEQ and the
formulation of urban sustainable development strategies in the future. Our results show that the
UEQ method is a low-cost, feasible and simple technique that can be used for territorial spatial
control and spatiotemporal urban sustainable development.

Keywords: remote sensing ecological index; ecological protection; principal component analysis;
entropy value method; spatial autocorrelation; sustainable development; Wuhan city

1. Introduction

Urban ecological quality (UEQ) evaluation is an important field of urban ecology
research and the basis of urban planning and ecological management. With the continuous
expansion of urbanization, China’s cities have achieved medium-high quality development.
However, social problems, such as resource exhaustion, an imbalance of economic structure
and environmental pollution, do appear frequently. It is urgent to improve the capacity
to implement urban sustainable development. In 2015, United Nations (UN) member
states unanimously committed to achieving the Sustainable Development Goals (SDGs) by
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2030 [1]. Although the urbanization process has improved people’s living standards, pro-
moted the sustainable development of productive forces and provided economic benefits,
it has also broken the balance between human society and the natural environment, and
has brought great challenges to UEQ [2,3]. According to the 2018 Revision of World Urban-
ization Prospects [4,5], the urban population will account for 68% of the global population
by 2050, which is an increase of 13% from 2018, and China’s urban population will increase
by 255 million people. Cities cover less than 2% of the Earth’s surface, but consume 78%
of the energy generated and produce 60% of greenhouse gas emissions [5]. Additionally,
urban land consumption outpaces population growth by approximately 50% [6].

Such changes affect human survival and the sustainable development of the social
economy [7–10]. Using UEQ measures to determine the status of the ecological environment
could promote the sustainable development of regional economies [8,11–14]. Therefore,
the quantitative description and assessment of the spatiotemporal dynamics of urban
ecological environments are emerging as leading research topics [11,15].

Numerous studies have been conducted on such an assessment from different perspec-
tives, and several evaluation methods have been suggested. The pressure–state–response
model and fuzzy evaluation methods are commonly used in ecological quality assessment.
In recent years, geographic information system (GIS) and remote sensing (RS) technologies
have provided efficient monitoring and analysis methods for ecological quality research
and sustainable development. Progress in satellite-based Earth observation systems facili-
tates assessing the state of an ecosystem from local to global scales. The scale and scope of
this research are expanding constantly. Index systems have been constructed using GIS
to conduct strategic environmental assessment for regional and land-use planning [16,17].
In China, research on the ecological environment is based on the Technical Specifications
for Ecological Environmental Assessment, promulgated by the National Environmental
Protection Agency in 2006 [18]. According to these specifications, the ecological envi-
ronment index (EI) should encompass biological richness, air pollution, water network
density, vegetation cover, land degradation and related factors. The EI is the main tool
used to evaluate the quality of the ecological environment [19]. However, as climatic and
geological conditions differ across regions, the weight of each index must be adjusted
accordingly. Currently, researchers mostly use manual processing, as weight allocation is
not strictly required and evaluation criteria vary, making it extremely difficult to accurately
compare urban ecological conditions. Therefore, a scientific and logical ecological quality
assessment method is required.

The acceleration of urbanization has led to a series of ecological and environmental
effects, such as reduced surface water transpiration and water quality. It is generally
difficult to monitor these natural processes with on-site instruments. However, remote
sensing technologies can provide quantitative physical data with high spatial and temporal
resolutions to facilitate the quantitative monitoring and analysis of environmental effects.
Among all of the environmental effects of urbanization, the thermal environment has
received more attention. The urban thermal environment is an important representative
indicator of the urban environment. It is influenced by the physical properties of the urban
surface and human social and economic activities, and is a comprehensive summary and
embodiment of urban ecosystems. Vegetation is another important component of urban
ecosystems. Urban vegetation can selectively absorb and reflect solar radiation energy,
adjust the latent and sensible heat exchange, regulate urban air, reduce pollution and other
processes that affect the city’s natural environment and is another highly comprehensive
index of urban ecological evaluation. The spatial distribution and richness of vegetation in
cities have always been considered to have important effects on the evolution of the urban
ecological environment.

The remote sensing ecological index (RSEI) combines humidity, greenness, heat and
dryness indices obtained from RS, and facilitates the monitoring and evaluation of the
UEQ. The RSEI, which was first proposed by Hu and Xu [18], could aid in visualizing
spatial and temporal analyses and predictions of change in the regional environment,
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thereby compensating for the deficiencies of the EI. This paper uses existing research from
a new perspective to more accurately study urban socio-economic activity intensity and
its relationship with the regional ecological environment. Using the RSEI will help in
studying the interactions between human activities and natural ecology, and the resulting
knowledge of theory, concepts and methods is expected to benefit local governments [20].
In recent years, the RSEI has been applied in ecological quality monitoring in 35 cities of
China [19,21,22], Eurasia [23] and America [21,23]. The RSEI and the results of principal
component analysis (PCA) have been combined to develop an ecological index [19,24].
However, using the PCA results in insufficient information utilization, as the adaptive
nature of PCA algorithms inevitably limits the full use of the available information. For
example, the RSEI obtained in two studies using only the first component for normalization
ranged from 60% to 90%, which cannot guarantee adequate contribution rates.

Accordingly, the aim of the current study is to improve the RSEI calculation method
by proposing an improved-comprehensive remote sensing ecological index (IRSEI) con-
structed by employing PCA and equal weights (EW). Our study overcomes the short-
comings of previous studies, which only considered the application of PCA in ecological
quality assessment, and the resolved knowledge gaps are reflected in the comprehensive
consideration of EW and the PCA method to determine the UEQ. The contribution rates
of the eigenvalues of PCA and EW are taken as the weights. This method enables the full
use of the available data and ensures that the value of the calculated IRSEI is ecologically
optimal. In addition, more indicators could be integrated and the IRSEI reduces noise
interference and makes optimal use of practical image information. These factors facilitate
the reliable and quantitative monitoring of the regional ecological environment.

A comparison and evaluation of the differences in quality in large cities can improve
the cognitive ability of the internal mechanism of the reciprocal feed-back relationship
between the construction of megacities and regional ecological balance, and can provide a
scientific reference for controlling the scale of urban sustainable development and ecological
planning and regulation. Wuhan is one of the fastest growing cities in central China, but
few studies have been conducted on quantitative UEQ monitoring based on remote sensing
data. Therefore, we used a series of parameters obtained from remote sensing imagery
to construct the IRSEI for the evaluation of the UEQ of Wuhan city from 1995 to 2020. In
addition to the UEQ, we determined the temporal and spatial changes in the city. We
present a discussion of the ecological changes caused by economic and social developments
and natural conditions. Finally, we provide theoretical guidance and a scientific basis for
ecological construction in Wuhan city.

The objectives of this study are to:

(1) Use GIS and RS technology to construct the IRSEI efficiently by integrating multiple
sensors, including the Landsat Thematic Mapper (TM), Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS);

(2) Monitor spatial and temporal changes in UEQ in Wuhan from 1995 to 2020;
(3) Explore the spatial differentiation characteristics of the IRSEI in Wuhan.

