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Abstract: In view of the difficulty of wind direction retrieval in the case of the large space and time
span of the global sea surface, a method of sea surface wind direction retrieval using a support vector
machine (SVM) is proposed. This paper uses the space-borne global navigation satellite systems
reflected signal (GNSS-R) as the remote sensing signal source. Using the Cyclone Global Navigation
Satellite System (CYGNSS) satellite data, this paper selects a variety of feature parameters according
to the correlation between the features of the sea surface reflection signal and the wind direction,
including the Delay Doppler Map (DDM), corresponding to the CYGNSS satellite parameters and
geometric feature parameters. The Radial Basis Function (RBF) is selected, and parameter optimiza-
tion is performed through cross-validation based on the grid search method. Finally, the SVM model
of sea surface wind direction retrieval is established. The result shows that this method has a high
retrieval classification accuracy using the dataset with wind speed greater than 10 m/s, and the root
mean square error (RMSE) of the retrieval result is 26.70◦.

Keywords: GNSS-R; wind direction; CYGNSS; SVM; DDM

1. Introduction

Wind speed and wind direction are important basic climate variables. As a passive and
non-contact remote sensing method, the Global Navigation Satellite System Reflectometry
(GNSS-R) technique uses the reflected signal of the navigation satellite L-band signal as
the remote sensing source. The GNSS-R technique is based upon a bistatic configuration
of the transmitter and receiver. The scattering problem involves the Global Positioning
System (GPS) signals transmitted from satellites at altitudes of about 20,000 km [1]. The
system has outstanding application effects in retrieving various physical parameters, such
as sea surface wind speed [2,3], sea ice [4–6], ocean surface altimetry [7–9], ocean oil slick
detection [10,11]. Sea surface wind field retrieval is mainly divided into sea surface wind
direction retrieval and sea surface wind speed retrieval. Sea surface wind direction retrieval
is a difficult point in wind field retrieval. Few studies involve the sensitivity of GNSS-R
signals to wind direction [12].

Many studies have focused on finding feature parameters closely related to wind
direction from the Delay Doppler Diagram (DDM). Early research was mainly based on
the relationship between signal delay waveform, probability density function (PDF) and
wind direction. In 2003, the influence of wind direction on the GPS signal delay waveform
by analyzing the reflected waveform geometry, scattering area and receiver integration
time [13,14] was simulated by Zuffada et al. Given the satellite elevation angle, wind speed
and receiver height, Zuffada et al. found that there were significant differences in different
wind directions at the trailing edge of the waveform. In 2004, similar results were shown
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in the carrier shape of the simulator at the height of 10 km. Further research found that the
trailing edge of the waveform of left-hand circular polarization (LHCP) and right-hand
circular polarization (RHCP) had differences [15]. When the incident angle increased, this
difference would be reduced. In 1994, Hildebrand et al. used the least-squares method to
perform wind direction retrieval based on PDF when the aircraft’s receiver height is 3–5 km,
the highest wind direction retrieval accuracy on the filtered data set and the unfiltered
data set is 5◦ and 40◦ [16]. On this basis, in 2004, the anisotropy in the PDF of the mean
square slope (MSS) of the sea surface was found to correspond to the local near-surface
wind direction. The PDF can be calculated from the code correlation waveform of the GPS
reflected signal, which showed the wind direction can be obtained by using the scattered
signals of two or more GPS satellites [17]. In 2003, the MSS was estimated by fitting the
delayed waveform obtained in the flight experiment to the geometric optical model [18].
The part of the wind direction when the satellite azimuth was consistent with the aircraft
heading was the same as that of the European Centre for Medium-Range Weather Forecasts
(ECMWF) wind direction data. In 2004, Komjathy et al. used different satellite signals
collected from airplanes combined with the nonlinear least-squares algorithm to retrieve
the wind direction. The result showed that the retrieved wind direction and the QuikSCAT
measurements were in 30◦ error at a wind speed of 5–10 m/s when the airplane had both a
stable flight level and a stable flight direction [19]. In 2014, by fitting the measured DDM
with the simulated DDM, Chen et al. made the accuracy of the wind direction retrieval
reach 30◦ [20].

Another research work on wind direction retrieval was mainly focused on the surface
reflection signal under the general mirror geometry observation configuration. In 2017,
the influence of wind direction on the near-specular reflection area of DDM was used in
calculating the Delay Doppler Map Average (DDMA) from the perspective of DDMA [21].
The results showed that for pure mirror geometry, DDMA had an effect on wind direction.
The relation between DDMA and wind direction is small and the influence of wind speed
cannot be ruled out. When the incident angle was 20◦–25◦ and the wind speed was about
9 m/s, the normalized signal-to-noise ratio (SNR) peak difference between the tailwind
and the headwind was 1 dB. However, it was currently difficult to retrieve the wind
direction through these small changes [22]. However, refs. [20,21] both found differences
in the dependence of different parts of the DDM on the wind direction in the process and
predicted the possibility of using the part of the DDM far away from the specular reflection
point to retrieve the wind direction.

At present, more studies tend to use the relationship between wind direction and the
bistatic radar cross-section. In 2014, the sensitivity of the bistatic radar cross-section to the
wind direction was evaluated using a small slope approximation model [23]. The model
was more accurate when using scattered signals away from the nominal specular reflection
direction. In 2016, Park et al. used a Normalized Bistatic Radar Cross Section (NBRCS) to
study the effect of wind direction on GNSS-R application sea surface specular scattering [24].
For purely mirrored geometry, the change in NBRCS was too small to perceive the wind
direction. For only slightly non-mirrored geometry, a large change in wind direction can
be found at a single surface point. An airborne wind direction retrieval model based on
NOAA G-IV jet aircraft using the Doppler angle of DDM as the retrieval observation was
established in the study [25]. The average accuracy of wind direction retrieval obtained
under a fixed model was 20◦. However, the model was a non-general model with a
small amount of airborne data, and there was also a problem of 180◦ ambiguity. In 2018,
Wang et al. explored the feasibility of using backscattered signals to retrieve wind direction
through theoretical simulations, using multi-beam antennas to observe wind direction from
at least three different directions to avoid ambiguity. The retrieval accuracy reached 24◦ at
low wind speeds [26]. In 2021, Pascual et al. drew the conclusion that wind speed and SNR
had an important influence on the wind direction retrieval model. The sensitivity of the
ocean surface bistatic scattering cross-section measured by the Cyclone Global Navigation
Satellite System (CYGNSS) to wind direction using the kurtosis of the DDM samples within
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a given area was studied. The results show a coefficient of determination (R2) between 0.6
and 0.9 for wind speeds between 4 and 10 m/s [27].

