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Abstract: The spatial distribution of coastal wetlands affects their ecological functions. Wetland
classification is a challenging task for remote sensing research due to the similarity of different
wetlands. In this study, a synergetic classification method developed by fusing the 10 m Zhuhai-
1 Constellation Orbita Hyperspectral Satellite (OHS) imagery with 8 m C-band Gaofen-3 (GF-3)
full-polarization Synthetic Aperture Radar (SAR) imagery was proposed to offer an updated and
reliable quantitative description of the spatial distribution for the entire Yellow River Delta coastal
wetlands. Three classical machine learning algorithms, namely, the maximum likelihood (ML),
Mahalanobis distance (MD), and support vector machine (SVM), were used for the synergetic
classification of 18 spectral, index, polarization, and texture features. The results showed that
the overall synergetic classification accuracy of 97% is significantly higher than that of single GF-
3 or OHS classification, proving the performance of the fusion of full-polarization SAR data and
hyperspectral data in wetland mapping. The synergy of polarimetric SAR (PolSAR) and hyperspectral
imagery enables high-resolution classification of wetlands by capturing images throughout the year,
regardless of cloud cover. The proposed method has the potential to provide wetland classification
results with high accuracy and better temporal resolution in different regions. Detailed and reliable
wetland classification results would provide important wetlands information for better understanding
the habitat area of species, migration corridors, and the habitat change caused by natural and
anthropogenic disturbances.

Keywords: Yellow River Delta; coastal wetland; synergetic classification; Gaofen-3; full-polarization
SAR; Zhuhai-1 Orbita Hyperspectral Satellite; hyperspectral remote sensing

1. Introduction

Coastal wetlands play a pivotal role in providing many ecological services, including
storing runoff, reducing seawater erosion, providing food, and sheltering many organisms,
including plants and animals [1]. Most coastal wetlands have a vital carbon sink function,
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which is crucial to reduce atmospheric carbon dioxide concentration and slow down global
climate change [2,3]. In addition, the mudflats [4], mangroves, and vegetation (e.g., Tamarix
chinensis, Suaeda salsa, and Spartina alterniflora) [5] in coastal wetlands have strong carbon
sequestration ability. Therefore, the coastal wetland is called the main body of the blue
carbon ecosystem in the coastal zone [6].

The Yellow River Delta (hereinafter referred to as YRD) has a complete range of
estuarine wetland types, including salt marshes, mudflats, and tidal creeks [7,8]. However,
intense anthropogenic activities in recent decades, such as dam building, agricultural
irrigation, groundwater pumping, hydrocarbon extraction, and the artificial diversion of
the estuary, have posed serious threats to the coastal wetlands of YRD [9–13]. Therefore, it
is of great significance to carry out dynamic monitoring and obtain a reliable and up-to-date
classification of coastal wetlands over the YRD for studying the impact of human activities
on habitat area [14].

Wetland classification can illustrate the distribution and area of wetlands over ge-
ographical regions, which are helpful tools for evaluating the effectiveness of wetland
policies [14]. In the last sixty years, wetland mapping and monitoring methods have
been varied, mainly divided into field-based methods and remote sensing (RS) methods.
Field-based wetland classification requires field work, which is labor-intensive, high in
cost, time-consuming, and usually impractical due to poor accessibility. Therefore, it is
only practical for relatively small areas [15]. In contrast, RS imagery can currently provide
spatial coverage and repeatable observations in long-term series from local to regional
scales, enabling effective detection and monitoring of different wetlands at a lower cost.
However, wetland RS classification needs to be combined with sufficient field observations
to train and evaluate the accuracy of classification [14]. RS has been demonstrated to be the
most effective and economical method in wetland classification [15]. In addition, large-scale
coastal wetland mapping is becoming a reality thanks to cloud computing platforms such
as Google Earth Engine (GEE) [16,17].

However, there are still some problems in the detection and classification of different
types of wetland using satellite remote sensing images. The spectral curves of the same
vegetation may be different due to the influence of growth environment, diseases, and insect
pests. Additionally, two different vegetation may present the same spectral characteristics
or mixed spectral phenomenon in a certain spectral segment, which makes it difficult to
identify wetland types well by only using spectral response curves. These two phenomena
greatly influence the classification algorithm based on spectral information and easily
cause misclassification [18]. The particularity of wetlands makes wetland classification a
challenging topic in remote sensing study.

Optical images can classify ground objects according to spectral features and various
vegetation indices. Since the launch of the Landsat satellite in the late 1960s, wetland
mapping has been an important application of remote sensing [19–22]. In the early stages,
single data source and classical algorithms were mainly used, but now mapping has gradu-
ally started using multisource data fusion and complex algorithms [23]. With the launch
of hyperspectral satellites, hyperspectral remote sensing images are gradually becoming
widely used [24–26]. Hyperspectral data are sensitive to tiny spectral details and can
detect resonance absorption and other spectral features of materials within the wavelength
range of the sensor [27]. Melgani and Bruzzone [21] introduced support vector machines
(SVM) to class hyperspectral images and proved that SVM is an effective alternative to
conventional pattern recognition approaches (feature-reduction procedures combined with
a classification method) to classify hyperspectral remote sensing data. Xi et al. [28] utilized
Zhuhai-1 Constellation Orbita Hyperspectral Satellite (OHS) hyperspectral images for tree
species mapping and indicated that hyperspectral imagery can efficiently improve the
accuracy of tree species classification and has great application prospects for the future.
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In recent years, the continuous launch of spaceborne synthetic aperture radar (SAR)
systems have obtained a large number of on-orbit and historical archived data, providing
an excellent opportunity for multi-temporal analysis, especially in coastal and cloudy
areas [29]. Radar reflectivity is usually determined by the complex dielectric constant of
the landcover, which in turn is dominated by the water content and geometric detail of
the surface, e.g., smoothness or roughness of the surface and the adjacency of reflecting
faces [27]. In the last two decades, many complicated and efficient classifiers and features
have been investigated and integrated into the polarimetric SAR (hereinafter referred
to as PolSAR) image classification framework to improve classification accuracy [30–33].
Li et al. [34] used Sentinel-1 dual polarization VV and VH data to discriminate treed and
non-treed wetlands in boreal ecosystems. Mahdianpari et al. [35] use multi-temporal
RADARSAT-2 fine resolution quad polarization (FQ) data to classify wetlands in Finland.
The results show that the covariance matrix is a critical feature set of wetland mapping,
and polarization and texture features can improve the overall accuracy. Therefore, the use
of multi-temporal PolSAR classification shows considerable potential for wetland mapping.
Full-polarization SAR data also have great advantages in wetland classification.