2. Materials and Methods
2.1. Study Area and Data Preprocessing

We select the rapidly urbanizing city of Wuhan as study area for ecological monitoring
and assessment. Wuhan is the capital city of Hubei Province. Its geographical location
is 29◦58′–31◦22′N and 113◦41′–115◦05′E (Figure 1). From the perspective of Wuhan’s
geographical location and the location of its basin, the development of Wuhan has had
great impact on the environment of the whole Yangtze River basin, and even the whole
country. Therefore, ecological assessment and policy-based restoration and protection in
Wuhan are vital for the ecological restoration of the Yangtze River basin. The city has
jurisdiction over six central urban areas and seven distant urban areas. The land area
comprises 8494.41 km2. The permanent population was 10.91 million in 2018. The Yangtze
and Han rivers meet there, forming a geographical pattern referred to as “two rivers and
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three towns”. Wuhan has a subtropical humid monsoon climate, with abundant rainfall
and sufficient heat throughout the year. The average annual temperature is 15.8 to 17.5 ◦C.
The area is rich in ecological resources, with nearly 40% green coverage and more than
10 m2 of green space per capita. These ecological resources are crucial for Wuhan to build
an ecological civilization city and, therefore, are critical factors in the protection of the
ecological environment.
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Figure 1. Location of Wuhan city.

In order to consider the quality of the remote sensing data, such as cloud cover and
vegetation condition, we use data from Landsat 5 TM in 1995, Landsat 5 ETM in 2005 and
Landsat 8 OLI in 2015 and 2020 as the main remote sensing data. RS data are particularly
useful because they can be used for temporal and spatial monitoring [25]. Details on the
satellite images used in this study are provided in Table 1. The source dates of the images
are relatively close; therefore, differences caused by different seasons and vegetation growth
states can be ignored. Owing to topographic differences in images at different times and
the influence of illumination and atmospheric factors on surface reflectance, the selected
images required preprocessing with radiometric calibration and atmospheric and geometric
correction prior to the calculation of the IRSEI. The corrections were performed using the
Environment for Visualizing Images (ENVI) software. The Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) model was used for atmospheric correction to eliminate
the radiation error caused by atmospheric absorption and scattering. The accuracy of
radiation calibration was more than 95%, and that of atmospheric correction exceeded 85%.
Further, the error in geometric correction was controlled to less than 1 pixel. The quadratic
polynomial and the nearest neighbor methods were used to correct the geometry of the
images and the preprocessed images of the study area were clipped using the vector data
of the administrative districts of Wuhan. Other data sources included the administrative
zoning map of Wuhan, digital elevation model data of Wuhan from the geospatial data
cloud (http://www.gscloud.cn/sources/accessdata/310?pid=302 (accessed on 15 May
2021)) and the cloud platform of geographical national condition monitoring of China

http://www.gscloud.cn/sources/accessdata/310?pid=302
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(http://www.dsac.cn/DataProduct/Search?&cateID=2010&areaID=18 (accessed on 15 May
2021)). Nighttime light data were obtained from the national geophysical data center
(https://www.ngdc.noaa.gov/eog/dmsp/downloadV4com-posites.html (accessed on 15
May 2021)).

Table 1. Data used and their source.

Data Used Data Acquisition Data Spatial Resolution Source

LANDSAT TM 24 October 1995 30 × 30 http://earthexplorer.
usgs.gov/ (accessed

on 15 May 2021).

LANDSAT ETM 11 September 2005 30 × 30

LANDSAT OLI
28 September 2015 30 × 30

29 October 2020 30 × 30

2.2. Methodology
2.2.1. Modeling Framework

We combine principal component analysis (PCA) and the entropy value method to de-
sign synthetic indicators that facilitate quick and quantitative assessment of UEQ, based on
humidity, greenness, dryness and the heat index. Using this method enables prioritizing the
natural factors of the ecological evaluation system. The overall framework of IRSEI model-
ing, as shown in Figure 2, includes four main steps. First, we obtain Landsat Enhanced
Thematic Mapper Plus (ETM+)/OLI/TIRS images and perform preprocessing, including
atmospheric correction, radiometric calibration and image mosaic (see Section 2.1). Second,
we derive four remote sensing indicators: humidity, greenness, dryness and heat. Third,
we calculate the PCA components, obtain PC1 and use the entropy method to calculate
the results that are used for the construction of the IRSEI. Finally, the characteristics of the
spatial and temporal changes in the ecological quality of Wuhan over the past 25 years are
determined, and the spatial heterogeneity of the city is analyzed.
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2.2.2. Calculation of Component Indices

• Humidity index (Iwet)

The Kauth–Thomas transform (also called the tasseled hat transform) is a linear
transformation method based on multispectral imaging [26,27]. This method is widely
used in ecological monitoring for data compression and removal of redundancy. The
moisture component obtained by this transform reflects moisture information in the soil
and vegetation. A low humidity value indicates severe land degradation, low vegetation
cover and a poor ecological environment. A high humidity value indicates sufficient soil
moisture, rich surface vegetation cover and a good ecological environment.

In this study, Iwet was chosen as the humidity index [28], which is expressed as land
surface moisture and is generated from Landsat TM, ETM+ and OLI image reflectance
using Equations (1)–(3) [10,23,29]:

IwetTM = 0.0315ρ1 + 0.2021ρ2 + 0.3102ρ3 + 0.1594ρ4− 0.6806ρ5− 0.6109ρ7 (1)

IwetETM+ = 0.2626ρ1 + 0.2141ρ2 + 0.0926ρ3 + 0.0656ρ4− 0.7629ρ5− 0.5388ρ7 (2)

IwetOLI = 0.1511ρ1 + 0.1973ρ2 + 0.3283ρ3 + 0.3407ρ4− 0.7117ρ5− 0.4559ρ7 (3)

where ρ1, ρ2, ρ3, ρ4, ρ5 and ρ7 represent reflectance in bands 1, 2, 3, 4, 5 and 7 of Landsat
TM/ETM+ images and reflectance in bands 2, 3, 4, 5, 6 and 7 of Landsat OLI data, respectively.

• Greenness index (Indvi)

The normalized difference vegetation index (NDVI) is often used to monitor vegeta-
tion growth [30] and directly reflects the quality of the regional ecological environment.
This index is used in the classification of regional land cover, environmental change and
vegetation. The NDVI greenness index is computed as follows [31]:

Indvi = (ρ4− ρ3)/(ρ4 + ρ3) (4)

where ρ4 represents the reflectance of the near-infrared band and ρ3 represents the re-
flectance of the red band.

• Heat index (Iheat)

Land surface temperature (LST) refers to heat, which is related closely to vegetation
growth, crop yield, surface water circulation, urbanization, other natural phenomena and
processes and human activities [32]. LST can be used as a heat index to reflect the surface
ecological environment. Several algorithms use thermal infrared technology to retrieve
LST, including the atmospheric correction, single-window and single-channel algorithms.
Comparison between LST retrieval results obtained using the atmospheric correction
method and the actual measurement of LST indicates that the error is within 1 ◦C, thereby
meeting research accuracy requirements. LST is generated using Equations (5)–(9) [33,34]:

L = gain× DN + bias (5)

Tb = K2/ln(K1/L + 1) (6)

LST = Tb/{1 + [(λTb)/ρ]lnε} − 273.15 (7)

where DN is the pixel gray value, gain and bias are thermal infrared band excursions and L
is the radiation brightness value.