According to the above research results, it is difficult to establish a sea surface wind
direction retrieval model, especially in the case of a large space and time span. The
solution of wind direction 180◦ ambiguity is also a key point in wind direction retrieval.
Artificial intelligence algorithms, such as machine learning and deep learning, have made
it possible to build complex models. Convolutional Neural Networks (CNN) is a typical
algorithm in deep learning, and support vector machine (SVM) is a typical algorithm in
machine learning [28–30]. Due to the small number of training samples in this paper, the
SVM algorithm is chosen. A small number of support vectors determine the final result
during SVM calculation, which is insensitive to outliers and has excellent generalization
capabilities [31].

After our research about the sea surface wind speed inversion model of the CYGNSS
sea surface data based on Machine Learning [32], this paper studies the sea surface wind
direction retrieval model of space-borne GNSS-R based on SVM. The data comes from
CYGNSS Full DDM data, CYGNSS L1 data and ECMWF reanalysis datasets from 2019 to
2020. The geometric relationship parameters of DDM and CYGNSS satellite parameters are
extracted as SVM feature parameters. The grid search method is adopted to optimize and
establish a global satellite-borne sea surface wind direction retrieval model and verify the
effectiveness of the model. Compared with the abovementioned research, the space-borne
GNSS-R sea surface wind direction retrieval has a wider detection range and a larger
amount of data. The CYGNSS satellite data selected in this paper has a wide coverage
and a large time span. The results show that the SVM method proposed in this paper can
effectively retrieve the sea surface wind direction.

2. Data Source
2.1. CYGNSS

The “CYGNSS” mission launched on 15 December 2016, and placed eight small
satellites in low-Earth orbit at an altitude of about 520 km [33]. Each satellite carried the
CYGNSS Delay Doppler Mapping Instrument (DDMI) payload, which received GPS signals
reflected from the Earth’s surface. Therefore, each satellite receiver operated a bistatic radar
to observe the forward scattering of a specific GPS transmitter from the Earth’s mirror.
By correlating the received GPS transmission with the sent locally-generated copy of the
GPS C/A code, a basic GNSS-R measurement or DDM, was formed. The “pixel” in DDM
represents the power shifted from the Earth’s surface with a certain delay and Doppler
scattered from the specular reflection point. Each CYGNSS satellite was equipped with
two nadir antennas, capable of tracking four simultaneous reflections at any given time. In
the range of ≈±38◦, the constellation has produced up to 32 DDM measurements every
0.5 s since 2019. Due to the movement of the CYGNSS receiver and GPS transmitter, the
CYGNSS measurements are performed on irregularly repeated orbits in time and space;
the average and median revisit times are 7 and 3 h. These features have made CYGNSS
measurement conducive to achieving frequent storm coverage.

The CYGNSS data file used in this paper includes FULL DDM and L1 data, including
time-delay Doppler sample data, a series of metadata of geometric structure and instrument
parameters at the time of acquisition and the data format is NetCDF. This paper uses version
2.1 of the CYGNSS L1 data (available at https://podaac.jpl.nasa.gov/dataset/CYGNSS_L1
_V2.1). The time period is from 27 February 2019, to 17 November 2020. DDM sample data
is extracted from FULL DDM data, and CYGNSS satellite parameters are extracted from L1
data. FULL DDM data and L1 data are based on the index that corresponds to the specular
reflection point for data matching.

2.2. ECMWF Reanalysis Data Set

ECMWF used its forecasting models and data assimilation system to reanalyze
archived observations to create a global data set describing the recent history of the at-
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mosphere, land and ocean. The global data assimilation and filtering system used in the
ECMWF reanalysis project had continuity. A database that is as complete and compre-
hensive as possible ensures the consistency of the reanalysis data. The data for reanalysis
came from radio detection, aircraft, satellites and ground stations. The comprehensive
use of multiple data sources can eliminate possible obstacles or vegetation and other local
effects of non-target observations. The data was filtered to ensure data independence
and consistency.

ECMWF provides a sea surface wind field data of U and V components at the height
of 10 m above the sea surface. ECMWF provides sea surface wind field data with a spatial
resolution of 0.25◦ × 0.25◦ and a time resolution of 1 h. This paper used version ERA5 of
the ECMWF data. The dataset matches the wind field data of the closest point in space
and time to the CYGNSS specular reflection point. The interpolation method is not used in
this paper because the error between the nearest neighbor-matched wind direction and the
interpolated wind direction is small. Selecting the nearest neighbor matching method can
reduce the amount of calculation. In this paper, the wind speed data provided by ECMWF
is used as training data, and wind direction data is used as truth data.

3. Geometric Feature Parameter Extraction

According to the GNSS-R bistatic radar equation, wind direction causes a change in
the direction of the sea surface slope resulting in DDM asymmetry, but other parameters
can also contribute to the shape of DDM [34]. Therefore, it is difficult to extract the wind
direction from the DDM directly, and the geometric feature parameter of the DDM, which
is more sensitive to wind direction and less sensitive to other factors, is needed. Most
research and observations have shown that the DDM expands when the wind speed
increases. When the DDM expands, the DDM peak, the center of mass of DDMr and the
center of mass of DDMskirt will shift toward larger delay bins. The difference of their
change is more determined by wind direction than by other factors, such as wind speed.
DDMr is to filter out DDM parts with a horseshoe shape whose power value is greater
than the specified threshold after normalizing the DDM. DDMskirt is the region whose
power is within a certain ratio of the peak value of DDM.