Previous studies have shown that multisensor remote sensing information fusion
can improve the final quality of information extraction by relying on the existing sensor
data without increasing the cost [23,36–39]. Due to the variety and complexity of coastal
wetland types, it is necessary to consider multisource data fusion to improve the accuracy of
wetland classification [7,40–42]. One approach is the synergetic classification of optical and
SAR images, considered to be an effective way to improve the accuracy of ground object
recognition and classification. For example, Li et al. [43] used GF-3 full-polarization SAR
data and Sentinel-2 multispectral data to carry out synergetic classification of YRD wetlands,
and the results were significantly superior to that of the single datum. Kpienbaareh
et al. [44] used the dual polarization Sentinel-1, Sentinel-2, and PlanetScope optical data
to map crop types. Niculescu et al. [45] identified an optimal combination of Sentinel-1,
Sentinel-2, and Pleiades data using ground-reference data to accurately map wetland
macrophytes in the Danube Delta, which suggests that diverse combinations of sensors
are valuable for improving the overall classification accuracy of all of the communities of
aquatic macrophytes, except Myriophyllum spicatum L. Thus, the fusion of available SAR
and optical remote sensing data provides an opportunity for operational wetland mapping
to support decisions such as environmental management.

However, a review of the existing literature yields few studies focused on the syn-
ergetic classification of coastal wetlands over the YRD, especially with GaoFen-3 (GF-3)
full-polarization SAR and Zhuhai-1 OHS hyperspectral remote sensing in China. Therefore,
in this study, we first introduce a combination method for coastal wetland classification
over the YRD with both GF-3 and OHS images, and we then evaluate the classification
accuracy. Furthermore, we investigate the influence of an optimal feature subset, seasonal
change, and tidal height on the final classification.

2. Datasets and Methods
2.1. Study Area

As shown in Figure 1, the YRD is located in the northeast of Shandong province,
China, and is bounded by the Bohai Sea to the north and Laizhou Bay to the east [12,39]. It
is a fan-shaped area formed by sedimentation of the Yellow River as it flows into the Bohai
Sea, where newly formed wetlands are increasing at a rate of 30 km2 per year. The terrain
of the region is flat, with diverse types and complex geomorphic forms and an average
slope of 2.14% [10,36,39,46]. Tidal creeks are widely distributed in the coastal areas on the
north and south sides of the YRD. This region is in the temperate monsoon climate zone,
with an average annual temperature of 14.7 °C and average precipitation of approximately
526 mm/year during January 2019 and December 2020 [7].
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The YRD wetland is a typical estuarine wetland ecosystem of salt marsh, which
belongs to the coastal wetland classified by the Ramsar Wetland Convention [47,48]. The
total area of wetland in the YRD is approximately 700 km2, of which the area of natural
wetland accounts for approximately 89%, mainly including shallow sea, tidal flat, river,
and vegetation, and the area of human-made wetland accounts for approximately 11%,
mainly including aquaculture ponds, salt pans, and farmland. Four dominant salt marsh
plant species, namely, Phragmites australis, Tamarix chinensis, Spartina alterniflora, and Suaeda
salsa, occupy the broad tidal flats of the YRD [20,37]. Suaeda salsa and Tamarix chinensis are
the only halophytic plants in heavy saline soil and tidal flats. When the soil is desalted, the
vegetation type changes to Phragmites australis.

Figure 1. Location of the study area. The base map is derived from the 10 m false color OHS
composite image on 23 March 2020 (red = band 28; green = band 14; blue = band 8). The red
rectangular box on the false color image represents the study area. The blue and green boxes in
the inset indicate the coverage of OHS hyperspectral remote sensing and GF-3 SAR remote sensing
images, respectively.

2.2. Datasets
2.2.1. GF-3 and OHS

The Chinese Gaofen-3 (GF-3) satellite carried a SAR sensor and was launched on
10 August 2016 [30]. The GF-3 supports operations in single-polarization (HH or VV),
dual-polarization (HH+HV or VH+VV), and quad-polarization (HH+HV+VH+VV) modes
with respect to 12 different observing modes [49], and has been widely used for water
conservancy, land and ocean monitoring, and other vital applications [50,51].
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QPSI is a quad-polarization strip imaging mode with a spatial resolution of 8 m that
captures four polarization channels by transmitting and receiving horizontal and vertical
waves and can improve the classification accuracy of ground targets [33]. The detailed
parameters of GF-3 data selected for this study are shown in Table 1.

Table 1. Parameters of GF-3 and OHS data used in this study.