Equation (7) is a simplified form of the inverse function of Planck’s formula, with
K1 and K2 being the calibration parameters. All of the parameter values are available
from the metadata file (MTL) of the satellite data. ε is the specific infrared emissivity and
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is calculated with the method proposed by Min [35]. λ is the central wavelength of the
thermal infrared band and ρ = s 1.438 10−2 mK.

∈water = 0.995 (NDVI ≤ 0)

∈building = 0.9589 + 0.086× Fveg − 0.0671× F2
veg (0 < NDVI < 0.7)

∈natural = 0.9625 + 0.0614× Fveg − 0.0461× F2
veg (NDVI ≥ 0.7)

(8)

Vegetation coverage (Fveg) refers to the ratio (%) of the vertical projection area of
vegetation on the ground to the total statistical area. Pveg is based on Landsat NDVI and
adopts the dichotomy model of mixed pixels [36]. The calculation formula is as follows [37]:

Pveg =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(9)

where NDVI is the normalized vegetation index, NDVIsoil is the normalized vegetation
index value of bare land and NDVIveg is the normalized vegetation index value of complete
vegetation coverage. NDVIsoil and NDVIveg were selected as NDVImax and NDVImin with
a confidence level of more than 95%.

• Dryness index (Idry)

The dryness index refers to the quantification of soil desiccation, which is a condition
detrimental to the ecological environment. As most urban construction land is located in
our study area, the dryness index can be represented by combining the bare soil index (SI)
and the built-up index (IBI) into a normalized building–bare-soil index (NDBSI) [29]. We
proposed extracting the bare soil and building area by setting an appropriate threshold
and, subsequently, calculating the NDBSI as a weighted average and employing the area
ratio as the weight.

NDBSI = (SI + IBI)/2 (10)

SI = [(ρ5 + ρ3)− (ρ4 + ρ1)]/[(ρ5 + ρ3) + (ρ4 + ρ1)] (11)

IBI =

[
2ρ5

ρ5+ρ4 −
(

ρ4
ρ4+ρ3 + ρ2

ρ2+ρ5

)]
[

2ρ5
ρ5+ρ4 +

(
ρ4

ρ4+ρ3 + ρ2
ρ2+ρ5

)] (12)

where ρ1, ρ2, ρ3, ρ4 and ρ5 have been defined earlier in the context of the humidity index.

2.2.3. Water Mask and Standardization

The humidity index reflects the moisture of the vegetation and soil. The area covered
by water in the study area occupies a large proportion of the Iwet, which reduces the
advantage of vegetation and soil in Iwet. Therefore, the calculated Iwet is not a true reflection
of the vegetation and soil moisture, and it is necessary to mask the water bodies present in
the study area. We use a modified normalized difference water index (MNDWI) to mask
these water bodies. The formula is:

MNDWI = (ρGreen − ρMIR)/(ρGreen + ρMIR) (13)

where ρGreen represents the reflectance of the near-infrared band and ρMIR represents the
reflectance of the red band.

2.2.4. Construction of the Improved Remote Sensing Ecological Index (IRSEI)
Evaluation Model

First, we obtain the primary remote sensing ecological index based on PCA. The four
indices are standardized to the range [0–1] and PCA is used to combine these indices. PCA1
is obtained from the four RSEIs to build a preliminary assessment model. Generally, the
first PCA collects most of the information on the four indicators, and PC1 can be used to
represent the characteristics of the regional ecological environment. Therefore, we use only
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one PC in further analyses. To facilitate index measurement and comparison, the initial
RSEI is standardized, as follows:

RSEIPCA = 1− f
(

Iwet , Indvi , Iheat , Idry

)
(14)

f = ∑4
i=1(ei × PC1) (15)

where Indvi represents the green component; Iwet represents the humidity component; Iheat
represents heat; Idry represents dryness; and PC1 is the first principal component. The
obtained RSEI value is within the [0–1] range. ei is the characteristic value contribution
rate of the index corresponding to PC1. The closer RSEI is to 1, the better the UEQ of the
region. The first principal component analysis index values are listed in Table 2. A detailed
description of the calculation steps is available in the relevant literature [11,22,24,29].

Table 2. Principal component analysis index and eigenvalue.

Year PC1 Eigenvalue Contribution/% Accumulation/%

1995 NDVI 0.0441 88.6768 88.6768
WET 0.0048 9.5508 98.2276

NDBSI 0.0002 0.4187 98.6463
LST 0.0006 1.3537 100

2005 NDVI 0.0464 81.3557 81.3557
WET 0.0071 12.5046 93.8603

NDBSI 0.0003 0.5021 94.3624
LST 0.0032 5.6376 100

2015 NDVI 0.0476 96.3065 96.3065
WET 0.0012 2.3826 98.6891

NDBSI 0.0001 0.131 98.8201
LST 0.0006 1.1799 100

2020 NDVI 0.04 97.4195 97.4195
WET 0.0007 1.7021 99.1216

NDBSI 0.0001 0.035 99.1566
LST 0.0003 0.8434 100

Second, we introduce the entropy value method, which determines the weight of each
index according to the information provided by the observed values of each index [38,39].
The evaluation index system includes N indices (NDVI, WET, NDBSI and LST). This
is a problem that consists of m samples (cell) and uses N indicators for comprehensive
evaluation. The initial data matrix A of the evaluation system is formed and Xij is the value
in i cell of the j remote sensing ecological indicator. The detailed procedures of the entropy
method are described as follows [22,38,40]:

A =

 X11 · · · X1m
...

...
...

Xn1 · · · Xnm


n×m

1. Proportion of the value in i cell of the indicator j.

Pij =
Xij

∑n
i=1 Xij

(j = 1, 2, · · ·m) (16)

2. Entropy value of the j th index.

ej = − 1
lnm
×∑n

i=1 Pijln(Pij) k > 0, ej ≥ 0, 0 ≤ ej ≤ 1
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3. Difference coefficient of the first index.

For the j th index, the more significant the difference is in the index value Xij, the
greater the effect on the scheme evaluation and the smaller the entropy value.

gj = 1− ej

The larger the gj value, the more critical the indicator.

4. Weight.

Wj =
gj

∑m
j=1 gj

, j = 1, 2 · · ·m (17)

5. Ecological index score based on the entropy method.

RSEIEW = ∑m
j=1 Wj × Pij (i = 1, 2, · · · n) (18)

The PCA effectively removes redundant information between bands and compresses
multiband image information into a few independent bands that are more effective than
the original band. The entropy method can effectively remove deficiencies caused by a lack
of PCA information. The weights for all of the indicators are listed in Table 3.

Table 3. Weights of indicators.

Year Indicators Effect Direction Weight

1995

Humidity index + 0.7463
Greenness index + 0.0144

Heat index - 0.1315
Dryness index - 0.1078

2005

Humidity index + 0.7918
Greenness index + 0.0538

Heat index - 0.1201
Dryness index - 0.0343

2015

Humidity index + 0.734
Greenness index + 0.0048

Heat index - 0.1465
Dryness index - 0.1147

2020

Humidity index + 0.9401
Greenness index + 0.003

Heat index - 0.0004
Dryness index - 0.0565

Finally, the IRSEI integrates humidity, greenness, heat and dryness through PCA and
EW, which is calculated according to Equation (19):

IRSEI = (RSEIPCA + RSEIEW)/2 (19)

In this formula, RSEIPCA is the main component, RSEIEW is the weighted result of
the entropy method and the final IRSEI is calculated as their arithmetic average. The IRSEI
for each year has to be standardized to accurately compare the remote sensing images of
different time frames. The closer IRSEI is to 1, the better the UEQ (and vice versa). The
IRSEI for the four years is classified into five groups employing the ArcGIS software (Esri,
USA). Referring to previous studies [22–24,29,41], these groups are labeled “Excellent,
Good, Moderate, Fair, and Poor” and they facilitate comparisons across the study area
(Table 4).
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Table 4. Grades of ecological indicators.