Therefore, two measurement parameters to establish the relationship with the wind
direction are proposed. The first parameter is the vector azimuth angle from the peak
point of DDM to the center of mass of DDMr, namely angle ϕ1 in Figures 1–4. The second
parameter is defined as the vector azimuth angle from the center of mass of DDMr to the
center of mass of DDMskirt, namely angle ϕ2. The peak point corresponds to the specular
reflection point.
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When calculating these two indicators, the DDM power is normalized based on the
DDM peak value to avoid any calibration problems. The specific steps are as follows:

(a) Normalize DDM based on the peak point.
(b) Filter out the DDMr part with normalized power value greater than e−1 from DDM.
(c) Calculate the coordinates of the DDM peak point (Xmax, Ymax) and the centroid

coordinates (Xcm, Ycm) of DDMr, where X represents the time delay, Y represents the
Doppler shift and T(X, Y) represents the corresponding power at the time delay X
and the Doppler shift Y. The calculations of X and Y are shown in Equations (1)–(3).

Xcm = T−1
0 ∑ ∑ X·T(X, Y)dXdY (1)

Ycm = T−1
0 ∑ ∑ Y·T(X, Y)dXdY (2)

where T0 = ∑ ∑ T(X, Y)dXdY (3)



Remote Sens. 2021, 13, 4451 6 of 18

(d) Filter out the part of DDMskirt whose power value is 30% to 70% of the peak power
value from DDMr. This paper adjusts the threshold obtained after the attempt from
the statistical analysis in a large number of DDM during the calculation of ϕ1 and ϕ2.
Then calculate the center of mass of DDMskirt in the same way as above.

(e) Calculate ϕ1 and ϕ2 from the DDM peak point, the center of mass of DDMskirt
(Xcm, Ycm) and the center of mass of DDMskirt (Xcmskirt,Ycmskirt) to obtain geometric
feature parameters.
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outside the dark blue area is DDMr. The five-pointed star represents the peak point, the
diamond represents the center of mass of DDMr and the triangle represents the center
of mass of DDMskirt.

The two angle parameters are related to the sea surface wind direction through the
statistical analysis of a large amount of data of CYGNSS Full DDM. Figures 1–4 are typical
examples representing different wind directions. Therefore, ϕ1 and ϕ2 can be used to
retrieve the wind direction. However, it also can be seen that wind direction being retrieved
by ϕ1 and ϕ2 presents a double ambiguity of 180◦. In order to avoid the ambiguity of
wind direction and improve the accuracy of wind direction retrieval, other parameters
related to wind direction are needed.

Figures 1–4 also indicate that the normal angle range of ϕ1 should be between 0◦ and
10◦, and the normal angle range of ϕ2 should be between 170◦ and 180◦. Based on a large
amount of statistical data, this paper finds that most of the angles of ϕ1 that can reflect
the asymmetry of DDM are between 0◦ and 10◦ and for ϕ2 are between 170◦ and 180◦,
which belong to normal angles. In order to improve the robustness of the model, this paper
slightly expands the range of normal angles. Therefore, this paper defines ϕ1 that is greater
than 15◦ and ϕ2 that is less than 165◦, as thresholds of abnormal angles. The abnormal
angle includes most angles that cannot correctly reflect the asymmetry of DDM. In most
cases of abnormal angles, ϕ1 and ϕ2 cannot be used to establish a connection with wind
direction. However, some data samples with abnormal angles can still be used, and this
paper does not simply delete data samples with abnormal angles according to numerical
values. Specific data preprocessing conditions will be discussed later.
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4. Wind Direction Retrieval Based on Multi-Dimensional Feature Vector
4.1. GNSS-R Feature Parameters

The relevant power waveform of the GNSS-reflected signal is not only related to the
sea surface wind speed but also related to its corresponding GNSS-R geometric relationship.
Based on this, this paper extracted nine dimensional feature parameters of GNSS-R events.
They contain not only the CYGNSS satellite parameters but also the geometric relationship
feature parameters of the DDM waveform. In order to establish a more universal wind
direction retrieval model, it is necessary to establish the mapping relationship between the
feature parameters and the sea surface wind direction (WD). This paper established two
mapping relationships as follows:

WD1 = f1(WS, θ, µ,ϕ1,ϕ2) (4)

WD2 = f2(WS, θ, µ,ϕ1,ϕ2, LES, NBRCS, SNR, RCG) (5)

where the corresponding feature parameters are wind speed (WS), receiver elevation (θ) and
azimuth angle (µ), ϕ1, ϕ2, leading-edge slope (LES), NBRCS, SNR and Range Corrected
Gain (RCG). From Equations (4) and (5), f2 uses four more feature parameters than f1. The
ws, ele and azi are important parameters for retrieving the wind direction from DDM. Some
good results can be obtained by using Equation (4). However, these parameters cannot
fully reflect the influence of sea surface roughness on DDM, so LES, NBRCS, SNR and RCG
are introduced in Equation (5). Limited by the influence of multi-dimensional parameters,
the analytic function of formulas is very complicated, but machine learning theory provides
convenience for training multi-parameter nonlinear regression models. Therefore, in order
to fully consider the relationship between DDM geometric relationship feature parameters,
wind speed, CYGNSS satellite parameters and wind direction, this paper will introduce the
SVM algorithm to establish a mapping relationship model between the above parameters
and perform sea surface wind direction retrieval.