Parameters GF-3 OHS

Imaging time 13 March 2019 23 March 2020
Product type Single Look Complex STANDARD

Nominal resolution (m) 8 10
Product level 1 L1B
Satellite ID GF-3 OHS 2-D

Sensor SAR CMOSMSS
Band number 4 32

Band 5.6 cm (C) 400–1000 nm (VIS+NIR)
Polarization mode HH+HV+VH+VV ——
Cloud percent (%) —— 0

The Zhuhai-1 satellite constellation of Orbita company includes four Orbita hyperspec-
tral satellites (OHS-A, OHS-B, OHS-C, and OHS-D) that have the same hardware configura-
tion and operating status as well as strong hyperspectral data acquisition abilities [52]. The
hyperspectral sensor CMOSMSS (Complementary Metal-Oxide-Semiconductor Multispec-
tral Scanner System) mounted on the OHS satellites can acquire images with a resolution
of 10 m, a width of 150 km, and 32 spectral segments [53]. The detailed parameters and
spectral range of the OHS bands used for this study are shown in Tables 1 and 2.

Table 2. Comparison of OHS bands with Landsat-8 OLI and Sentinel-2.

Band Name OHS Landsat-8 OLI Sentinel-2

Green
566 nm

561 nm 560 nm580 nm

Red 670 nm 655 nm 664 nm

NIR
806 nm

865 nm 833 nm820 nm
880 nm

2.2.2. Training and Validation Samples

The quality of samples is directly related to the accuracy of wetland information
extraction, so pure typical and representative pixels should be selected as samples. The
training and validation samples in this study are mainly derived from two methods: field
survey and visual interpretation with Google Earth high-resolution optical remote sensing
images, as well as GaoFen-2 (GF-2) panchromatic and multispectral fusion images with
nadir pixel resolution of 0.8 m. In November 2020, our research group conducted a detailed
field survey of the YRD National Nature Reserve, using Global Position System real time
kinematic (GPS RTK) measurements to locate, record, and take photos of different wetland
distributions and wetland types, as shown in Figure 2. The above two categories of data
constitute sample data and validation data, which are used to establish classifiers and verify
accuracy. Table 3 lists the per-class numbers for the classification training and validation
samples (a total of 219,269 samples).
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Figure 2. Schematic diagram of field survey marks and site photos for YRD wetland types in November 2020. Green points
represent the GPS RTK locations. Note that the RTK points are sampled at a distance of approximately 5 to 10 m, so there
are many points that overlap and are not fully visible in this figure. (a) Tidal Flat, (b) Suaeda sala (c) Tamarix chinensis,
(d) Spartina alterniflora (e) Phragmites australis (f) Farmland.

Table 3. The number of classification training and validation samples per class.

Class Number of Training Sample
(Points)

Number of Validation Sample
(Points)

Saltwater 59,357 50,710
Farmland 20,783 12,162

River 8673 3047
Shrub 2225 2695
Grass 11,401 6863

Suaeda salsa 269 124
Tidal flat 18,552 22,408

Total 121,260 98,009

According to the investigation of wetlands in the YRD, the main wetland types in
the wetland are Tamarix chinensis, Suaeda salsa, Phragmites australis, and invasive species
Spartina alterniflora [7,37,41].

• Tamarix chinensis is a kind of tree or shrub with a height of 3–6 m. It is popular on river
alluvial plain, seashore, beachhead, wet saline land, and sandy wasteland.



Remote Sens. 2021, 13, 4444 7 of 23

• Suaeda salsa is an annual herb that grows up to 1 m tall, growing in the seashore,
wasteland, ditch shore, the edge of the field, and other saline soil.

• Phragmites australis (commonly known as reed) is a tall aquatic or wet perennial grass,
up to 1–3 m tall. It does not grow in forest habitats but in various open waterborne
areas, such as rivers, lakes, ponds, watercourses, and lowland wetlands.

• Spartina alterniflora grows best on muddy beaches in estuaries. In the YRD, Spartina
alterniflora usually grows in the intertidal zone of estuaries, bays, and other coastal
tidal flats with elevations from 0.7 m below the mean sea level to the mean high-water
level and forms a dense single-species community.

As shown in Figure 2, a field survey of the YRD wetland was conducted from
9 November 2020 to 13 November 2020. Due to the similar morphological and spectral
characteristics as well as lack of prior knowledge, Phragmites australis and Spartina al-
terniflora were merged into the group of grass, whereas shrub was used to represent the
Tamarix chinensis. Therefore, the wetlands in the YRD is divided into seven types: saltwater,
farmland, river, shrub, grass, Suaeda salsa, and tidal flat.

2.3. Methods

Figure 3 presents the overall technical flow chart of this study, including data pre-
processing, features extraction, datasets fusion, supervised classification, and accuracy
evaluation. The detailed data processing process is shown below.

Figure 3. The overall technical flow chart of this study.

2.3.1. GF-3 Preprocessing

As shown in Figure 3, GF-3 PolSAR image processing consists of image preprocessing,
features extraction, image classification, and accuracy evaluation.
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First, the preprocessing of the original PolSAR image in single look complex (SLC)
format was performed with Pixel Information Expert SAR (PIE-SAR®) 6.0 and ENVI® 5.6,
including radiometric calibration, polarization filtering, and polarization matrix conversion.
After importing the GF-3 full-polarization SAR data, the radiometric correction process
can be completed automatically. A polarized scattering matrix can only describe so-
called coherent or pure scatterers, whereas distributed scatterers usually use second-order
descriptors [54]. Therefore, after importing the data, the polarization scattering matrix
was converted into the polarization covariance matrix or polarization coherence matrix by
means of a transformation function. PolSAR image speckle noise seriously affects the image
quality, accuracy of landcover information extraction, and ground object interpretation.
Azimuth and range multi-looking of 3*3 and the refined Lee filter with the window size of
3 × 3 were employed to reduce speckle noise with the output image grid size of 8 m.

Feature extraction is divided into two steps. The first step is polarization decomposi-
tion, which aims to effectively separate ground objects dominated by different scattering
mechanisms. Polarization features derived from polarization decomposition can reveal
the scattering mechanism of the ground object to determine the type. For example, sur-
face scattering is dominant in water bodies, whereas secondary scattering and volume
scattering are dominant in residential land and forest, respectively. The polarization de-
composition was carried by the H-A-α decomposition method and the three-component
Freeman decomposition method, respectively [23].