Grades
I II III IV V

Excellent Good Moderate Fair Poor

IRSEI indicator [0.8–1.0] [0.6–0.8] [0.4–0.6] [0.2–0.4] [0–0.2]

2.2.5. Spatial Autocorrelation Analysis of IRSEI

Global spatial autocorrelation (SA) measures the average correlation, spatial distri-
bution pattern and significance of all of the objects in the entire study area. SA visualizes
spatial aggregations and exceptions to the IRSEI. The Moran’s index is commonly used to
calculate SA [42]. The main calculation indices for spatial autocorrelation are the global
Moran’s index and the local Moran’s index. We analyze both the “global” spatial cluster-
ing and the “local” spatial clustering of the IRSEI. The formula for calculating the global
Moran’s index is:

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 ×∑n

i=1 ∑n
j=1 Wij

(SA) (20)

where n is the total number of grid cells in the study area (500 m × 500 m); Wij represents
the spatial weight of elements i and j; xi and xj are the attribute values of cell i and cell j,
respectively; x represents the average value of the attributes across all cells; and S2 is the
sample variance.

The value of the global Moran index I varies between −1 and 1, where I > 0 indicates
positive SA, i.e., a high value corresponds to high-value clusters, whereas a low value
corresponds to low-value clusters. The closer I is to 1, the smaller the overall spatial
difference. When I < 0, there is negative SA, i.e., there is significant spatial difference
between a cell and its surrounding cells. The closer I is to −1, the greater the overall spatial
difference. When I = 0, there is no SA.

Due to the fact that the global Moran’s index describes the overall aggregation situa-
tion, it cannot accurately determine where the place of aggregation is located and is unable
to indicate the hot spots and cold spots of the entire region. Accordingly, we use the local
indicator of SA to measure local SA and determine hot and cold spots. The formula for the
local Moran’s Ii for cell i is:

Ii =
(xi − x)

S2 ∑n
j=1 Wij

(
xj − x

)
(21)

When the local Moran index Ii > 0, the spatial difference between the cell and its
surrounding cells is minor. When the local Moran index Ii < 0, the spatial difference
between cell i and its surrounding cells is significant. When the local Moran index Ii = 0,
there is no spatial difference between cell i and its surrounding cells. In this study, we use
the software GeoDA to calculate and obtain the global and local Moran’s indices.

3. Results
3.1. Attributing Factors

A comparison of the spatial distributions of the four ecological factors in the study area
(Figure 3) shows high levels of land surface moisture close to and alongside the Yangtze
River, which extends in the central part of Wuhan from west to east. The NDVI is high
on the northeast side, along the Yangtze and Han rivers, the central part of Wuhan and
in patches in the south and east. Comparing the NDVI, LST and moisture maps shows
that moderate temperature and moisture are the most favorable conditions for vegetation
growth, whereas extreme weather conditions can damage plant vitality. The temperature
and moisture conditions are moderate in the study area and the NDVI is remarkably high.
A high LST is detected in the southern part of Wuhan, with some patches in the north and
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east. A moderate LST is detected in the central part of Wuhan. The NDBSI does not display
much variation, as most of the study area is covered by agricultural land (Figure 3).
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To test the representativeness of the index IRSEI, we calculate the correlation coef-
ficients among IRSEI, WET, NDVI, NDSI and LST in the same period (Table S1, Supple-
mentary Materials), and test the applicability of the model through average correlations.
From 1995 to 2015, the average correlation of IRSEI with the other variables is the highest,
ranging from 0.60 to 0.70. The mean correlation of IRSEI over this period was 0.64, which
indicates that IRSEI integrates most of the information embodied in all four indicators. It is
more representative than any single indicator and can better reflect the ecological situation.
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3.2. Spatial and Temporal Distribution of UEQ in Wuhan

Generally, higher IRSEI values are associated with higher levels of greenness and
moisture, whereas lower IRSEI values are directly proportional to dryness and temperature.
This implies that high IRSEI values represent positive ecological conditions.

As shown in Figure 4, the IRSEI increases from 0.79 to 0.98 from 2010 to 2015, indicating
improved ecological conditions. However, from the second half of 2015 up to 2020, its
value drops to 0.82, indicating deterioration. Comparing the values from 2010 to 2020
indicates overall improved conditions, as the IRSEI increases from 0.79 to 0.82. However,
the maximum values (1.09, 1.03 and 0.96) decline continuously, indicating that high-quality
IRSEI conditions are declining continuously. Further, low-quality IRSEI conditions improve
in the first half of the study period (1995 to 2005); however, in the second half (2005 to 2020),
these conditions decline and reach their previous stage. Our findings also show maximal
variation in the median IRSEI values, i.e., indicating the recovery of favorable conditions
(moderate to high temperature, moderate to low moisture and higher vegetation) for all
factors during the study period.
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Figure 4. Changing trend of the IRSEI in each district of Wuhan from 1995 to 2020.

The mean IRSEI value and the area and percentage of each evaluation grade in Wuhan
from 1995 to 2020 are displayed on Figures 4 and 5. Overall, the proportion of areas
with average and good IRSEI ratings is the highest during the study period (>57%). The
proportions of average and above average regions are 82.33%, 87.14%, 74.21% and 57.34%,
indicating that the ecological environment of Wuhan was unstable from 1995 to 2020,
with ecological conditions first improving and subsequently deteriorating. The UEQ of
the Xinzhou, Hanyang, Qiaokou, Huangpi and Caidian districts show the most obvious
decline, with reduction rates of 32.32%, 30.18%, 27.84%, 27.67% and 27.24%, respectively.

From the perspective of a single year (see Table 5), the area share of good ecological
environment in 1995 was the highest, reaching 43.67% of the total area. The area share of
poor ecological environment was the lowest in 1995, comprising an area of only 371 km2, or
less than 5% of the total area. The share of poor ecological environment was approximately
12% of the total area. The area with a good ecological environment rating in 2005 was
larger than that of 1995 and accounted for the highest proportion (45.57%), comprising
an area of 3494 km2. The percentage of area rated excellent was the smallest (6.23%)
after 1995. In 2020, the poor ecological environment generally accounted for the highest
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proportion (38.92%), comprising an area of 2984 km2. The good ecological environment
rating accounted for only 18.32%.

Remote Sens. 2021, 13, 4440 14 of 26 
 

 

after 1995. In 2020, the poor ecological environment generally accounted for the highest 
proportion (38.92%), comprising an area of 2984 km2. The good ecological environment 
rating accounted for only 18.32%. 

Table 5. Area and proportion of the IRSEI over 1995 to 2020 in Wuhan city (unit: km2, %). 