4.2. SVM

SVM is a widely used supervised machine learning algorithm in statistical learn-
ing. The two basic theories of statistical learning theory, “VC Dimension Theory” and
“Structural Risk Minimization Theory” are the source of its basic ideas and have obvious
advantages in solving nonlinear classification problems and high-dimensional feature
space classification problems. The key of the SVM algorithm is to find the best feature
space separation hyperplane. Specifically, K(x, z) is a function or positive definite kernel,
which means that there is a mapping ϕ(∗) from the input space to the feature space. For
any input space, there is:

K(x, z) = ϕ(x)•ϕ(z) (6)

In the dual problem of linear SVM, the kernel function K(x, z) is used to replace the
inner product, and the nonlinear SVM obtained by the solution is as follows:

f (x) = sign(
N

∑
i=1

αi
∗ yiK(x, xi) + b∗) (7)

Based on the above discussion, the nonlinear SVM learning algorithm can be obtained
as follows:

Input: training dataset T = {(x1, y1), (x2, y2), ..., (xn, yn)}
Output: Separate hyperplane and classification decision function
The input parameters of the SVM model in this paper are shown in Equations (4) and (5).

X represents the feature parameter of five or nine dimensions, and Y represents the label of
wind direction interval in T.



Remote Sens. 2021, 13, 4451 8 of 18

4.3. Gaussian Kernel Function

The essence of the Gaussian kernel is to measure the “similarity” between the sample
and the sample. In a space that describes the “similarity”, the samples of the same kind
can be gathered together better and then linearly separable. The Gaussian kernel function
has the advantages that it can be mapped to infinite dimensions, the decision boundary is
more diverse and there is only one parameter, which is easier to choose compared to the
polynomial kernel. Gaussian kernel function definition method:

K(x, y) = e−γ||x−y||2 (8)

where x and y are samples or vectors; γ is the only hyperparameter of the Gaussian kernel
function that represents the norm of the vector, which can be understood as the modulus
of the vector.

In this paper, the SVM model uses Radial Basis Function (RBF) with good generality.
In order to improve the accuracy and generalization ability of the retrieval model, it is the
key to optimizing the kernel function parameter Γ and the penalty factor C. Γ affects the
smoothness of the interface. C affects the model’s tolerance for data sample misdivision.
Therefore, the grid search cross-validation is used to optimize the parameters, and a large
search range of Γ and C is determined in advance, and then all Γ and C on the search grid
are traversed for training, and the classification accuracy of the cross-validation under each
set of parameters is obtained. Finally, this paper selects a set of parameters with the highest
accuracy rate as the training parameter result, which is retrained to build the model. The
process is shown in Figure 5.
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4.4. SVM Sea Surface Wind Direction Retrieval Process

This section proposes an SVM wind direction retrieval algorithm based on multi-
dimensional feature parameters. The DDM sample data comes from the Full DDM data of
the CYGNSS satellite. The receiver elevation and azimuth angles, LES, RCG, NBRCS and
SNR, come from the CYGNSS L1 data of the specular reflection point corresponding to the
Full DDM data. The true data of wind speed and wind direction come from the ECMWF
fusion wind. All data is matched and calculated in time and space. In wind direction
retrieval, the geometric feature parameters, CYGNSS satellite parameters and wind speed
data form a training dataset, which is used as the input of SVM. In order to improve the
efficiency of calculation and reduce the complexity of the model, the wind direction from
0◦ to 360◦ is divided into 72 intervals with a step length of 5◦. The wind direction of 0◦ is
the wind direction of true north. True wind direction provided by ECMWF is converted
into every interval, and the label of the interval was used to train the wind direction model.
The basic retrieval process is shown in Figure 6.
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5. Data Process and Results
5.1. Data Preprocessing

The sample data are from 27 February 2019, to 17 November 2020, in this paper. The
data set information (Table 1) is as follows:

Table 1. Data set information.

Data Set Type Time Coverage Temporal Resolution

CYGNSS L1 27 February 2019–17 November 2020 0.5 s
CYGNSS Full DDM 27 February 2019–17 November 2020 0.5 s
ECMWF Reanalysis dataset 27 February 2019–17 November 2020 1 h

The data collection quality of the dataset is basically controlled and preprocessed. The
standards of data preprocessing are as follows:

(1) Through the quality control (QC) flag in the L1 data of CYGNSS, this paper selects
data samples with good quality.

(2) The power of DDM with low wind speed is mainly concentrated near the specular
reflection point, and it is difficult to get the normal angle. Data samples with a wind speed
above 5 m/s are selected in this paper, and data are processed in different wind speed
ranges above 5, 8, 10, 12 and 15 m/s.

(3) When the SNR is too low, the original shape of DDM is “submerged” in the noise,
which affects the data quality of geometric relationship feature parameters (ϕ1 and ϕ2).
The abnormal angles (ϕ1 and ϕ2) are defined in Section 3. Figure 7 shows that there is
a much larger amount of data samples with an abnormal angle when the SNR is lower
than 1.3, so the data sample with an SNR higher than 1.3 is selected here.
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(4) Wind direction will be affected by the land airflow, resulting in the unusual shape
of DDM data, and sometimes even the extreme situation that the peak point is located at
the end of the horseshoe shape. Therefore, the sample data with an offshore distance of
more than 25km is selected here.

The distribution of the final filtered data on different data sets is shown in Table 2, the
quantity distribution of the data in different months before and after the screening is shown
in Figure 8, and the distribution of the filtered data in different wind directions is shown
in Figure 9. It can be seen from Figure 8 that the data samples are mainly concentrated in
July to November, and Figure 9 shows that wind direction is mainly concentrated in the
interval of 1–36 (0◦–180◦).

Table 2. Data quantity of different wind speed ranges.