H-A-α decomposition uses the scattering matrix transformation to obtain the co-
herency matrix [T3], where [T3] is a semi-positive definite Hermite matrix [31]. The three
second-order parameters of H-A-α decomposition are the eigenvalues and eigenvector
functions of [T3], which are defined as follows [32]:

• entropy H:

H = −
3

∑
k=1

Pk log3(Pk) (1)

In the formula, Pi = λi/
3
∑

k=1
λk,

3
∑

k=1
Pi = 1. Entropy H reflects the randomness of the

target scattering mechanism. For example, a low H indicates that only one scattering
mechanism is dominant, whereas a high H indicates more than two primary scatter-
ing mechanisms.

• alpha α:
α = P1α1 + P2α2 + P3α3 (2)

In the formula, the magnitude of α1, α2,and α3 indicates the primary scattering mech-
anism: surface scattering, secondary scattering, and volume scattering; α denotes the
scattering angle. When α is close to 0, it indicates that only one scattering mechanism
exists. In contrast, a larger α value (maximum 90 degrees) indicates a more complex surface
scattering mechanism.

• anisotropy A:

A =
λ2 − λ3

λ2 + λ3
(3)

In the formula, λi is the eigenvalue of the coherency matrix [T3]. Anisotropy reflects
the relationship between two smaller scattering mechanisms. High A represents that two
scattering mechanisms are dominant simultaneously, whereas low values of A and H show
that only one scattering mechanism is dominant. However, low A and high H indicate that
three scattering mechanisms are similar, and the scattering is almost random.

Therefore, the polarization scattering information of ground objects can be fully used
to distinguish the surface types effectively. Figure 4 roughly shows the general distribution
of wetlands in the YRD. The low entropy value of water bodies such as oceans and rivers
indicates that surface scattering is dominant, whereas the high entropy value and low
anisotropy of land show a mixture of two or more scattering mechanisms (Figure 4b,c). The
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estuarine and riverside areas appear red (Figure 4a), mainly due to the volume scattering
of vegetation.

Figure 4. GF-3 polarization features in the YRD include (a) alpha, (b) anisotropy, and (c) entropy.

The Freeman three-component decomposition based on the physical reality was used
to establish a polarization covariance matrix with three basic scattering mechanism models,
namely, surface scattering, PS; volume scattering, PV ; and secondary scattering, PD. The
total polarization power was then solved using the above three scattering components, and
the formula is as follows [23,54]:

PSPAN = |SHH |2 + 2|SHV |2 + |SVV |2 = PS + PD + PV (4)

The second step is to extract texture features from the total polarization power by
using gray level co-occurrence matrix (GLCM) and generate eight features, namely, mean,
variance, homogeneity, contrast, dissimilarity, entropy, angular second moment, and cor-
relation [55]. Correlation can quantify the directionality of terrain texture. In addition,
variance, dissimilarity, and contrast can be used to analyze texture periodicity, whereas
entropy, angular second moment, and homogeneity can represent texture complexity [56].

Meanx = ∑
x

∑
y

PSPAN(x, y) ∗ x Meany = ∑
x

∑
y

PSPAN(x, y) ∗ y (5)

Variancex = ∑
x

∑
y

PSPAN(x, y)(x−Meanx)
2 Variancey = ∑

x
∑
y

PSPAN(x, y)
(
y−Meany

)2 (6)

Homogeneity = ∑
x

∑
y

PSPAN(x, y)
1 + (x− y)2 , x 6= y (7)

Contrast = ∑
x

∑
y
(x− y)2PSPAN(x, y) (8)

Dissimilarity = ∑
x

∑
y

PSPAN(x, y)|x− y| (9)

Entropy = −∑
x

∑
y

PSPAN(x, y) log(PSPAN(x, y)) (10)

Energy(angular second moment) = ∑
x

∑
y

P2
SPAN(x, y) (11)

Correlation =

∑
x

∑
y
(x, y)PSPAN(x, y)−Meanx Meany

VariancexVariancey
(12)
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As shown in Figure 5, a false color image with three texture features can be used to
display the surface texture information, river extension, and tidal creek development in
the YRD. Red land and blue water indicate that the land surface is rough and ground types
vary with obvious texture, whereas the texture difference of the water area is slight. Due
to the significant morphological differences between estuarine and riverside vegetations,
such as Phragmites australis and Tamarix chinensis, the texture changes rapidly.

Figure 5. False color image of GF-3 texture features in the YRD (red = mean; green = variance;
blue = homogeneity).

2.3.2. OHS Preprocessing

The procedure of OHS data preprocessing with the hyperspectral image processing
software PIE-Hyp® 6.0 and ENVI® 5.6 is shown in Figure 3. There are 32 bands in the
original OHS hyperspectral data [52]. First, all the bands were tested to identify any bad
bands. Bands with no data or poor quality were marked as bad. If there was a bad band,
it needed to be repaired. Radiation calibration [57] and atmospheric correction [58] were
then carried out for the above bands, respectively.

Hyperspectral images have rich spectral features, which can be combined with their
derived features to carry out fine wetland classification. As shown in Figure 6, spectral
values of different wetland types in OHS hyperspectral images were plotted according
to the region of interest (ROI) of the training samples. The spectral curves of seven
wetland types are relatively low, with the highest spectral reflectance of farmland and
tidal flat and the lowest spectral reflectance of saltwater. The spectral reflectance curves
of saltwater and river are similar with an absorption peak in the near-infrared band, but
the spectral reflectance of the river is slightly higher than that of saltwater on the whole.
Additionally, the spectral reflectance curves of shrub and grass are also similar, but the
overall reflectance of grass is higher than that of the shrub. There is no obvious difference
in spectral reflectance between Suaeda salsa and grass, especially in the near-infrared band,
resulting in a low separability between the two types of wetlands. In conclusion, the
spectral reflectance separability of the seven wetland types is not very significant, which
would lead to classification errors of some wetlands and affect the accuracy of classification
results to a certain extent.
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Figure 6. Spectral curves of the wetland types in the YRD derived from the OHS image.