IRSEI 
1995 2005 2015 2020 

Area Proportion Area Proportion Area Proportion Area Proportion 
0–0.2 371 4.84% 344 4.49% 294 3.84% 1051 13.71% 

0.2–0.4 981 12.80% 643 8.38% 1684 21.96% 2221 28.97% 
0.4–0.6 2486 32.43% 1725 22.49% 2764 36.05% 2984 38.92% 
0.6–0.8 3348 43.67% 3494 45.57% 2926 38.16% 1404 18.32% 
0.8–1.0 478 6.23% 1463 19.08% 0 0.00% 8 0.10% 

 
Figure 5. Changing area proportion of the IRSEI in Wuhan from 1995 to 2020. 

The changing trend during the research period shows that the mean IRSEI values in 
1995, 2005, 2015 and 2020 decreased year by year (0.60, 0.67, 0.58 and 0.47, respectively). 
The declining values indicate that the ecological environment of Wuhan has deteriorated 
continuously, probably owing to the rapid economic development of the city. According 
to the Wuhan Municipal Bureau of Statistics, the gross domestic product (GDP) increased 
from CNY 3.991 billion in 1978 to CNY 134.10 billion in 2017. The permanent resident 
population increased from 8.58 million people in 2004 to 10.33 million people in 2014. 
Ecological problems ascribed to human activities, such as vegetation damage and soil pol-
lution, have become increasingly prominent. 

As governments and social organizations have become increasingly aware of envi-
ronmental protection, Wuhan has strengthened its enforcement of ecologically relevant 
laws and regulations, effectively halting the trend of environmental deterioration. This is 
reflected in the varying ecological evaluation grades. The differences in rating reflect an 
increase in area from 643 km2 in 2005 to 1684 km2 in 2015 (area expansion of 14%) to 2221 
km2 in 2020 (area expansion of 7%). 

The spatial distribution (Table 6 and Figure 6) shows that areas with a good ecologi-
cal environment are distributed mainly in the surrounding urban areas of Wuhan. These 
areas have a relatively weak economy and the land-use types are mainly cultivated land 
and woodland, with rich vegetation and high biodiversity levels. The areas with poor eco-
logical environments are concentrated in Hongshan, Hanyang, Wuchang and Qingshan. 

0
5

10
15
20
25
30
35
40
45
50

Poor Fair Moderate Good Excellent

A
re

a 
Pr

op
or

tio
n 

1995 2005 2015 2020

Figure 5. Changing area proportion of the IRSEI in Wuhan from 1995 to 2020.

Table 5. Area and proportion of the IRSEI over 1995 to 2020 in Wuhan city (unit: km2, %).

IRSEI
1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

0–0.2 371 4.84% 344 4.49% 294 3.84% 1051 13.71%
0.2–0.4 981 12.80% 643 8.38% 1684 21.96% 2221 28.97%
0.4–0.6 2486 32.43% 1725 22.49% 2764 36.05% 2984 38.92%
0.6–0.8 3348 43.67% 3494 45.57% 2926 38.16% 1404 18.32%
0.8–1.0 478 6.23% 1463 19.08% 0 0.00% 8 0.10%

The changing trend during the research period shows that the mean IRSEI values in
1995, 2005, 2015 and 2020 decreased year by year (0.60, 0.67, 0.58 and 0.47, respectively).
The declining values indicate that the ecological environment of Wuhan has deteriorated
continuously, probably owing to the rapid economic development of the city. According
to the Wuhan Municipal Bureau of Statistics, the gross domestic product (GDP) increased
from CNY 3.991 billion in 1978 to CNY 134.10 billion in 2017. The permanent resident
population increased from 8.58 million people in 2004 to 10.33 million people in 2014.
Ecological problems ascribed to human activities, such as vegetation damage and soil
pollution, have become increasingly prominent.

As governments and social organizations have become increasingly aware of envi-
ronmental protection, Wuhan has strengthened its enforcement of ecologically relevant
laws and regulations, effectively halting the trend of environmental deterioration. This
is reflected in the varying ecological evaluation grades. The differences in rating reflect
an increase in area from 643 km2 in 2005 to 1684 km2 in 2015 (area expansion of 14%) to
2221 km2 in 2020 (area expansion of 7%).

The spatial distribution (Table 6 and Figure 6) shows that areas with a good ecological
environment are distributed mainly in the surrounding urban areas of Wuhan. These
areas have a relatively weak economy and the land-use types are mainly cultivated land
and woodland, with rich vegetation and high biodiversity levels. The areas with poor
ecological environments are concentrated in Hongshan, Hanyang, Wuchang and Qingshan.
According to the different functions of each administrative region of Wuhan, Hongshan
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is based mainly on the education industry. Several colleges and universities are located
in the area, and it is densely populated. Qingshan, Hanyang and Wuchang are primarily
industrial areas. Heavy industrial companies, such as Wuhan Iron & Steel Co., Ltd.,
Wushi Chemical Co., Ltd. and Dongfeng Motor Co., Ltd., are located in these areas.
Industrial production and human economic activities have a direct detrimental effect on
the environment of these areas.
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Table 6. Area statistics of UEQ evaluation grade from 1995 to 2020 in Wuhan city (unit: km2, %).

IRSEI 1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

Caidian

0–0.2 33.34 3.41 44.30 4.53 43.34 4.43 159.00 16.25
0.2–0.4 182.83 18.70 73.39 7.50 204.01 20.85 302.66 30.94
0.4–0.6 318.68 32.59 115.98 11.86 301.04 30.77 356.95 36.49
0.6–0.8 394.58 40.36 315.74 32.28 429.84 43.94 159.47 16.30
0.8–1.0 48.29 4.94 428.85 43.84 0.03 0.00 0.26 0.03

Dongxihu

0–0.2 26.76 5.63 26.11 5.49 6.62 1.39 93.09 19.55
0.2–0.4 107.11 22.52 58.36 12.26 161.61 33.96 160.44 33.70
0.4–0.6 194.95 40.98 114.47 24.05 191.74 40.29 172.55 36.25
0.6–0.8 144.37 30.35 176.46 37.08 115.93 24.36 49.77 10.45
0.8–1.0 2.48 0.52 100.51 21.12 0.01 0.00 0.22 0.05
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Table 6. Cont.

IRSEI 1995 2005 2015 2020

Area Proportion Area Proportion Area Proportion Area Proportion

Hannan

0–0.2 12.66 4.91 9.69 3.76 13.55 5.26 42.96 16.68
0.2–0.4 42.45 16.45 15.87 6.16 55.44 21.51 83.13 32.28
0.4–0.6 111.99 43.40 31.36 12.17 88.47 34.33 97.70 37.93
0.6–0.8 81.25 31.49 94.55 36.69 100.24 38.90 33.61 13.05
0.8–1.0 9.70 3.76 106.23 41.22 0.00 0.00 0.17 0.07

Hanyang

0–0.2 9.14 9.17 11.42 11.46 5.12 5.14 31.27 31.40
0.2–0.4 31.18 31.30 27.49 27.59 52.91 53.10 36.47 36.63
0.4–0.6 35.36 35.48 27.14 27.24 28.77 28.87 24.28 24.39
0.6–0.8 23.74 23.83 27.28 27.38 12.84 12.89 7.53 7.57
0.8–1.0 0.22 0.22 6.30 6.32 0.00 0.00 0.01 0.01