Wind Speed ≥5 m/s ≥8 m/s ≥10 m/s ≥12 m/s ≥15 m/s

Amount 127,786 57,593 29,788 16,552 6498
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Figure 8. Quantitative distribution of Full DDM data in different months before (a) and after data
preprocessing (b).
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5.2. Accuracy Assessment

According to the flow chart in Figure 6, the SVM sea surface wind direction retrieval
model is established. The data set imported here is from CYGNSS satellite and ECMWF
reanalysis datasets. The dataset is randomly divided into 80% for the test set and 20% for
the training set, and then 20% of the training set is divided for grid cross-validation. The
cross-validation grid search method is carried out five times. After obtaining the model,
the accuracy results are obtained in the test set, and the root mean square error (RMSE) is
calculated as follows:

RMSE =

√
∑n

i=1 di f f 2
i

n
(9)

where di f f =
∣∣∣WDpredict −WDtrue

∣∣∣ (10)

In Equation (9), n is the number of samples. WDtrue is the true value of the wind
direction from the ECMWF reanalysis data set, and WDpredict is the middle value of the
predicted wind direction interval (the middle value of label 1 interval is 2.5◦, and that of
label 2 interval is 7.5◦).

5.3. Retrieval Results of Wind Direction
5.3.1. Grid Search Results

Based on the best parameters obtained by grid search cross-validation, the SVM model
is established to evaluate the accuracy of 80% of test sets randomly selected from the
dataset. Figure 10 is the result of a grid search for datasets with a wind speed range of
more than 8 m/s with nine dimensional feature parameters. It can be seen from Figure 10a
that the optimal parameter combination is near the range of C = 10 and Γ =10−1.5, and
the optimal parameter can be obtained by further narrowing the range. For datasets with
different wind speed ranges, the accuracy evaluation results are shown in Table 3.

5.3.2. Results Comparison between Two Different Mapping Relationships

Table 3 shows the optimal parameters results (after Grid searching) and RMSEs of
SVM retrieval results of different wind speed datasets (≥5, ≥8, ≥10, ≥12 and ≥15 m/s)
with two mapping relationships, f1 and f2.
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Table 3. SVM results of different wind speed datasets with two mapping relationships.

Mapping Relationship Wind Speed Optimal Parameters RMSE (◦)

5 dimensional feature parameters

f1 ≥5 m/s
(
Γ = 10−1.2, C = 101.7) 49.51

f1 ≥8 m/s
(
Γ = 10−1.3 , C = 101.9) 47.82

f1 ≥10 m/s
(
Γ = 10−1.1 , C = 101.9) 44.12

f1 ≥12 m/s
(
Γ = 10−0.9 , C = 102.1) 41.11

f1 ≥15 m/s
(
Γ = 10−1 , C = 102) 39.51

9 dimensional feature parameters

f2 ≥5 m/s
(
Γ = 10−1.6, C = 101.4) 30.03

f2 ≥8 m/s
(
Γ = 10−1.4 , C = 100.9) 27.31

f2 ≥10 m/s
(
Γ = 10−1.3 , C = 10) 26.70

f2 ≥12 m/s
(
Γ = 10−1.4 , C = 101.2) 28.27

f2 ≥15 m/s
(
Γ = 10−1.3 , C = 101.2) 26.78

6. Results Analysis
6.1. Analysis of Data Set Results for Different Wind Speeds

According to Table 3, SVM models with different wind speed ranges have different
optimal parameters, and the wind direction retrieval result with a wind speed greater than
10 m/s is best. In the case of a wind speed of 5–10 m/s of f2, with the increase of wind
speed, ϕ1 and ϕ2 can better reflect the geometric features of DDM asymmetry, which is
related to the wind direction, so the RMSE gradually decreases. In the case of a wind speed
greater than 10 m/s, the RMSE reaches its lowest. When the wind speed is greater than
12 m/s, the RMSE increases. The main reason is that the data quality decreases with the
increase of wind speed, which is reflected in the decrease of SNR and the increase in the
number of abnormal angles. When the wind speed range is more than 15 m/s, the RMSE
decreases to 26.78◦, which is mainly due to the reduction of the amount of data and the
concentration of high wind speed data in time and space, resulting in the improvement of
classification accuracy of the SVM sea surface wind direction retrieval model.

Compared with f2, the overall classification accuracy of f1 decreased significantly. It
shows that the introduction of LES, NBRCS, SNR and RCG is conducive to improving the
accuracy of wind direction retrieval. These parameters more accurately reflect the variation
of sea surface roughness under different wind directions and improve the classification
performance of SVM.

According to Table 3, the SVM wind direction retrieval result with a wind speed
greater than 10 m/s using mapping-relationship f2 is the best. Figure 11 shows that the
SVM classification confusion matrix of the data set with wind direction retrieval result.
Most of the data samples are classified into the correct wind direction interval or the range
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adjacent to the correct wind direction interval, and the overall classification accuracy is
high. It indicates that the SVM sea surface wind direction retrieval model established in
this paper has good classification results. However, the RMSE on all datasets is more than
20◦, so the results need to be further analyzed.
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with wind speeds greater than 10 m/s.

Figure 12 shows the distribution of different angles on the test set. According to
Equation (10), the difference can be calculated. The prediction error of most samples is
within 5–10◦, and only a small part of the data error is within 20–180◦. It shows that the SVM
model can effectively solve the problem of 180◦ wind direction ambiguity. However, even
if the number of samples with an error of more than 90◦ accounts for a small proportion of
the test set, they still have a considerable impact on RMSE. The biggest penalty for RMSE
is to predict a data sample as the opposite wind direction. This is the main reason why the
overall classification accuracy of this paper is higher, but the RMSE rises to more than 26◦.
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6.2. Further Analysis of RMSE Variation under Different Wind Speeds

In the previous section, this paper analyzes the changes of RMSE results under differ-
ent wind speeds using nine dimensional parameters. Although the actual reason should be
as mentioned above, the impact of changes in the amount of data cannot be ignored. With
the increase of wind speed, the amount of data is decreasing. It must have a significant
impact on the training of the SVM model. Therefore, it is necessary to further analyze the
results under the condition of controlling the amount of data.