Previous studies have shown that the Hughes phenomenon exists in the classification
process due to a large number of hyperspectral bands [59]. Feature extraction, also known
as dimensionality reduction, can not only compress the amount of data, but also improve
the separability between different categories of features to obtain the optimal features,
which is conducive to accurate and rapid classification [60].

The classification of remote sensing images is mainly based on the spectral feature
of pixels and their derived features. In this study, principal component analysis (PCA)
was used as the spectral feature extraction algorithm to obtain the first five bands, whose
eigenvalues were much larger than those of other bands [61]. As one of the most widely
used data dimension reduction algorithms, PCA is defined as an optimal orthogonal linear
transformation with minimum mean square error established on statistical characteris-
tics [24]. By transforming the data into a new coordinate system, the greatest variance by
some scalar projection of the data comes to lie on the first coordinate, which is called the
first principal component, the second greatest variance on the second coordinate, etc. In
addition to spectral features, we also employed normalized difference vegetation index
(NDVI) [62] and normalized difference water index (NDWI) [63] to obtain index features.
The formulas of NDVI and NDWI are as follows.

NDVI =
(NIR− Red)
(NIR + Red)

=
(B24 − B14)

(B24 + B14)
(13)

NDWI =
(Green− NIR)
(Green + NIR)

=
(B7 − B23)

(B7 + B23)
(14)

where NIR, Red, and Green represent the near-infrared band, red band, and green band, respectively.
As shown in Table 3, band 24 and band 14 from the OHS data are selected for NDVI,

whereas band 7 and band 23 are suitable for NDWI. Figure 7 presents the two kinds of
OHS hyperspectral index features. Both the NDVI value for land and NDWI value for
water are positive, which can basically represent the spatial distribution of land vegetation
and water.
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Figure 7. OHS hyperspectral index features in the YRD. (a) NDVI (b) NDWI.

2.3.3. Synergetic Classification

GF-3 polarization and texture features (8 m) and OHS spectral and index features
(10 m) derived from the above steps were used to carry out synergetic classification. Before
classification, the spatial resolution of the two kinds of data should be consistent through
resampling, which was set to 10 m in this study.

After ortho-rectification and image coregistration, the above features were classified
through three classical supervised classification methods, including maximum likelihood
(ML) [25], Mahalanobis distance (MD) [26], and support vector machine (SVM) [21]. In this
study, to obtain the fusion datasets of GF-3 PolSAR and OHS hyperspectral data for coastal
wetland classification, the layer stacking method was used to combine 11 GF-3-derived
polarization and texture features and seven OHS derived spectral and index features into
one multiband image at the feature level. This new multiband image includes a total of
18 bands.

The classifiers represent three different classification principles, as shown below.

• The ML classifier is one of the most popular methods of classification in remote sensing,
in which a pixel with the maximum likelihood is classified into the corresponding
class. The likelihood Lk is defined as the posterior probability of a pixel belonging to
class k.

Lωi = p(ωi|x) =
p(x|ωi)p(ωi)

p(x)
=

p(x|ωi)p(ωi)
M
∑

i=1
p(x|ωi)p(ωi)

(15)

where p(ωi) and p(x|ωi) are the prior probability of class ωi and the conditional
probability density function to observe x from class ωi, respectively. Usually, p(ωi) is
assumed to be equal, and p(x|ωi)p(ωi) is also common to all classes. Therefore, Lωi
depends on the probability density function p(x|ωi).

• The MD classifier is a direction-sensitive distance classifier that uses statistics for
each class. It is similar to the ML classifier, but it assumes that all classes have
equal covariances, and is, therefore, less time-consuming. The MD of an observation
x = (x1, x2, x3, . . . , xn)T from a set of observations with mean µ = (µ1, µ2, µ3, . . . , µn)T

and covariance matrix S is defined as [26]:

DM(x) ==

√
(x− µ)TS−1(x− µ) (16)
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• The SVM classifier is a supervised classification method that often yields good classi-
fication results from complex and noisy data. It is derived from statistical learning
theory that separates the classes with a decision surface that maximizes the margin
between the classes. The surface is often called the optimal hyperplane, and the data
points closest to the hyperplane are called support vectors. If the training data are
linearly separable, any hyperplane can be written as the set of points x satisfying:

wTx− b = 0 (17)

where w is the normal vector to the hyperplane.

The labeled training samples were used as input, and the classification results of seven
wetland types were obtained by using the above classifiers to predict the class labels of
test images.

2.3.4. Accuracy Assessment

As the most standard method for remote sensing image classification accuracy, the con-
fusion matrix (also called error matrix) was employed to quantify misclassification results.
The accuracy metrics derived from the confusion matrix include overall accuracy (OA),
Kappa coefficient, user’s accuracy (UA), producer’s accuracy (PA), and F1-score [64]. The
number of validation samples per class used to evaluate classification accuracy is shown in
Table 3. A total of 98,009 samples were applied to assess the classification accuracies.

The OA describes the proportion of correctly classified pixels, with 85% being the
threshold for good classification results. The UA is the accuracy from a map user’s view,
which is equal to the percentage of all classification results that are correct. The PA is the
probability that the classifier has labeled a pixel as class B given that the actual (reference
data) class is B and is an indication of classifier performance. The F1-score is the harmonic
mean of the UA and PA and gives a better measure of the incorrectly classified cases than
the UA and PA. The Kappa coefficient is the ratio of agreement between the classification
results and the validation samples, and the formula is shown as follows [22].