Hongshan

0–0.2 42.60 8.93 41.29 8.66 24.48 5.13 104.50 21.91
0.2–0.4 93.16 19.53 81.07 16.99 158.38 33.20 143.26 30.04
0.4–0.6 184.41 38.66 129.99 27.25 159.77 33.49 147.52 30.93
0.6–0.8 151.94 31.85 181.63 38.07 134.42 28.18 81.66 17.12
0.8–1.0 4.88 1.02 43.07 9.03 0.01 0.00 0.02 0.01

Huangpi

0–0.2 77.87 3.67 63.18 2.97 86.94 4.09 216.05 10.17
0.2–0.4 122.09 5.75 105.77 4.98 368.63 17.35 483.26 22.74
0.4–0.6 488.82 23.02 595.10 28.01 865.43 40.74 960.08 45.19
0.6–0.8 1187.44 55.92 1173.85 55.25 803.40 37.82 462.81 21.78
0.8–1.0 247.18 11.64 186.56 8.78 0.07 0.00 2.57 0.12

Jiangan

0–0.2 17.08 23.72 16.66 23.21 2.93 4.08 22.01 30.71
0.2–0.4 23.97 33.28 28.60 39.84 40.42 56.30 27.62 38.53
0.4–0.6 20.21 28.06 18.12 25.23 22.22 30.95 16.14 22.51
0.6–0.8 10.70 14.85 7.76 10.81 6.22 8.66 5.91 8.24
0.8–1.0 0.06 0.09 0.65 0.91 0.00 0.00 0.00 0.00

Jianghan

0–0.2 9.42 34.28 9.08 33.07 1.13 4.10 10.69 38.95
0.2–0.4 11.41 41.50 12.48 45.46 18.63 67.85 11.69 42.58
0.4–0.6 4.84 17.60 4.16 15.16 6.54 23.83 4.17 15.20
0.6–0.8 1.82 6.61 1.61 5.86 1.16 4.22 0.90 3.26
0.8–1.0 0.00 0.01 0.12 0.45 0.00 0.00 0.00 0.00

Jiangxia

0–0.2 77.13 4.60 58.66 3.50 68.87 4.11 173.97 10.37
0.2–0.4 153.61 9.16 92.52 5.52 285.30 17.01 368.37 21.96
0.4–0.6 581.14 34.66 283.28 16.89 429.99 25.64 643.15 38.35
0.6–0.8 757.98 45.21 806.03 48.06 892.77 53.23 487.53 29.07
0.8–1.0 106.69 6.36 436.59 26.03 0.16 0.01 4.21 0.25

Qiaokou

0–0.2 6.98 18.06 8.96 23.25 1.63 4.23 14.54 37.70
0.2–0.4 16.31 42.17 16.03 41.61 24.51 63.61 15.28 39.61
0.4–0.6 8.19 21.19 8.91 23.13 10.09 26.20 7.36 19.08
0.6–0.8 6.93 17.92 3.99 10.36 2.30 5.97 1.39 3.61
0.8–1.0 0.25 0.66 0.64 1.66 0.00 0.00 0.00 0.00

Qingshan

0–0.2 10.40 20.39 8.53 16.66 1.58 3.09 15.73 30.69
0.2–0.4 23.10 45.31 20.76 40.55 25.24 49.30 20.53 40.06
0.4–0.6 12.99 25.47 15.01 29.32 18.78 36.68 11.98 23.37
0.6–0.8 4.38 8.59 6.19 12.09 5.60 10.93 3.02 5.89
0.8–1.0 0.12 0.24 0.71 1.39 0.00 0.00 0.00 0.00

Wuchang

0–0.2 10.64 20.73 11.20 21.70 3.01 5.83 13.72 26.48
0.2–0.4 23.56 45.91 22.57 43.72 24.67 47.78 18.84 36.37
0.4–0.6 10.70 20.85 10.82 20.97 16.45 31.86 12.13 23.41
0.6–0.8 6.25 12.17 5.90 11.44 7.50 14.53 7.11 13.72
0.8–1.0 0.18 0.35 1.12 2.18 0.00 0.00 0.00 0.01

Xinzhou

0–0.2 37.12 2.78 34.87 2.61 35.06 2.62 153.92 11.51
0.2–0.4 150.44 11.26 87.89 6.57 264.28 19.76 549.54 41.09
0.4–0.6 514.20 38.48 370.17 27.68 624.33 46.69 530.22 39.65
0.6–0.8 577.11 43.18 692.87 51.82 413.46 30.92 103.51 7.74
0.8–1.0 57.51 4.30 151.36 11.32 0.03 0.00 0.18 0.01

3.3. Dynamic Monitoring of UEQ in Wuhan

Based on the IRSEI grade classification, the detected changes were divided further
into nine levels and seven classes. The range for the levels of detected changes was −4 to
+4, with a positive value indicating that the UEQ had improved, 0 indicating no change
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and a negative value indicating deterioration. For the classes with no detected changes,
level 0 was classified as unchanged, level −4 as significantly worse and levels −2 and −3
as worse; level −1 as slightly worse; level 1 as slightly better; levels 2 and 3 as better; and
level 4 as significantly better (Table 7).

Table 7. Change in the ecological index grade.

Change Grade Level Change

Significantly worse −4 (Excellent to Poor)

Obviously worse −3 (Excellent to Fair/Good to Poor)
−2 (Excellent to Moderate/Good to Fair/Moderate to Poor)

Slightly worse −1 (Excellent to Good/Good to Moderate/Moderate to Fair/Fair to Poor)
No change 0 (no level change, eg. Excellent to Excellent)

Slightly better 1 (Above, and vice versa)

Obviously better 2 (Above, and vice versa)
3 (Above, and vice versa)

Significantly better 4 (Above, and vice versa)

Table 8 presents the ecological changes in Wuhan from 1995 to 2020. The size of the
area representing both UEQ and ecological deterioration (obviously worse and slightly
worse) is 3636 km2, accounting for the highest proportion (39.44%) over 2015–2020. The size
of the area with the same UEQ (no change) is 2984 km2, accounting for 35.56% of the total
area. Among the areas with deteriorating UEQ, most (69.51%) deteriorated by one grade.
Deterioration in UEQ accounted for 25.60%. Most of the areas showing improved environ-
mental conditions improved by one grade, accounting for 79.41% of the entire improved
area. The areas improving by two grades account for 18%. The areas representing levels 3
or 4 are relatively small, indicating gradual changes. The areas with significant changes
are related to direct economic activities, such as the transformation of cultivated land and
woodland into construction and industrial land. The spatial distribution of UEQ (Figure 7)
shows that the deteriorating areas are located mainly around cities and most water bodies.
The deterioration of the ecological environment around water bodies is related to a leakage
of urban domestic sewage and enterprise wastewater and a rise in aquaculture in recent
years. Moreover, the areas with a deteriorating ecological environment are expanding
along both sides of the Yangtze and Han rivers. Except for the water area, the UEQ in
the central metropolitan area remains mainly unchanged and several areas show signs of
improvement. This result indicates that environmental governance in the main urban area
of Wuhan has played a positive role in recent years.

Table 8. Change in the ecological index grade from 1995 to 2020.