First, the increase in RMSE for wind speed≥ 12 m/s compared to wind speed ≥ 10 m/s
should be analyzed. To avoid the impact of data set changes, the under-sampling method
was adopted to control the number of data samples. In this paper, 16,552 data samples
are randomly selected from the data set in the wind speed between 9 and 12 m/s for the
establishment of the SVM model.

From Table 4, the RMSE of the SVM wind direction retrieval model established under
the wind speed between 9 and 12 m/s is lower than that of the wind speed greater than
12 m/s. Figures 13 and 14 show the number distribution of SNR in different wind speed
ranges. The average SNR in Figure 14 is 3.34. The average SNR in Figure 13 is lower than
that in Figure 14, which is 2.78. It indicates that the increase of RMSE wind speed greater
than 12 m/s is indeed due to the reduction of data quality compared with wind speed
greater than 10 m/s. However, it is also found that reducing the amount of data does have
a bad impact on the accuracy. Even in similar wind speed ranges, the reduction of data
directly leads to the rise of RMSE.

Table 4. Results of wind speed ≥ 12 m/s and 9–12 m/s after controlling the amount of data.

Wind Speed Optimal Parameters Amount of Data RMSE (◦)

≥12 m/s
(
Γ = 10−1.4 , C = 101.2) 16,552 28.27

9–12 m/s
(
Γ = 10−1.6 , C = 101.3) 16,552 27.15
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Second, this paper analyzes the decrease in RMSE for wind speed greater than 15 m/s.
There are a few data samples with wind speed greater than 15 m/s, and the data quality
decreases. The high concentration of data samples in time and space should be the main
reason for the decline of RMSE, but the impact of the reduction of data samples also needs
to be studied. In this paper, 6498 data samples are randomly selected from the data set in
the wind speed range of 12 to 15 m/s for the establishment of the SVM model.

From Table 5, the RMSE at wind speeds of 12 to 15 m/s is higher than that at wind
speeds greater than 15 m/s. It shows that under normal circumstances, the reduction of
data and the reduction of data quality will lead to the increase of RMSE. However, the high
wind speed data samples collected by the CYGNSS satellite are highly concentrated in
time and space, which makes the RMSE lower. The SVM model established with this data
set is not suitable for the retrieval of all wind directions. The wind direction information
contained in the training data set is not complete.

Table 5. Results of wind speed ≥ 15 m/s and 12–15 m/s after controlling the amount of data.

Wind Speed Optimal Parameters Amount of Data RMSE(◦)

≥15 m/s
(
Γ = 10−1.3 , C = 101.2) 6498 26.78

12–15 m/s
(
Γ = 10−1.7 , C = 101.1) 6498 32.69

This paper established two different mapping relationships between feature parame-
ters and WD ( f1 and f2). The results using f2 show that it can effectively solve the problem
of wind direction ambiguity. In addition, in order to get ϕ1 and ϕ2, which can reflect the
geometric features of DDM, it is necessary to preprocess the dataset. Firstly, the QC of the
CYGNSS L1 data product is used for data preprocessing. Secondly, by analyzing a large
number of abnormal angles’ data samples, it is found that wind speed and SNR have a
greater impact on ϕ1 and ϕ2. Finally, the selected specular reflection point should be far
away from the land. After data preprocessing, the wind direction retrieval based on SVM
using nine dimensional feature parameters can accurately retrieve wind direction with a
certain condition of wind speed and SNR.

In order to further reduce the RMSE of sea surface wind direction retrieved by the SVM
model, more and higher quality DDM data is needed. More can make the model contain
all wind direction information, and higher quality DDM can fully reflect the asymmetry of
DDM through ϕ1 and ϕ2. They can improve the accuracy of wind direction retrieval of
the model. In addition, this paper retrieves the wind direction based on the asymmetry of
DDM. When the wind speed is lower than 5 m/s, the asymmetry of DDM is not obvious.
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In the case of low wind speeds and signal interference, the result of wind direction retrieval
will become worse. However, based on a large amount of high-quality data, the model is
also robust to wind direction retrieval under low wind speeds. Finally, there is one problem
that cannot be solved. The sea surface wind direction close to the land cannot be retrieved
accurately. Data samples with specular points close to land need to be deleted.

7. Conclusions

In this paper, a GNSS-R sea surface wind direction retrieval method based on the
SVM model is proposed in the case of a large space and time span. The data are from
CYGNSS Full DDM, CYGNSS L1 data and ECMWF reanalysis datasets. By extracting the
geometric relationship features ϕ1 and ϕ2 of DDM, the wind direction can be reflected
more accurately, which can be used as the important feature parameters of wind direction
retrieval. Together with other feature parameters related to wind direction, the input
feature parameters of the dataset are composed for the solution of wind direction ambi-
guity. The wind direction is divided into 72 retrievals in 5◦ steps. Wind speed and SNR
have an important influence on the retrieval of sea surface wind direction, especially on
the geometric feature parameters of DDM (ϕ1 and ϕ2). Therefore, in order to improve
the retrieval accuracy of wind direction, the data of wind speed and SNR are screened
and processed.

The retrieval results in different wind speed ranges are evaluated. In order to reflect
the impact of sea surface roughness on DDM more accurately, this paper sets up two
different mapping relationships, which contain five dimensional feature parameters and
nine dimensional feature parameters. Finally, their experimental results are compared. In
the case of using nine dimensional feature parameters, when the wind speed is higher than
5 m/s, the RMSE of wind direction retrieved by the SVM model is 30.03◦. When the wind
speed is higher than 8 m/s, the RMSE is 27.31◦. In the dataset with wind speed higher than
10 m/s, the RMSE is 26.70◦, which is the best of all. When using five dimensional feature
parameters, the overall RMSE in different wind speed ranges increases by more than 10◦,
which shows that the introduction of LES, NBRCS, SNR and RCG can effectively improve
the accuracy of SVM wind direction classification. RMSEs retrieved under different wind
speeds are different. This paper discusses the reasons for the change of RMSE. In order
to eliminate the influence of data volume, the down-sampling method is used to control
the number of samples. The increase of RMSE from a wind speed greater than 10 m/s to
a wind speed greater than 12 m/s is due to the decline of data quality. The decrease of
RMSE from wind speed greater than 12 m/s to wind speed greater than 15 m/s is due
to the high concentration of data samples in time and space. The results show that a sea
surface wind direction retrieval model based on SVM can effectively retrieve the sea surface
wind direction and solve the problem of wind direction ambiguity. The spatial-temporal
discontinuity of full DDM data, the relatively small amount of filtered data and the error of
wind speed products will affect the results of sea surface wind direction retrieval. With the
increase of CYGNSS data products, the accuracy of the wind direction retrieval method
based on SVM should be further improved.