Kappa coe f f icient =
N

r
∑

i=1
Xii −

r
∑

i=1
Xi+X+i

N2 −
r
∑

i=1
Xi+X+i

(18)

where r represents the total number of the rows in the confusion matrix, N is the total
number of samples, Xii is on the i diagonal of the confusion matrix, Xi+ is the total number
of observations in the i row, and X+i is the total number of observations in the i column.

3. Results

The classification results derived from the ML, MD, and SVM methods for the GF-3,
OHS, and synergetic data sets in the YRD are presented in Figure 8. First, a larger amount
of noise deteriorates the quality of GF-3 classification results, and many pixels belonging
to the river are misclassified as saltwater (Figure 8a,d,g), indicating that the GF-3 fails to
separate different water bodies (e.g., river and saltwater). Second, the OHS classification
results (Figure 8b,e,h) are more consistent with the actual distribution of wetland types,
proving the spectral superiority of OHS. However, there are many river noises in the sea
that are probably attributed to the high sediment concentrations in shallow sea areas (see
Figure 1). Third, the complete classification results generated by the synergetic classification
are clearer than those of GF-3 and OHS data separately (Figure 8c,f,i). Similarly, some
unreasonable distributions of wetland classes in the OHS classification also exist in the
synergetic classification results, which reduces the classification performance. For example,
river pixels appear in the saltwater, and Suaeda salsa and tidal flat exhibit unreasonable
mixing. Overall, the ML and SVM methods can produce a more accurate full classification
that is closer to the real distribution.



Remote Sens. 2021, 13, 4444 14 of 23

Figure 8. Classification results obtained by ML, MD, and SVM methods for GF-3, OHS, and synergetic
data sets in the YRD. (a) GF-3 ML, (b) OHS ML, (c) GF-3 and OHS ML, (d) GF-3 MD, (e) OHS MD,
(f) GF-3 and OHS MD, (g) GF-3 SVM, (h) OHS SVM, (i) GF-3 and OHS SVM.

The accuracy results obtained by different classification methods for different data
sets are shown in Tables 4–7 and Figures 9–11. The OAs obtained by the ML, MD, and
SVM methods for the GF-3 data are 52.5%, 55.7%, and 80.7%, and the Kappa coefficients
are 0.36, 0.41, and 0.70, respectively. The above classification accuracy is the lowest of
all classification processes, possibly due to common wetland structural conditions. In
contrast, the OAs with the ML, MD, and SVM methods for the OHS data are 96.7%, 87.6%,
and 95.6%, and the Kappa coefficients are 0.95, 0.82, and 0.94, respectively. This may be
attributed to the increased spectral separation capacity of the biochemical characteristics
of wetland types. Subsequently, the classification accuracy after data fusion is improved
by approximately 30% compared with the GF-3 data alone. This is mainly due to the
consideration of the biophysical and biochemical changes that occur with the change in the
phenology of wetland types.

Table 4. Accuracy assessment results obtained by ML, MD, and SVM methods for GF-3, OHS, and
synergetic data sets.

Accuracy Metric Data ML MD SVM

Overall Accuracy
GF-3 52.5% 55.7% 80.7%
OHS 96.7% 87.6% 95.9%

GF-3+OHS 97.3% 89.0% 97.2%

Kappa Coefficient
GF-3 0.36 0.41 0.70
OHS 0.95 0.82 0.94

GF-3+OHS 0.96 0.84 0.96
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Figure 9. The overall accuracy (OA) and Kappa coefficient obtained by ML, MD, and SVM methods
for GF-3, OHS, and synergetic data sets.

Table 5. PA (%) for different wetland types using different input feature sets and supervised classification methods.

Wetland Saltwater Farmland River Shrub Grass Suaeda salsa Tidal Flat

GF-3 ML 43.6 64.26 1.6 65.86 17.26 35.48 82.5
GF-3 MD 61.74 61.41 61.43 65.5 37.11 29.03 42.88
GF-3 SVM 93.97 74.57 0.62 56.44 46.38 0 78.81

OHS ML 99.05 99.57 99.64 92.54 89.95 83.06 91.99
OHS MD 87.3 98.09 93.4 87.38 76.7 71.77 85.28
OHS SVM 98.9 99.47 97.08 92.99 93.78 80.65 88.03

GF-3+OHS ML 99.03 98.94 98.99 91.89 91.05 68.55 94.96
GF-3+OHS MD 93.31 96.23 96.05 74.08 67.01 74.19 82.98
GF-3+OHS SVM 99.05 98.5 95.69 95 93.7 81.45 93.79

Table 6. UA (%) for different wetland types using different input feature sets and supervised classification methods.

Wetland Saltwater Farmland River Shrub Grass Suaeda salsa Tidal Flat

GF-3 ML 91.46 56.07 4.58 48.93 58.37 0.96 38.02
GF-3 MD 92.47 57.2 16.67 48.47 40.98 0.44 43.92
GF-3 SVM 88.2 58.4 5.18 55.14 60.49 0 87.93

OHS ML 99.98 84.82 86.25 91.26 96.03 55.38 99.93
OHS MD 100 89.6 47.06 79.48 93.32 1.4 98.5
OHS SVM 99.82 82.45 84.18 98.66 96.46 16.53 99.81

GF-3+OHS ML 99.94 89.06 88.52 89.76 94.88 72.65 99.5
GF-3+OHS MD 99.97 95.78 46.71 63.78 70.19 2.63 97.82
GF-3+OHS SVM 99.73 90.41 85.9 100 92.15 24.46 99.83



Remote Sens. 2021, 13, 4444 16 of 23

Table 7. F1-score (%) for different wetland types using different input feature sets and supervised classification methods.