Change Grade
1995–2005 2005–2015 2015–2020

Area Percentage Area Percentage Area Percentage

Significantly worse 3 0.04% 20 0.26% 0 0.00%
Obviously worse 373 4.86% 1299 17.11% 981 12.85%

Slightly worse 1157 15.07% 2644 34.85% 2655 34.76%
No change 2952 38.45% 2634 34.70% 2984 39.08%

Slightly better 2165 28.20% 815 10.74% 816 10.69%
Obviously better 1008 13.13% 177 2.33% 199 2.61%

Significantly better 20 0.26% 0 0.00% 0 0.00%



Remote Sens. 2021, 13, 4440 17 of 23

Remote Sens. 2021, 13, 4440 18 of 26 
 

 

Table 8 presents the ecological changes in Wuhan from 1995 to 2020. The size of the 
area representing both UEQ and ecological deterioration (obviously worse and slightly 
worse) is 3636 km2, accounting for the highest proportion (39.44%) over 2015–2020. The 
size of the area with the same UEQ (no change) is 2984 km2, accounting for 35.56% of the 
total area. Among the areas with deteriorating UEQ, most (69.51%) deteriorated by one 
grade. Deterioration in UEQ accounted for 25.60%. Most of the areas showing improved 
environmental conditions improved by one grade, accounting for 79.41% of the entire im-
proved area. The areas improving by two grades account for 18%. The areas representing 
levels 3 or 4 are relatively small, indicating gradual changes. The areas with significant 
changes are related to direct economic activities, such as the transformation of cultivated 
land and woodland into construction and industrial land. The spatial distribution of UEQ 
(Figure 7) shows that the deteriorating areas are located mainly around cities and most 
water bodies. The deterioration of the ecological environment around water bodies is re-
lated to a leakage of urban domestic sewage and enterprise wastewater and a rise in aq-
uaculture in recent years. Moreover, the areas with a deteriorating ecological environment 
are expanding along both sides of the Yangtze and Han rivers. Except for the water area, 
the UEQ in the central metropolitan area remains mainly unchanged and several areas 
show signs of improvement. This result indicates that environmental governance in the 
main urban area of Wuhan has played a positive role in recent years. 

Table 8. Change in the ecological index grade from 1995 to 2020. 

Change Grade 
1995–2005 2005–2015 2015–2020 

Area Percentage Area Percentage Area Percentage 
Significantly worse 3 0.04% 20 0.26% 0 0.00% 
Obviously worse 373 4.86% 1299 17.11% 981 12.85% 

Slightly worse 1157 15.07% 2644 34.85% 2655 34.76% 
No change 2952 38.45% 2634 34.70% 2984 39.08% 

Slightly better 2165 28.20% 815 10.74% 816 10.69% 
Obviously better 1008 13.13% 177 2.33% 199 2.61% 

Significantly better 20 0.26% 0 0.00% 0 0.00% 

 
Figure 7. Spatial transfer distributions of the ecological levels of the IRSEI in Wuhan from 1995 to 2020. 

3.4. Spatial Autocorrelation Analysis 
We explore the spatial autocorrelation (SA) of the IRSEI at a grid cell scale of 500 m × 

500 m and our results indicate the existence of SA. The Moran’s I was 0.568 in 1995, and 
0.535 in 2020. All four IRSEI maps (1995, 2005, 2015 and 2020) display an extremely low 
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3.4. Spatial Autocorrelation Analysis

We explore the spatial autocorrelation (SA) of the IRSEI at a grid cell scale of 500 m× 500 m
and our results indicate the existence of SA. The Moran’s I was 0.568 in 1995, and 0.535 in
2020. All four IRSEI maps (1995, 2005, 2015 and 2020) display an extremely low probability
(p-value < 0.01) of completely random spatial distribution. Therefore, the statistical sig-
nificance test shows that SA exists for all of the ecological factors. The IRSEI increased in
places where spatial distribution was favorable to the UEQ. In 1995, high-value clustering
of the IRSEI in Wuhan was distributed mainly in the south and north of the study area,
whereas low-value clustering was concentrated in the middle of the study area. In 2005,
high IRSEI values started gathering gradually in the southern region, and low IRSEI values
became more concentrated in the clustering distribution. By 2015, the high/high clustering
and low/low clustering of the IRSEI in the study area became more dispersed and tended
to spread in every direction. In 2020, low/low clusters had spread from the middle to
the east and west, whereas high/high clusters were concentrated mainly in the south and
north of Wuhan City.

The Moran’s I scatter graph is divided into four quadrants, corresponding to four
different spatial distribution types (Figure 8). The first quadrant represents high/high
clustering, the second quadrant low value and high-value aggregation, the third quadrant
low/low aggregation and the fourth quadrant high-value and low-value aggregation. The
IRSEI of Wuhan is concentrated mainly in the first and third quadrants. This result indicates
that the IRSEI spatial distribution in Wuhan represents positive spatial autocorrelation, and
high IRSEI agglomeration zones are mainly distributed in outer suburban areas, mainly in
the north and southeast Wuhan.
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4. Discussion
4.1. Literature, Policy and Practice

We have reviewed previous studies and demonstrated that it is feasible to evaluate
the quality of the urban ecological environment through remote sensing. This research
proposes a feasible method. Other remote sensing images could also have been used as data
in this research, such as Tiangong-2 WIS images [11]. In terms of method improvement, we
mainly improved the integration of quantitative factors. A related similar index, RSUSEI,
has primarily increased remote sensing ecological factors by adding the impervious surface
cover (ISC) [15]. ISC is also one of the most important factors that distinguish different
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types of land use/land cover characteristics in urban environments, and has a strong impact
on UEQ. However, in our study we also consider the dryness index (NDBSI), the bare soil
index (SI), the building index (IBI) and the normalized buildings–bare-soil index. However,
there are strong correlations between the impervious surface, bare soil and building indices.
Previous studies have found that the relationship between ISC and LST has the form of
an exponential function, rather than a simple linear function, as commonly believed [43].
This exponential relationship has been confirmed by many subsequent studies [44,45]. Our
IRSEI index takes into account the bare soil, building index and surface temperature. We
suggest that the correlations of remote sensing ecological indicators affecting the regional
ecological environment should be introduced into comprehensive indicators, or different
indicators should be set according to the characteristics of the study region.

There are few high-quality ecological environment patches in Wuhan (IRSEI > 0.8),
with close to zero over the past five years, and most of the patches are in the center of the
ecological environment. Therefore, we propose a policy whereby Wuhan would focus on
protecting forest land and gardens, build high-quality ecological corridors and coordinate
the management of rivers in the future, so as to guide sustainable urban development
and achieve sustainable development goals (such as SDG 11, sustainable cities and com-
munities). Lake and wetland protection and ecological restoration and management will
optimize the pattern of ecological security. Further analyses of the results indicate that there
was a negative correlation between LSI, NDBSI and urban ecological quality. The ecological
environment in areas with a high surface temperature, such as the Wuhan downtown
area and coastal area around the Yangtze River, has tended to deteriorate; however, the
humidity indices in these areas were also relatively high, which is conducive to ecological
protection. Low vegetation index values in the central urban area also affect the quality of
the ecological environment of Wuhan to a certain extent. The IRSEI can macro-evaluate
the quality of the regional ecological environment, which is more convenient and efficient.
In the future, higher precision can be introduced at the block level. Data, such as Google
Street View data, could be used with machine learning algorithms to further identify the
proportion of regional urban green space, trees, etc., and improve the accuracy of ecological
environment assessment. The index has a high ability to distinguish between different
land cover uses. The framework can also be easily extended to a global scale or to map
other gridded socio-economic variables (such as GDP and population) to monitor and
assess progress towards the SDGs [25]. The assessment and modelling of uses is critical to
supporting sustainability assessment in achieving Sustainable Development Goals (SDGs),
such as sustainable cities and communities. Therefore, IRSEI can be used to assess the
spatial and temporal sustainability of cities.