Author Contributions: J.Y. conceptualization; Y.Z. and Y.H. conceived and designed the framework
of the study. X.C. completed the data collection and processing. Y.Z. and X.C. completed the algorithm
design and the data analysis and were the lead authors of the manuscript, with contributions from
X.C., W.M., Z.H. and S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No.
41871325, 42176175) and the National Key R&D Program of China (Project No. 2019YFD0900805).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.



Remote Sens. 2021, 13, 4451 17 of 18

Acknowledgments: Thanks to NASA for the CYGNSSS public data; the European Centre for
Medium-Range Weather Forecasts (ECMWF) for the reanalysis dataset; and the Department of
Water Resources of Zhejiang Province for the typhoon track data. We would also like to thank Yang
Dongkai and Wang Feng of Beijing University of Aeronautics and Astronautics and Li Weiqiang of
CSIC-IEEC for their suggestions on the GNSS-R satellite data analysis. We would like to thank Zhou
Bo and Qin Jin from Shanghai Institute of Aerospace Electronics for their suggestions on the receiver
of reflected signals.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Clarizia, M.P.; Gommenginger, C.P.; Gleason, S.T. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the

ocean. Geophys. Res. Lett. 2009, 36, L02608. [CrossRef]
2. Liu, Y.; Wang, J.; Collett, I.; Morton, Y.J. A Machine Learning Framework for Real Data Gnss-R Wind Speed Retrieval. In

Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan,
28 July–2 August 2019; pp. 8707–8710. [CrossRef]

3. Rodriguez-Alvarez, N.; Garrison, J.L. A generalized linear observable for GNSS-R wind speed retrievals over the ocean.
In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014;
pp. 3810–3813. [CrossRef]

4. AlonsoArroyo, A.; Zavorotny, V.U. Sea ice detection using GNSS-R data from UK TDS-1. In Proceedings of the 2016 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2001–2004. [CrossRef]

5. Yun, Z.; Wanting, M.; Qiming, G. Detection of Bohai Bay Sea Ice Using GPS-Reflected Signals. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 39–46. [CrossRef]

6. Yun, Z.; Sijia, H.; Yanling, H. Sea Ice Thickness Detection Using Coastal BeiDou Reflection Setup in Bohai Bay. IEEE Geosci. Remote
Sens. Lett. 2020, 1–5. [CrossRef]

7. Yun, Z.; Tian, L.; Wanting, M. Feasibility of Code-Level Altimetry Using Coastal BeiDou Reflection (BeiDou-R) Setups. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4130–4140. [CrossRef]

8. Li, W.; Rius, A.; Fabra, F. Revisiting the GNSS-R Waveform Statistics and Its Impact on Altimetric Retrievals. IEEE Trans. Geosci.
Remote Sens. 2018, 1–18. [CrossRef]

9. Yun, Z.; Li, B.; Tian, L. Phase Altimetry Using Reflected Signals From BeiDou GEO Satellites. IEEE Geosci. Remote Sens. Lett. 2016,
13, 1–5. [CrossRef]

10. Valencia, E.; Camps, A.; Rodriguez Alvarez, N. Using GNSS-R Imaging of the Ocean Surface for Oil Slick Detection. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2013, 6, 217–223. [CrossRef]

11. Yun, Z.; Chen, S.; Hong, Z. Feasibility of Oil Slick Detection Using BeiDou-R Coastal Simulation. Math. Probl. Eng. 2017,
2017, 8098029. [CrossRef]

12. Zhang, G.; Yang, D.; Yu, Y. Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 1. [CrossRef]

13. Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans.
Geosci. Remote Sens. 2000, 38, 951–964. [CrossRef]

14. Lowe, E.S. Sensitivity analysis of wind vector measurements from ocean reflected GPS signals. Remote Sens. Environ. 2003, 88,
341–350. [CrossRef]

15. Zuffada, C.; Fung, A.; Parker, J.; Okolicanyi, M.; Huang, E. Polarization properties of the GPS signal scattered off a wind-driven
ocean. IEEE Trans. Antennas Propag. 2004, 52, 172–188. [CrossRef]

16. Hildebrand, P.H. Estimation of sea-surface winds using backscatter cross-section measurements from airborne research weather
radar. IEEE Trans. Geosci. Remote Sens. 1994, 32, 110–117. [CrossRef]

17. Germain, O. The Eddy Experiment: GNSS-R speculometry for directional sea-roughness retrieval from low altitude aircraft.
Geophys. Res. Lett. 2004, 31. [CrossRef]

18. Garrison, J.L. Anisotropy in reflected GPS measurements of ocean winds. In Proceedings of the IGARSS 2003. 2003 IEEE
International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July
2003; Volume 7, pp. 4480–4482. [CrossRef]

19. Komjathy, A.; Armatys, M.; Masters, D. Retrieval of Ocean Surface Wind Speed and Wind Direction Using Reflected GPS Signals.
J. Atmos. Ocean. Technol. 2004, 21, 515–526. [CrossRef]

20. Chen, L.; Huang, W. An Algorithm for Sea-Surface Wind Field Retrieval From GNSS-R Delay-Doppler Map. IEEE Geosci. Remote
Sens. Lett. 2014, 11, 2110–2114. [CrossRef]