Wetland Saltwater Farmland River Shrub Grass Suaeda salsa Tidal Flat

GF-3 ML 59.05 59.89 2.37 56.15 26.64 1.87 52.05
GF-3 MD 74.04 59.23 26.22 55.71 38.95 0.87 43.39
GF-3 SVM 90.99 65.50 1.11 55.78 52.50 0.00 83.12

OHS ML 99.51 91.61 92.46 91.90 92.89 66.45 95.80
OHS MD 93.22 93.65 62.59 83.24 84.20 2.75 91.41
OHS SVM 99.36 90.16 90.17 95.74 95.10 27.44 93.55

GF-3+OHS ML 99.48 93.74 93.46 90.81 92.93 70.54 97.18
GF-3+OHS MD 96.53 96.00 62.85 68.55 68.56 5.08 89.79
GF-3+OHS SVM 99.39 94.28 90.53 97.44 92.92 37.62 96.72

Figure 10. The PA (a), UA (b), and F1-score (c) obtained by ML, MD, and SVM methods for GF-3, OHS, and synergetic
data sets.

Figure 11. The confusion matrixes obtained by ML, MD, and SVM methods for synergetic data sets. (a) GF-3 and OHS ML,
(b) GF-3 and OHS MD, (c) GF-3 and OHS SVM.

Considering that the synergetic technique essentially combines the structural and
dielectric information of wetland types with the scattered power components, GF-3 and
OHS data are transformed into more meaningful target information content than the
GF-3 or OHS data alone. Therefore, we found that the accuracy metrics of synergetic
classification were significantly improved compared with the single data classification in
Table 4 and Figure 9. Among the three tested classifiers, the MD method provides the
lowest synergetic classification accuracy of 89%, and the other two methods (ML and SVM)
are relatively close, with an overall accuracy of 97% and a Kappa coefficient of 0.96.

In addition to the OA and Kappa coefficients (Table 4 and Figure 9) and corresponding
classification images (Figure 8), the PA, UA, and F1-score were calculated according to
the confusion matrix (Tables 5–7 and Figure 10). Concerning the values of PA, UA, and
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F1-score obtained for each wetland type, the best classified types are saltwater, farmland,
river, and tidal flat, with values above 80%. The accuracy of Suaeda salsa was the lowest,
mainly due to the fact that Suaeda salsa is small in size (approximately 1 m in height and
width) and sparsely distributed on the tidal flat, whereas the image resolution of 10 m
was used in this study. The PA, UA, and F1-score of saltwater and river for GF-3 data are
significantly lower than those of the other two datasets. Since SAR distinguishes objects by
different scattering mechanisms and surface roughness, the above two factors are basically
the same in saltwater and river, making it difficult to distinguish between them. Therefore,
the spectral characteristics of optical images are required to improve the PA, UA, and F1
scores of water bodies.

For synergetic classification, the PA, UA, and F1-score are above 90% as most phenolog-
ical features are captured by the SAR backscatter coefficients and OHS spectral information.
Although there is an overall increase in the Kappa coefficient, OA, UA, PA, and F1-score for
different wetlands with synergetic classification, the PA, UA, and F1-score of shrub, grass,
and Suaeda salsa are abnormal, respectively. The decrease in the UA, PA, and F1-score could
be due to the fact that the sample pixels used for training are insufficient. Considering the
complexity of wetlands in the study areas, these levels of accuracy prove the robustness
and high performance of the proposed synergetic classification in different study areas
with various ecological characteristics.

Misclassification commonly occurs in the process of image classification. The fewer
misclassified categories and misclassified pixels, the better the results of the classification.
Figure 11 is a graphical representation of the confusion matrix. Most off-diagonal cells
have low values, indicating that most pixels are reasonably well classified. In particular,
the results of the ML synergetic classification show that part of the tidal flats were wrongly
classified as Suaeda salsa, grass, river, and farmland. In a few cases, saltwater was also
misclassified as shrub and river. The biggest omission was the misclassification of Suaeda
salsa as tidal flat and farmland. In general, there is extensive confusion between adjacent
succession groups, such as saltwater vs. river, farmland vs. tidal flat, and shrub vs. grass.

4. Discussion
4.1. Significance Analysis of Multi-Features

Hyperspectral remote sensing images have rich spectral information, which is the
main basis of image classification. In contrast, SAR images can record geometric and
physical properties, such as surface roughness and dielectric constant through backscat-
tering intensity. The PolSAR image features that can be used for classification include
polarization features and texture features. The unique spatial information of these features
can effectively supplement the hyperspectral image information, which has proven to be
beneficial to the fine classification of ground objects.

The ranking of the importance of all the GF-3 and OHS features by the Recursive
Feature Elimination (RFE) [65] method is shown in Figure 12a, which is used to represent
the separate contributions to the final synergetic classification. There are seven most
important features, namely, entropy (T), contrast, anisotropy, correlation, homogeneity,
energy, and NDWI. However, we found that the final overall accuracy and Kappa coefficient
derived from all 18 features are higher than those from the seven most important features,
as shown in Figure 12b.

Figure 13 shows box-and-whisker diagrams for the seven most important features,
which provide a preliminary insight into the causes of misclassification. It can be seen
that these seven features can better distinguish the wetland landcover types. The features,
such as entropy, anisotropy, homogeneity, and NDWI, contribute greatly to distinguishing
different landcover due to the spectrum and appearances of wetland (Figure 13a,c,e,g).
However, contrast and correlation features do not perform well due to similar wetland
texture features (Figure 13b,d). The low separability of some wetland types, e.g., saltwater
vs. river, farmland vs. tidal flat, and shrub vs. grass, gives rise to misclassification to a
great extent.
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Figure 12. (a) Ranking of the importance of the features used for synergetic classification. Entropy (T) and entropy (P) represent
the entropy of the GF-3 texture feature and polarization feature, respectively. (b) The accuracy metrics of feature sets.