4.2. Analysis of the Factors Affecting the UEQ

The regression least squares method (OLS) can be used to quantitatively describe
the relationship between the ecological index and natural, economic and social factors
in Wuhan. The data include temperature, precipitation, elevation, slope and DMSP as
explanatory variables. The night light variable reflects the human footprint and fundamen-
tally affects the urban ecological environment. Impervious surfaces and roads and a high
population density are not conducive to UEQ. The regression coefficients represent the
contribution of six independent variables to the dependent variable. The regression coeffi-
cients of precipitation and elevation are equal to 0.522 and 0.441, respectively, indicating
that precipitation and elevation positively contribute to the IRSEI.

In contrast, the regression coefficients of night light and slope are negative, indicating
that these variables contribute negatively to the IRSEI. The night light variable has a
regression coefficient of –0.619, indicating a negative effect. The R2 is 0.901 and p < 0.05,
indicating that climate, precipitation, elevation, slope and night light data account for 90%
of the variations of the IRSEI.
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The regression equation between the IRSEI and the independent variables is as follows:

IRSEI = 0.926 + 0.148 × Temperature + 0.522 × Precipitation + 0.441 × Slope − 0.001 × Elevation
− 0.619 × DMSP (R = 0.901).

4.3. Method Framework and Validation Analysis

Weighting is an important process in the development of aggregated ecological indices
that help promote sustainability. Different weighting methods have different characteristics,
and the method employed could reflect the subjectivity of the decision makers. However,
such methods combined with remote sensing index data can facilitate decisions and reduce
the calculations required.

PCA is widely used in the evaluation of the RSEI. In several studies, the three principal
components obtained after dimensionality reduction did not show any obvious effects
(contribution was below 15%). However, including all of the pixels in extensive data
calculations is a time-consuming process. The RSEI employs a covariance-based (unstan-
dardized) PCA to determine the importance of each indicator involved. The weight of each
indicator can be assigned objectively and automatically based on the load (contribution) of
each indicator to PC1. In this study, we used PCA and EW to comprehensively calculate the
IRSEI. After improvement, the combined method was able to reflect the degree of change
in the index, and the calculation was quick and uncomplicated. The spatial distribution
of the UEQ over the study period (1995–2020) is consistent with the information in the
bulletin on the eco-environmental situation in China in that year. The current, more popular
assessment method is based on habitat quality (HQ) [46–50]. In further research, we intend
to include HQ in this quantitative assessment.

4.4. Limitations and Future Prospects

The proposed UEQ evaluation model is feasible and straightforward, providing a new
idea for ecological protection and comprehensively reflecting the changes in UEQ in Wuhan.
From 1995 to 2020, the UEQ of Wuhan declined overall, probably owing to a combination
of natural factors and human activities. However, the ecological level in the eastern and
southeastern mountainous areas has increased because of the influence of forest resource
protection, desertification land management and the warm and humid climate. In contrast,
the regional ecological level has declined, owing to the overexploitation and overgrazing
of lake resources in the northwest and southwest of Wuhan. The constantly rising levels of
urbanization and construction over nearly 20 years have resulted in a downward trend
in the UEQ. Overall, the ecology of Wuhan is in a fragile state. In 2020, the proportion of
areas with poor ecological environment grades remained high, accounting for 42.68% of
the total area.

In future social and economic development, we should follow the laws of nature, pri-
oritize protection and rationally develop and utilize natural resources. The IRSEI effectively
revealed the spatial distribution of and change in the UEQ in Wuhan, based on remote
sensing images. Although four types of ecological factors closely related to the ecological
environment were selected in the calculation process, the ecological environment is a
complex and comprehensive variable. Areas with a deteriorating ecological environment
tend to be spread along the Yangtze and Han rivers and around the central urban area.
Urban expansion has damaged the ecological environment, and urban planning should
integrate more ecological concepts to promote a harmonious coexistence and sustainable
development for humans, nature and society.

Comprehensive quantitative evaluation requires selecting several impact factors that
reflect the actual situation in the study area. We aimed to conduct the UEQ evaluation by
employing a scientific, objective and feasible method. Nevertheless, choosing the UEQ
evaluation index remains exploratory work. Determining the index weight affects the
accuracy of the evaluation results. Accordingly, expanding research to a more scientific
multifunction performance index system and determining the index weights require further
work. Furthermore, the limited availability of data and a lack of longitudinal comparison
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of urban data have affected the scientific nature of our research results. In addition, our
next step will be exploring how the IRSEI changes at different spatial scales. The rapid
development of cities will inevitably lead to a series of ecological and environmental
problems, and the deterioration of the ecological environment may further affect the
surrounding environment, forming a cycle and harming urban sustainability. This study
also demonstrates that IRSEI is characterized by spatial heterogeneity; that is, the poor UEQ
patches will focus on areas where the ecological environment is poor and the urbanization
is also highest.

5. Conclusions

In this study, the IRSEI model was used to evaluate and monitor the ecological
environment in Wuhan from 1995 to 2020. The IRSEI is an ecological environmental
quality assessment method based on remote sensing technology. The method has many
advantages, such as the ease of obtaining parameters, a large time sequence span and a
wide evaluation range. The UEQ method employing remote sensing technology is feasible
and simple, and provides a new tool for territorial spatial control and spatiotemporal urban
sustainable development. Our proposed UEQ assessment framework can also help to
develop potentially relevant additional sub-indicators, which could help to address one
of the current challenges in SDG monitoring, namely how to implement SDG indicators.
We have implemented the proposed workflow in this study based on an open-source
platform and free satellite data, making it an appealing option that is applicable in almost
all countries.

The main conclusions from the results of this study are:

• The mean IRSEI value in Wuhan decreased annually from 2005 to 2015. The UEQ
continued to decline, mainly because of the rapid economic development of Wuhan,
reduction in vegetation coverage caused by human activities, gradual decrease in lake
area and transformation of the land-use structure caused by urban expansion;

• From the perspective of spatial patterns, the UEQ of the central urban areas, such as
Qingshan, Hanyang, Hongshan and Wuchang, was lower than that of the surrounding
metropolitan areas, such as Huangpi, Jiangxia and Caidian. In terms of time series, the
UEQ in the central city of Wuhan has been mainly unchanged or improved, indicating
that the management of the ecological environment in the central city had achieved
specific results;

• The global Moran’s I value range from 0.535 to 0.592 from 1995 to 2020, respectively,
indicating that the IRSEI spatial distribution displays significant spatial heterogeneity.
This finding indicates that high clustering gradually developed to the edge of the
city, whereas low clustering gradually developed to the center of the city. The spatial
correlation and local index cluster diagram of the IRSEI show that the high points are
located mainly in the Huangpi and Jiangxia districts;

• The UEQ evaluation model constructed in this study is feasible and simple and could
be implemented at no or negligible cost, making it applicable to most regional areas.
Our model, therefore, could be considered a new tool for ecological management and
protection, and for assessing progress toward urban sustainable development.
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