21. Park, J.; Johnson, J.T. A Study of Wind Direction Effects on Sea Surface Specular Scattering for GNSS-R Applications. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4677–4685. [CrossRef]

22. Soisuvarn, S.; Jelenak, Z.; Said, F. The GNSS Reflectometry Response to the Ocean Surface Winds and Waves. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 4678–4699. [CrossRef]

http://doi.org/10.1029/2008GL036292
http://doi.org/10.1109/IGARSS.2019.8899792
http://doi.org/10.1109/IGARSS.2014.6947314
http://doi.org/10.1109/IGARSS.2016.7729516
http://doi.org/10.1109/JSTARS.2014.2357894
http://doi.org/10.1109/LGRS.2020.2980106
http://doi.org/10.1109/JSTARS.2015.2446684
http://doi.org/10.1109/TGRS.2018.2829166
http://doi.org/10.1109/LGRS.2016.2578361
http://doi.org/10.1109/JSTARS.2012.2210392
http://doi.org/10.1155/2017/8098029
http://doi.org/10.1109/JSTARS.2020.3022997
http://doi.org/10.1109/36.841977
http://doi.org/10.1016/S0034-4257(03)00175-5
http://doi.org/10.1109/TAP.2003.822438
http://doi.org/10.1109/36.285194
http://doi.org/10.1029/2004GL020991
http://doi.org/10.1109/IGARSS.2003.1295553
http://doi.org/10.1175/1520-0426(2004)021&lt;0515:ROOSWS&gt;2.0.CO;2
http://doi.org/10.1109/LGRS.2014.2320852
http://doi.org/10.1109/JSTARS.2017.2719405
http://doi.org/10.1109/JSTARS.2016.2602703


Remote Sens. 2021, 13, 4451 18 of 18

23. Zavorotny, V.U.; Voronovich, A.G. Recent progress on forward scattering modeling for GNSS reflectometry. 2014 IEEE Geosci.
Remote Sens. Symp. 2014, 3814–3817. [CrossRef]

24. Park, J.; Johnson, J.T.; Ouellette, J. Modeling polarimetric sea surface specular scattering for GNSS-R applications. In Proceed-
ings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 1903–1904. [CrossRef]

25. Valencia, E.; Zavorotny, V.U.; Akos, D.M. Using DDM Asymmetry Metrics for Wind Direction Retrieval From GPS Ocean-Scattered
Signals in Airborne Experiments. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3924–3936. [CrossRef]

26. Wang, F.; Yang, D.; Yang, L. Feasibility of Wind Direction Observation Using Low-Altitude Global Navigation Satellite System-
Reflectometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 5063–5075. [CrossRef]

27. Pascual, D.; Clarizia, M.P.; Ruf, C.S. Spaceborne Demonstration of GNSS-R Scattering Cross Section Sensitivity to Wind Direction.
IEEE Geosci. Remote Sens. Lett. 2021, 1–5. [CrossRef]

28. Liu, W.; Wei, J.; Meng, Q. Comparisions on KNN, SVM, BP and the CNN for Handwritten Digit Recognition. In Proceedings of
the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian,
China, 25–27 August 2020; pp. 587–590. [CrossRef]

29. Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans.
Syst. Man Cybern. Part B 2012, 42, 513–529. [CrossRef]

30. Ji, G.R.; Han, P.; Zhai, Y.J. Wind Speed Forecasting Based on Support Vector Machine with Forecasting Error Estimation. In
Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007;
pp. 2735–2739. [CrossRef]

31. Joachims, T. Making large-Scale SVM Learning Practical. Adv. Kernel Methods Support Vector Learn. 1999, 11. [CrossRef]
32. Yun, Z.; Jiwei, Y.; Shuhu, Y.; Wanting, M.; Yanling, H. High Wind Speed Inversion Model of CYGNSS Sea Surface Data Based on

Machine Learning. Remote Sens. 2021, 13, 3324. [CrossRef]
33. Ruf, C.; Asharaf, S.; Balasubramaniam, R. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am.

Meteorol. Soc. 2019, 100, 2009–2023. [CrossRef]
34. Guan, D.; Park, H.; Camps, A.; Wang, Y.; Onrubia, R.; Querol, J.; Pascual, D. Wind Direction Signatures in GNSS-R Observables

from Space. Remote Sens. 2018, 10, 198. [CrossRef]

http://doi.org/10.1109/IGARSS.2014.6947315
http://doi.org/10.1109/IGARSS.2016.7729489
http://doi.org/10.1109/TGRS.2013.2278151
http://doi.org/10.1109/JSTARS.2018.2877388
http://doi.org/10.1109/LGRS.2021.3049526
http://doi.org/10.1109/AEECA49918.2020.9213482
http://doi.org/10.1109/TSMCB.2011.2168604
http://doi.org/10.1109/ICMLC.2007.4370612
http://doi.org/10.17877/DE290R-5098
http://doi.org/10.3390/rs13163324
http://doi.org/10.1175/BAMS-D-18-0337.1
http://doi.org/10.3390/rs10020198

	Introduction 
	Data Source 
	CYGNSS 
	ECMWF Reanalysis Data Set 

	Geometric Feature Parameter Extraction 
	Wind Direction Retrieval Based on Multi-Dimensional Feature Vector 
	GNSS-R Feature Parameters 
	SVM 
	Gaussian Kernel Function 
	SVM Sea Surface Wind Direction Retrieval Process 

	Data Process and Results 
	Data Preprocessing 
	Accuracy Assessment 
	Retrieval Results of Wind Direction 
	Grid Search Results 
	Results Comparison between Two Different Mapping Relationships 


	Results Analysis 
	Analysis of Data Set Results for Different Wind Speeds 
	Further Analysis of RMSE Variation under Different Wind Speeds 

	Conclusions 
	References