Figure 13. Box-and-whisker diagrams of the seven most important features. Green boxes represent 25th to 75th percentiles,
and whiskers extend to minimum and maximum values (excluding outliers). Red square and green line within the green box
indicate mean and median, respectively. (a) entropy, (b) contrast, (c) anisotropy, (d) correlation, (e) homogeneity, (f) energy,
(g) NDWI.
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4.2. Influence of Seasonal Change

For multi-source satellite remote sensing images obtained in different seasons, the
phenological differences cause false changes, which make the synergetic classification of
wetlands very challenging [38]. Images taken at different times show different types of
land types and different vegetation growth states. Therefore, when multi-source data are
fused, images observed in the same season should be used; otherwise, the reliability of
synergetic classification may be affected [38,66].

The YRD is located in the warm temperate zone with four distinct seasons and large
seasonal variations in land cover [67]. The GF-3 and OHS remote sensing images in this
study were collected on 13 March 2019, and 23 March 2020, respectively. As shown in
Figure 14, the highest temperature in March in this region was 17 °C, the lowest temperature
was 2 °C, and the highest precipitation was 4 mm. Most plants were not in the vigorous
growth stage, and the change rate of land cover was relatively low. In addition, the study
area is located in the YRD National Nature Reserve with relatively little human disturbance.
In recent years, the impact of sediment transport on the Yellow River estuary has gradually
decreased [39]. Therefore, the images collected in the same month in this study can ensure
the maximum reduction in the impact of wetland phenological changes.

Figure 14. Daily mean temperature and precipitation in the YRD in 2019 and 2020 derived from the
fifth generation ECMWF reanalysis (ERA5) in the Copernicus Climate Change Service (C3S) Climate
Data Store (CDS).

4.3. Influence of Tidal Level

Because the wetlands in the tidal flats over the YRD are greatly affected by tides, the
effect of tidal height on synergetic classification accuracy should be considered when using
multi-source images to classify coastal wetlands.

Combined with the tidal data of Dongying Port, the tidal heights are 103 cm and
106 cm of SAR and hyperspectral, respectively, and the tidal difference between SAR and
hyperspectral image acquisition time is approximately 3 cm. The OHS image in 2020
corresponds to saltwater, but the GF-3 image in 2019 corresponds to tidal flat. According to
the Advanced Land Observing Satellite World 3D-30m (AW3D30) v3.2, the average slope
of the estuary is estimated at 2.14%. A tidal difference of 3 cm corresponds to a horizontal
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change of nearly 70 m along the coastline. As the spatial resolution of the classification is
10 m, 70 m corresponds to 7 pixels. Therefore, the difference in tide level could introduce
uncertainty in the classification results.

4.4. Comparison with Other Studies

In this study, a synergetic wetland classification method combining GF-3 full-polarization
SAR and OHS hyperspectral images is proposed to generate a high-accuracy and reliable
wetland classification of the YRD. The OAs obtained by the ML, MD, and SVM methods
for the synergetic data sets are 97.3%, 89.0%, and 97.2%, and the Kappa coefficients are 0.96,
0.84, and 0.96, respectively. Compared with the single data set, the synergetic classification
method combined with OHS and GF-3 can further improve the accuracy and meet the
demand of a high-accuracy wetland classification in the YRD, which has great potential in
other wetland classification scenarios.

Previous studies have provided a number of synergetic classification cases for multi-
source SAR and optical remote sensing data integration, such as Sentinel-1, Sentinel-2,
and PlanetScope, to generate high-precision land cover and wetland classification results,
regardless of seasonal variations and tidal effects [23,40,42,44,45]. For example, Slagter
et al. [40] used Sentinel-1 and Sentinel-2 data to provide a more detailed spatial distribution
of the St. Lucia wetland habitats without considering wetland dynamics. Cai et al. [42]
demonstrated the good performance of the object-based stacked generalization method by
combining multitemporal optical and SAR data, with an overall accuracy of 92.4% and a
Kappa coefficient of 0.92, respectively. Nevertheless, some prediction errors may exist in
the low-resolution prior images if the temporal land surface changes are too indiscernible.

Some scholars have conducted preliminary studies on the classification of coastal
wetlands in the YRD without using full-polarization SAR data or hyperspectral data. In
particular, there are few synergetic wetland classification studies that evaluate the GF-3
and OHS data. For example, Feng et al. [36] proposed a multibranch convolutional neural
network (MBCNN) to fuse Sentinel-1 and Sentinel-2 images to map YRD coastal land cover,
with an overall accuracy of 93.8% and a Kappa coefficient of 0.93. Zhang et al. [7] mapped
the distribution of salt marsh species with the integration of Sentinel-1 and Sentinel-2
images. However, only the Sentinel-2 vegetation index and Sentinel-1 backscattering
feature are used, but the polarization feature of SAR images is not fully utilized.

5. Conclusions

Wetland classification is a challenging task for remote sensing research due to the
similarity of different wetland types in spectrum and texture, but this challenge could be
eased by the use of multi-source satellite data. In this study, a synergetic classification
method for GF-3 full-polarization SAR and OHS hyperspectral imagery was proposed in
order to offer an updated and reliable spatial distribution map for the entire YRD coastal
wetland. Three classical machine learning algorithms (ML, MD, and SVM) were used for the
synergetic classification of 18 spectral, index, polarization, and texture features. According
to the field investigation and visual interpretation, the overall synergetic classification
accuracy of 97% for ML and SVM algorithms is higher than that of single GF-3 or OHS
classification, which proves the performance of the fusion of fully polarized SAR data and
hyperspectral data in wetland mapping.

The spatial distribution of coastal wetlands affects their ecological functions. Detailed
and reliable wetland classification can provide important wetland type information to
better understand the habitat range of species, migration corridors, and the consequences
of habitat change caused by natural and anthropogenic disturbances. The synergy of
PolSAR and hyperspectral imagery enables high-resolution classification of wetlands by
capturing images throughout the year, regardless of cloud cover. Therefore, the proposed
method has the potential to provide accurate results in different regions.
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